107

DISCRETE EVENT SIMULATION LANGUAGES

Charles M. Shub
Computer Science Department
University of Vermont
Burlington, VT

The current state of the art of discrete simulation languages is reviewed. The
available language orientations are delineated, compared, and related. The state
of availability of major features including such items as data structures and
storage management features, efficient event set management, random variate gen-—
eration, computational abilities, statistics display analysis, diagnosic facili-
ties, efficiency, interacting, semantic content, graphics, optimization, and
other features is chronicled. Recent developments and directions for future
developments in several major languages are reported. A bibliography and lists
of references in various sub-areas is provided.

1. INTRODUCTION

The state of the art of discrete event simulation languages is quite healthy. There is a wide range of
language orientations. There are clear delineations of the future directions of the languages. There
is a bubstantial body of work on existing and useful features. There are comparative evaluations of
techniques for handling event set management. There is a body of research on random variate gen-
eration. Efforts towards interactive simulations have been reported. Annotated bibliographies exist.

This summary will first briefly describe the major orientations of discrete event simulation languages
to indicate the variety of tools available to the discrete modeler. This initial section will also
provide the reader with references to the papers charting the developments of the approaches, important
works describing the major simulation languages, a brief description of the relationships among the
approaches and languages, and some comparisons.

Following this orientation and background portion will be a section describing gemeral features and
facilities of simulation languages, the extent to which they have been implemented, and possible
mechanisms for implementation of desired features. First, the list of features to be considered
will be delineated along with a brief justification for inclusion. Then each feature will be de-
scribed in greater depth along with a presentation of the current state of development in that
particular area. ' '

Having described the state of the art from a feature and facility perspective, this summary will
examine several languages as to the directions in which the languages appear to be moving.

Throughout this review, there will be many references to previous works. The abundance of related
research and development works provides a strong basis for much of what is reported here. The one
unfortunate thing about the previous work is that all too little of it involves comparisons. Thus
the bibliography contains a significant number of citations. Subsequent to the listing of the
citations themselves is an index by category to the referenced works.

2. ORIENTATIONS OF LANGUAGES

2.1 Introduction

TH0079-4/80/0000-0107$00.75 C 1980 IEEE.
Simubation with Disorete Models: A State-of-the-Art View
T.I. Onen, C.M. Shub, P.F. Roth (eds.)

108 . Charles M. SHUB

Discrete event languages can be stratified, according to Shannon [SHAN75], into four major categories.
He lists these categories as Transaction Flow, Process Oriented, Event Ordented, and Activity Oriented.
These different categories provide different mechanisms or frameworks for the modeler to describe a
system. The earlier historical development of the orientations is chronicled by Kiviat [KIVI67] who
indicates the initial dichotomy which was that of the earliest block diagram languages versus the
statement oriented languages. Jean Sammet also describes many simulation languages in her book on
programming languages [SAMME9]. More recently, Adam and Dogramacy [ADAM79] address the comparisons
with their own extenmsive deseriptions followed by in depth reports by the developers of the major
languages. Oren provides an annotated bibliography [OREN74] which includes additional material.

The following will serve to introduce the major orientations as given in Shanmon [SHAN751]:

A) The Transaction flow languages, GPSS and BOSS for example, involve specifying a sequence or
several alternative sequences of actions for units in the system by means of a block flow
diagram.)

B) The process oriented languages, SIMULA for example, describe a system as a set of processes
competing for resources, somewhat akin to, though apparently developed independently from,
the current process view of computer operating systems [SHAW74, DIJK68].

C) The event oriented languages, SIMSCRIPT, the GASP packages and the new PASCAL -Based
languages for example, describe systems by delineating event algorithms which occur
instantaneously (in zéro simulated time) at various points in time during the period of system
modeling, These algorithms describe how the status of the system changes at that point in time.

D) The Activity Oriented languages, HOCUS, CSL and ESP for example, provide for description of
activities which can occur and the conditions under which they can occur.

Others indicate different classification. SLAM (via an activity network similar to PERT) accomodates
transaction flow.

Roberts [ROBE8BOb] observes, "The distinction between transaction languages and process languages is
not clear and many, many confuse the two. Transaction ianguages have a very rigid specific structure

. where entities graphically flow through blocks which activate predefined processes. On the other hand,
process languages allow for a variety of processes to be modeled and do not have the same rigid
formation...[of] transaction languages." He goes on to observe "Activity languages are not especially
different from transaction oriented Languages. The difference is that activity languages require
closed loop models, whereas transaction languages can be open models. Furthermore, the transaction
languiages usually permit a secondary entlty such as a facility/resource/server whose flow is not
explicitly modeled in the block diagram. This secondary entity can interrupt and require synchroniza-
tion. The approach is different in the activity languages where all active entities must be repre~
sented explicitly by tranmsactions -gnd incorporated in the block diagram." Proponents of the various
approaches, and even specific L§Q§uages, will often argue that their modeling tool is better than
others. Shannon [SHAN75] provides 1anghage selection criteria which transcend these arguments.

.

2.2 Transaction Languages

By far and away the most popular. and widely used transaction flow language is GPSS. There are over 30
dialects of the language and a ‘number of substantial treatises on the use of the language in modeling
exist. This brief article could not hope to do justice to GPSS. Major text books on GPSS include (in
alphabetical order) Bobillier, et.al. [BOBI76], Gordon [GORD75] and Schriber [SCHR74]. Furthermore,
Gordon [GORD79] provides a review of the development of GPSS.

The transaction flowfianguages relate quite nicely to the other types of languages. Intrinsically they
are process languages in the sense that the block diagram is a flow chart type description of a process.
However, they do differ from the statement languages in the sense that they (at least in the majority
of versions) lack constructs (blocks) for detailed examination of and communication with other indepen—
dent units in the system. This is related to the simplified syntax of the available statements in
these languages.

2.3 Process Languages

SIMULA is one of the most popular process oriented languages. The best treatments of SIMULA are the
book by Franta [FRAN77a] and the original paper by Dahl and Nygaard [DAHL66]. Consolidated Analysis
Centers, Inc has developed capabilities for handling processes and resources which allows SIMSCRIPT

to also be considered as a process oriented lanpuage [RUSS76b]. Also, SLAM [PRIT79a] provides a pro-
cess capability. SOL, another process oriented language developed by Knuth [KNUT74], has been extended
to the system 370 [GUFF75]. The treatments in the literature indicate that even though the description
of the model is in terms of cooperating processes, the simulation software or run time support of the
language does in fact convert to a next event oriented implementation. In fact, the documentation of the
SIMSCRIPT implementation describes the system generated events and waiting lines used in the conversion.

2.4 Event Languages

The class of event languages is quite large. Tt includes SIMSCRIPT, a number of brand new PASCAL-based

DISCRETE EVENT SIMULATION LANGUAGES 109

languages, and many, many subroutine packages of which the GASP/SLAM/Q-GERT series are most widely
available and best documented. Kiviat's original paper [KIVI68] and his book with Villenueva and
Markowitz [KIVI73] provide the details of the newest version of SIMSCRIPT. Additional information
can be found in Chao [CHAO71]. Markowitz [MARK79] provides a summary of the various versions of
SIMSCRIPT. Major developments in the PASCAL-based languages which appear in recent literature in-
clude the work of Johmson [JOHN79] and Bryant [BRYA80]. Both have been concerned with making event
languages available on small Minis and Micros. Pritsker has written several excellent books on the
GASP packages [PRIT69, PRIT74, PRIT75,PRIT79] which along with the thesis by Hurst [HURS73], the
work with Pegden, [PEG79, PRIT79a] and thestatus report [PRIT79c], summarize recent developments in
that area. It should be noted that while the other languages (with the exception of earlier versions
of the PASCAL-like languages) are full blown languages which are either compiled directly or sifted
into some embedding language for translation, the GASP and SLAM packages are in fact a set of sub-
routines called from within some procedure oriented language such as FORTRAN or PL/1l i.e. the user
is really using FORTRAN or PL/1.

2.5 Activity Languages

Much of the work in activity languages has come from Great Britain at the University of Birmingham
which has developed the Extended Control and Simulation language. The techniques are described by
Hutchinson [HUTIC75a, HUTC75b], Buxton [BUXT66] and Clementson [CLEM73a, CLEM73b]. The work of
Hutchinson includes a description of CAPS which is a software package which assists in programming
the simulation.

2.6 Comparisons

Pragmatically, the orientation or category of the language or subroutine package serves more to give
a convenient framework or viewpoint for the simulation modeler to describe the system he wishes to
investigate than any other purpose. Despite this, a number of papers and books discuss the relation-
ships and make comparisons among language types. Normally, these comparisons are based upon specific
problems or classes of problems and the conclusions drawn do not always generalize. Those papers
which attempt to explain difference among languages without making relative merit type of judgements
are usually more informative and/or useful. The earliest comparisons are by Krasnow and Merkallio
[KRAS65] who look at general simulation, and by Tocher [TOCH65]. Chronologically next, Kiviat
[KIVI67] looked at this in his chronicaling of language development from birth to 1967. Krasnow
[KRAS69] did a comparison of GPSS, SIMULA, and SIMSCRIPT in 1969 emphasizing the different orienta-
tions as being different world views. Earlier, Teicherow and Lubin [TEIC66] provide a technique
based comparison. Kay has written several papers inventorying and comparing languages [KAYI71, KAYI72,
KAYI75]. More recent comparisons in addition to those found in most of the major simulation texts
[FISH73, FRAN77a, GORD78, GRAY80, MAIS72, NAYL66, SCHM70, SHAN75] are the methodology comparison of
Shub [SHUB78], the application directed comparison restricted to SIMULA and GPSS of Atkins [ATKIS8O]
and the performance comparison by Scher [SCHE78]. Some authors of these comparisons can not resist
the temptation to pontificate and make value judgements of relative merit. Any such judgement neces-
sarily reflects the author's biases and should be viewed as equivalent to saying that Baldwin Apples
are better than Mackintoshes. The important point, which Sammett [SAMM69] makes so well, is that the
orientations are different and the choice that needs to be made is one of selecting the best tool for
a particular problem rather than adapting an inappropriate modeling orientation to a given problem.

3. TLANGUAGE FEATURES

3.1 Introduction

At the 1976 Winter Simulation Conference Professors Miller and Morgan of the Wharton School chaired a
Panel Session on the scene in Simulation Languages in 1976 [MTLL76]. The panel included A. Alan B.
Pritsker [PRIT76], Ed Russell [RUSS76a] and Julian Reitman [REIT76].

Miller and Morgan delineated the following features which they indicated were expected by language users
as early as 1976.

1. Data Structures and Memory Management

A) BRepresentation

B) Ordering and Grouping

C) Creation and destruction of data
2. Time management including event sequencing
3. Sampling from probability distributions

4. Computational capabilities

5. Data collection and statistics

110 ' Charles M. SHUB

6. Debugging or verification facillities
7. TFile access systems
8. Partial compilations
Further, théy cited the need for improvements and further developments in:
1. Debugging interactively N
2. Statistics
3. Interfacing with an existant data base
4, Graphics

The anthology edited by Adam and Dogramaci [ADAM79] has an introduction which echoes the concerns of
Miller and Morgan. Furthermore, it suggests as additional concerns those of optimization (in the
sense of seeking and optimal solution) and efficiency, both from a programming and a processing view.
Markowitz, in a paper in the anthology [MARK79], augments the wish list with continuously changing
attributes, a more wholesome process view, style and its relation to content (thus including document-
ation efforts).

The summary here will consider the data structures and storage management features, the simulation
time management function including the type of clock and algorithms for event set management, the
current state of random number generation within the languages, the computational abilities within
the languages, the language facilities for statistics display and analysis, the user friendliness

and data input, the notion of efficiency as it relates to processing programs not only in translation
but also in execution, interacting with simulation programs during execution, the semantic content of
the programs, and other areas.

These topics reflect an assimilation of the subjects outlined above. The assimilation was made to
allow cohesive treatments of related areas. The topics were deliberately restricted to exclude the
issue of ease of modeling with a language and the modéling philosophy.The philosophy of modeling
is embedded within and is the orientation of the language. The relative merits of the languages
and approaches will continue to be debated.

3.2 Data Structures

Most of the major simulation languages have data structuring capabilities. The major development in
the area of data structures is the general awareness within the simulation community of the issues of
complete declarations and strong typing. Strong typing first became prevalent im PASCAL [WIRT71] and
has been commented upon im the simulation literature by Markowitz [MARK79], Bryant [BRYA80], and
Johnson [JOHN79].

First, and perhaps not only less severe in its constraints but also more useful, is a requirement
that each identifier be explicitly defined or declared. The arguments for and against this notion
have received wide attention in the programming language literature and meed not be delineated here.
Such a requirement in the context of simuldtion can, according to Bryant [BRYA80], be quite useful.
He gives examples of misspelling errors which can be detected at program tramslation time by such a
requiremeht. SIMULA, the PL/L based GASP, and the PASCAL-based languages do require the explicit
declaration of all identifiers while SIMSCRIPT, GPSS and the FORTRAN based GASP packages do not.

The major comstraint of Strong Typing is that any identifier can normally be used in at most ome
context. If the program has two distinct types of data structures, then two distinct sets of
identifiers must be used to refer to the structures. The argument in favor of this is that such a
requirement allows detection during the program translation of the "comparing apples with oranges"
types of error. Again, Bryant [BRYA80] and Markowitz [MARK79] provide examples. The only argument
which can be made against requiring this is that it prohibits the use of an identifier such as
FRUIT when one wishes to refer to some common attribute of either APPLES or ORANGES. This can tend
to make the programming somewhat more complex in such cases. At present, the second strong typing
constraint is available only in the PASCAL-~based simulation languages.

3.3 Time Management

In the area of simulation time management there are two issues. The first is that of an integer
versus real valued simulation clock, and the second is the management of the future event set.
Gordon, the developer of GPSS, indicates that the motivation for the integer clock in GPSS came from
the desire to assure reproducibility of results despite round off errors and minor changes in the
model [GORD79]. Gordon's admission that he would advocate use of a real clock in a revised GPSS
[GORD79] is justified quite well in terms of better understanding in the simulation community of the
requirements for and meaning of reproducibility.

DISCRETE EVENT SIMULATION LANGUAGES 111

The other time ilssue is far more complex. McCormack and Sargent [MCCO79b] delineate
many algorithms for event set management and report on comparisons under a variety
of circumstances. The topic has received substantial attention. Comfort [COMF79] also provides a
taxonomy and analysis which is independent of McCormack and Sargent. Comfort makes different assump-—
tions., Both comparisons evaluate the algorithms of Franta and Maly [FRAN77b,FRAN78], Gomnett [GONN761,
Henrikson [HENR77al, and Wyman [WYMA75]. Also they both draw upon the earlier comparisons of Vaucher
and Duval [VAUC75]. Comfort includes the work of Ulrich [ULRI78] while McCormack and Sargent con-
sider not only the Steady State analyses of Davey and Vaucher [DAVE76] but also the time indexed list
method [ENGL78] as influenced by Laughlin [LAUG75]}, the Priority Queue method [JONA75], the sub-
calenders of SIMSCRIPT [KIVI73, TANE76], the distribution of times given by Vaucher [VAUC76] the
classic texts of Knuth [KNUT68, KNUT73], and the Doctoral Dissertation of MecCormack [MCCO79a] which
apparently provided much of the basis for their work.

In essence, the event set management problem can be abstracted to developing a generalized data
structure for efficient insertions into priority ordered lists and efficient removal of the highest
priority item. The distribution of the priority values and the sequences of insertion and removal
vary from one application problem to another. McCormack and Sargent conclude, as one would expect,
that no single algorithm is always the best. Despite Vaucher's. algorithm doing best overall in
their study, they point out that they did not, and could not, test all possibilities. They express
concern about the sensitivity of Vaucher's algorithm to interval sizes and the necessity to specify
them. They suggest maintaining a pointer to the middle of event list and after the single halving
of the list at the middle pointer, a linear search from the front of the appropriate half of the
event list as a good compromise which will usually be relatively efficient.

Both summaries make suggestions for future research in event set management, though neither suggests
pursuit of a truly adaptive algorithm which could analyze the event set and automatically select or
change algorithms in mid-simulation.

3.4 Generating Random Numbers

The state of the use of random number gemeration in discrete languages is robust. Published research
generally addresses two issues:

1. GCenerating random variates from diverse distributions

2. Quality of randon number sequences generated.

The October 1976 issue of Simuletter [HIGH76] provides a summary of many generation techniques.
Tadikamilla [TADI78] delineates the generation of Gamma distributed variates, and with Schreiberx
[SCHR77] considers the Weibull distribution as well. Cheng [CHEN78] gives algorithms for Beta
Variates with non-integral shape parameters. Burford [BURF78] not only comsiders Erlang Variates
but also relates the quality of the variates to the underlying uniform generation scheme. Schmeisser
[SCHM78] looks at the gemeral problem of generation and Kisco [KISC76] provides an automatic pro-
cedure for producing piecewise linear cumulative distribution functions for empirical observationms.
Kisco's computer program actually generates the GPSS function description statements.

In the area of random variate quality there is the already mentioned work of Burford [BURF78],
Babadim and Stohr's work [BABA75] on comparing the generation in different implementations of GPSS
and noting that for shorter sequences some seed values behave better than others and the more recent
presentations by Saxon and Schreiber [SAX079] delineating which initial seed values produced higher
quality streams.

The need for diverse random distributions is recognized in STMSCRIPT [KIVI73] which provides ten
built in distributions and a convenient form for specifying others. In GPSS a few distributions
are built in, and the literature contains additional forms [HIGH76, SCHR77]. The inverse transform
method, the rejection method, and composite methods for generation are described in the simulation
texts [FISH73, FRAN77a, GORD78, GRAY80, MAIS72, NAYL66, SCHM70, SHAN75]. Fishman's new text [FISH78]
is a cut above the norm in this area. A bit more detail on the mechanics of generation and testing
on random numbers than is found in the texts is provided by Knuth [KNUT69].

3.5 Computional Ability

This need is met in most all the statement oriented languages. GPSS, however, has no facilities for
major computations though more recent versions do have the added feature of floating point variables.
The two cures for this involve allowing GPSS the ability to link to other languages through HELP
blocks or embedding GPSS constructs into a general purpose language. Gordon [GORD79] points this out
clearly and delineates both approaches. He remarks that initially he had expected the HELP block not
to be extensively used, but events proved otherwise. He suggests that abandonment of the intexpretive
mode of execution for GPSS in favor of a translate and execute scheme would allow for a much

cleaner HELP block implementation and permit extensions in both directions. Wimmert [WIMMBO] has
published a paper describing the details of one such HELP block callable FORTRAN Subroutine package
which performs a range of tasks. The most valuable portion of his paper is the delineation of the
mappings from GPSS Standard Attributes to FORTRAN Array Subscripts. Use of such packages allows for at
least the following:

112 Charles M. SHUB

1. Generating additional distributions

2. Providing additional random number streams

3. Initializing save values at run time rather than t?anslation time
4, TFormatting of output

5. Statistical analysis

Closely related to this area, though the major discussion will occur in the efficiency section is the
work of Henriksom [REIT80] in the developing of a Translate and Execute version of GPSS which provides
the cleaner implementation of HELP blocks.

In terms of embedding GPSS within a language, Rubin [RUBI80] discusses the design concepts involved in
doing the embedding with a language building utility program. The successful embedding of GPSS within
APL, has received some attention as well [IBMC76].

3.6 Statistics as related to Simulation

From a languagé point of view, the statistical tools needed include facilities to collect and display
statistics. Packages and procedures for the statistical analysis of simulation output have received
considerable attention elsewhere and will not be discussed in this context other than to reference
the papers of Hurwiltz and Quirk [HURW76] and that of Lewis [LEWI57] which can be of considerable
assistance and do indeed provide a fresh insight.

Most languages do have facilitles for the automatic collection and display of certain statistics.

Palme [PALM75] describes putting statistics into SIMULA programs. Markowitz, et.al. [KIVI73, MARK62]
describe the evolution of the techniques in SIMSCRIPT. Perhaps the most important development (from
a programming language point of view) is the use of monitoring functions and left handed functions as

a language feature to build the statistics gathering facilities into the SIMSCRIPT language. Con-
ceptually, a monitored variable is declared as such in the source program. The compiler, upon recog-
nizing the use of that variable, rather than generating a memory reference gemerates a call to a
function which can take any action it desires at every execution time reference to that variable.
Moreover, the particular function called can be specified as being dependent upon whether the monitored
variable is béing assigned a value or accessed.

SIMSCRIPT uses this feature to allow automatic collection of statistics (time weighted or value
weighted). The programmer merely declares which statistics he wants collected on which variables and
the compiler takes care of everything. The compiler generates the monitoring functions for that
variable and generates the calls to the monitoring function at each reference to the variable. The
programmer merely uses the variable in the ordinary sense and the compller handles the rest of the
details. However, the compiler does not cause automatic display of the statistical data upon ter-
mination of execution.

The approach in GPSS is rather different. Certain tabular data is routinely automatically collected and
then displayed vpon termination of execution. The GPSS programmer also has the facility to declare
statistical tables whose entries will be routinely displayed upon termination of the program. However,
the GPSS programmer must specifically provide for entries to be made into the table at each position

in his model whetre that is desired.

Ideally, a merging of the two techniques would be useful. TFor example, it would be comvenient to be
able to globally declaré mot only that you want statisties accumulated on a particular variable, but
also that you want display of those statistics every so many units of time, or more importantly, when-
ever certain conditions are met. The current state of the languages allow this to be accomplished
indirectly by explicit design by the programmer of monitoring routines to perform that function.
However, the languages could certainly be extended to include such specifications. The development in
SIMSCRIPT was to use the concept of a monitored variable to make the collection of statistics
declarable rather than executable, and the natural corresponding extension is to make the same
transformation in terms of display of statistical data. Newer versions of the other languages can
have similar features built in. When SIMPAS [BRYA80] is implemented as a language rather than a pre-
processor, that language could include these extensions.

GPDS [XERO72] and GPSS10 [MART78] include a SSTATE card which allows the programmer to terminate sim—
ulation when a particular Standard Numerical Attribute value remains within a delineated rangé for a
specified period of time,. A more general similar feature, provided through a HELP- block interface, is
described by Andrews and Schriber [ANDR78] and will be discussed more fully in the section on inter-—
active simulation. Other than this, the only tools for doing any sort of statistical analysis are
those developed by specific users of the languages.

3.7 User Friendliness

DISCRETE EVENT SIMULATION LANGUAGES 113

Within the general category of User Friendliness fall a number of related issues including:
1. Verification or debugging,
2. Translation and to some extent run time efficiency,
3., A subset of the interactive facilities which can be used as debugging tools, and
4, Ease of input to the model.
The tools and techniques one is concerned with are quite extensive and include:
1. Compiler diagnostics,
2. Execution diagnostics,
3. Interactive debuggers, and
4. FYormat-free I/0 routines.

Simulation languages stand up quite nicely in terms of compiler diagnostics. Generally one finds
capabilities for cross referencing names and a variety of consistency checks. Bryant [BRYA80]
argues persuasively for the additional compile time checking as in the PASCAL family. These
facilities are described in more detail by Wirth [WIRT71]. Markowitz, one of the developers of
SIMSCRIPT, also suggests these extensions as a possible direction for that language [MARK79]. Un-—
fortunately, the inclusion of additional compile time diagnostic capability makes the translation

a much more complex process. The increased capability for compile time comsistency checking comes
with the constraint that all the parts of the program which are being checked for comsistancy must
be compiled together. For example, how can a compiler assure that a subroutine or a procedure is
being called with the right number and types of arguments if the compiler does not have the sub-
routine text to scan so that it can know what arguments the subroutine expects? Such difficulties
have plagued the FORTRAN type programs for quite some time. Markowitz also calls for partial trans—
lations ala the style of FORTRAN though the general trend in programming languages seems to be the
reverse. Any person who has had to recompile an entire 4000 statement program because of one
errant comma can easily agree with that view. Unfortunately, provisions for partial compilation in
any programming language with concepts such as block structure, differing scopes of variables, de-
clarations which generate performable code, and the like, are just plain difficult.

The crucial point is that the compile time diagnostic enhancements must come at the expense of a

less efficient tramslation process. You can have one or the other but not both. A partial solution
might be to borrow from certain translators for other languages and allow the amount of compile time
checking to be a compiler option. This extension is non-trivial and raises a host of research issues
that are being pursued in the programming language field. The major issue is one of compatibility,
usually between those portions of the program tramslated with one set of options and those portions
translated with another.

The run time diagnostic facilities vary widely and run from none at all to trace information display
to true interactive debuggers which are, or can be, a subset of an interactive simulation capability.
At the worst, the run time debugging is at the core dump level assisted by manual insertion of

WRITE statements within the program. The next level of sophistication includes trace data provided
within the language such as the transaction flow traces in GPSS or the reverse history of procedure
call nesting available in many procedure type languages. The GPSS facility is a little bit more
sophisticated in that it gives a sequence of flow rather than static display of where one is and

how one got there. With access to the timing routine, the statement oriented languages can be
extended to provide this sort of capability as well. One of the SIMSCRIPT texts [KIVI73] describes
the built in facility to allow a user to comstruct his own dynamic trace, but the tracing of the
event sequence is not part of the language. The highest and most sophisticated level of debugging
is the true interactive debugger. Simulation languages (with the exception of GASP) are not
particularly nice in this area. The notable exceptions are Jim Henrikson's work om an interactive
debugger for GPSS [HENR?8, HENR77b, REIT80], GPSS10 [MART78], Norden GPSS [NORD78]}, and the inter-
active debugger on Xerox GPDS [XERO72]. All allow setting breakpoints and examining program variables
and the like. Apparently none interfaces on a source statement level, but rather on a block number
and transactions number level. However, the GPSS10 debugger also allows specifying the debugging
arguments by name rather than numeric equivalent. The GASP packages do nicely in terms of inter-

active debugging because the existent features of the debugger for the embedding language can be
used.

Many .versions of procedure oriented languages do have true interactive debuggers working at the source
statement level. The TERAK computer has software developed at Cormell University that provides an
excellent such program development tool for Cornell's PL/1 student subset. Several machines allow
interactive debugging of FORTRAN at the source statement level. Many operating systems do have
machine instruction level interactive debuggers. However, use of these tools generally requires a

114 Charles M. SHUB

detailed knowledge of not only the machine's instruction set, but also the implementation details of
the simulation language on that machine.

Judging from the progress made in programming languages one would suspect that these bells and whis-
tles and conveniences will be available for simulation languages in the not too distant future. At
the conceptual level, most of the problems are solved, and provision of the better debugging tools,
and/or the associate friendlier compilers is a matter of implementation rather than solving basic
problems.

Finally, just about all of the statement type languages have some form of format free input. The
GASP packages are currently having this feature added. [PRIT79c]

3.8 Efficiency

Closely related to the user friendliness issue is the issue of efficiency in terms of the translation
and execution speed of simulation programs. The trade off between fast compilation and compile time
error checking has been touched upon already. The insertion of run time efficiency into simulation
languages can be done in two areas. Frequently used algorithms can be analyzed and made more effi-
cient as has been the case for such areas as event set management and random variate generation. More
importantly, the compilers can be rewritten to produce more efficient code. Again, these capabilities
have been developed and are available in many procedure oriented languages. The code optimization
techniques of unfolding, common subexpressions, reducing operations, and removing instructions from
loops can be inserted into the compilers for simulation languages quite easily. This should be done as
a compiler option. Should the simulation language also be a system development language, then algo-
rithms developed in the simulation of a computer system could be embedded within the operating system
without rewriting.

The other obvious shange is to provide not only a translate and execute version (for efficiency), but
also an interpretive version (for debugging). Traditionally GPSS has been interpretive. Henrikson's

translate and execute version has been reported to have speeded up the execution by a factor of up to
ten in certain applications [REIT80].

In this area, and the user friendliness area the direction is clear. The modifications need not be
so much to the languages themselves as they need to be made to the compilers. The languages are
pretty much current technology languages. The enhancements will be made by changing the language
processors.

3.9 Man in the Middle

This section is concerned with the capabilities of a person to interact with a simulation program to
be able to make decisions, either at a specified epoch, or on an interrupt driven basis.

To. some extent, the ability to interface with the simulation at prespecified epochs is generally avail-~
able on systems which truly support interactive execution via having the simulation program prompt for
inputs. An excellent example of this is the output analyzer for GPSS [ANDR78]. This HELP block inter-
face prompts for interactions and allows the user to either stop or collect more data dependent upon
statistical information provided by the routine. Most simulation languages do not have the facility to
respond to an interrupt signal from an interactive terminal. It would appear that the interface to
provide such a capability would be rather simple to design. A possibility would include a set of
declarations regarding interrupt driven events and the keyboard interrupt to which they correspond.

One would also need to make modifications to the event selection routine to check the interrupt
variable values at each cyele. This could be done at the expense of one instruction per allowable
interrupt. Such a modification would allow the interrupt driven event to occur on detection of an
interrupt signal. The only additional modifications would be the interface between the operating
system and the program to set the interrupt variable,

There are many applications for such a capability which present strong arguments for inclusion for
such a facility. For example, a user of a simulator of a supermarket could be watching updated
values of line lengths and based upon that, interrupt the progress of the simulation to open an
additional check-out line. The most prevalent context for such usage, however, is in terms of
interactive graphics capabilities. Early mentibn of the use of graphics in simulation dates back

to 1971 [RAHE71l]. Roberts and Hodges [ROBE80a] describe existant systems not written in a simulation
language. More recently, Favreau [FAVR79] reports on the April, 1979 meeting of the Western Simula-
tion Council devoted to that topic.

The future will see simulation languages augmented to allow for inclusion of such facilities. The
technology for adding an interrupt based event exists and it can and will be done.

3.10 Semantic Content

To this category is the general notion of meaning and understandings of Simulation models. A computer
program has a precise formal meaning to the computer. Humans rely on their intuitions and common

DISCRETE EVENT SIMULATION LANGUAGES 115

sense and by nature are less formal than machines. Thus that which is complete formal, exact, and
precise to a machine may not always be well understood by people. This is why semantic information
in programs is so important. In the area of semantic content, the efforts are being directed towards
better understanding of the computer programs, not only by programmers, but by managers and users as
well. Efforts are in two genmeral areas, though they both relate to documentation as an aid to under-
standing what a computer program does. Schriber [SCHR74] gives a documentation protocol for GPSS.
Cooley [COOL77] describes documentation for management. Highland [HIGH77, HIGH79] describes a taxo-
nomy approach. Nance and Roth [NANC77] surveyed the prospects and problems in 1977. The following
year saw Sibley [SIBL78] addressing documentation for management. Gass [GASS78] provides a detalled
description of the stages of and reasoms for documentation. He makes detailed suggestions as to an
approach. Cooley [COOL79] reiterated her concerns. Metcalfe [METC79] echoes the need for document-
ation. Most recently, Nance [NANC79]summarizes efforts in this area and forecasts the prospects for
developing documentation standards. ALl of these efforts have been in addition to the program itself.

Within the languages, the efforts have mostly been towards using more meaningful names by programmers.
SIMSCRIPT has gone one step further and has adopted a language syntax which expresses the concepts
within the syntax. Markowitz [MARK79] addresses the topic of relating style to content and the use of
both to make programs more readable. He argues for additional syntactic structures within SIMSCRIPT
to make statements even more meaningful.

3.11 Other Areas

Most of the work in optimum seeking simulations has been in continuous or combined simulation. The
major recent work in optimal seeking facilities for discrete languages has been in the GASP

[PEGD77] and SLAM [PEGD80] packages. This body of work represents implementation of pioneering work
of Smith [SMIT73,SMIT76]. The notion of putting simulations in a loop has also been explored for
GPSS by Lefkowits and Schriber [LEFK71]. Items such as run length and how many runs to make are
controlled by the optimizing packages. Farrell [FARR77] gives a more thorough description on the
general topic of optimization.

The interface with the database functions of an organization can be done with current technology,
however it is a technology of interface rather than a feature of a language. That languages do not
incorporate this is rather surprizing in light of the similarity
between the various data structures used in both simulation and databases. Despite the persuasive
arguments by Markowitz [MARK79] there has been no reported progress on implementation of truly con-
tinuously changing attribute values though several languages do provide for differential changes.

4. TLANGUAGES (in Alphabetical Order)
4.1 GASP/SLAM/Q-GERT

The status of GASP was chronicled by Pritsker in 1979 [PRIT79c]. He describes the modeling philosophy
being that of a subroutine package to provide common simulation problem software support in the con-
text of FORTRAN or PL/l. As such, GASP has available all the nice debugging features of those lan-
guages. However, it suffers from the drawbacks of these languages. Since it is a subroutine package,
it is quite flexible, and has a wide variety of applications, Pritsker indicates that the major re—
cent developments are in the user interface portion of the language and includes format free input,
control of output for either paper or terminals, graphics equipment interfaces, and the like. Pritsker
indicates that the true interrupt driven simulation facilities as described in section 3.9 of this
report have been incorporated in his packages.

4,2 GPSS

The major developments in GPSS are indicated by Gordon [GORD79] and Reitman [REIT76]. They include
the translate and execute version and their resultant efficiency gains [REIT80], the packages to
allow better use of the HELP blocks [ANDR78, WIMMB0], and the interactive debuggers [HENR77b, HENR78,
LEFK71, NORD78]. :

4.3 PASCAL Based Languages

The PASCAL based languages [BRYA80, JOHN79] are quite new and still in the fairly early development
stage. They bring the advances in programming language design technology to simulation languages.

To be sure, they retain the block structure and recursive capabilities of the ALGOL like languages.
They bring the strong typing constraints and additiofial structiring developments of the past decade
to the simulation programmer. They are, or will be available on small systems, thus bringing sim-
ulation capabilities to the microprocessor family of equipment. They lack some of the nice monitoring
facilities of SIMSCRIPT, but that will come with time.

While the PASCAL based languages do not have the widespread use of the other languages and a portion
of their glamor is certainly attributable to the parent language rather: than simulation, they must
be considered for two reasons. First, they represent a true "third generation" simulation language.
Secondly, simulation research dollars are being used to further their development. A portion of

116 Charles M. SHUB

the funding of the two reported efforts has been in the form of Development grants by the Annual
Simulation Symposium.

4.4 SIMSCRIPT

Markowitz describes SIMSCRIPT past, present, and future quite extensively [MARK79]. The global
statistics gathering exists, there are the elements of structured programming, and he has set out
the future directions. He crystallized the directions and touches on their solution. Most of his
suggestions have been addressed in a fair amount of detail in Sectilon 3 of this report.

5. CONCLUSIONS

The state of discrete event languages has been charted with respect to a number of existent and
desired features. The author has attempted to hide” his own prejudices about what he . feels dis de-
sirable or undesirable and to summarize and echo the view of others. With the variety of orien-
tations available, and the variety of choices within each orientation, it would be impossible to
have chronicled all features of all languages. The languages selected for major emphasis were
selected either because of their wide use or béecause of their conceptual newness or elegance.

No one language has been described in detail, but the features have been covered. Sufficlent
references have been cited to allow the interested reader to pursue any area in further depth.

6.1 BIBLIOGRAPHY
The following abbreviations are used.

AW Addison Wesley Publishing Company
Reading, MA 01867

CACI Consolidated Analysis Centers Inc.
12011 San Vicente Blvd.
Los Angeles, CA 90049

CACM Communications of The Association. for Computing Machinery
1133 Avenue of the Americas
New York, NY 10036

MS Management Science
The Institute of Management Sciences
146 Westminister Street
Providence, RT 02903

OR Operations Research Society of America
428 E. Preston Street
Baltimore, MD 21200

PH Prentice Hall Publishing Company
Englewood Cliffs, NJ 07632

SCSC Proceedings of the Summer Computer Simulation Conference
(available through SCS)

SIM Simulation~Technical Jourhalfor the Society for Computer Simulation
Box 2228
La Jolla, CA 92037

TAMPA, Proceedings of the Annual Simulation Symposium
Box 22621

Tampa, FL 33622

WILEY John Wiley & Sons, Inc.
605 Third Avenue
New York, NY 10001

WSC Proceedings 6f the Winter Simulation Conference
(Available through ACM)

6.2 ALPHABETICAL LISTING
ADAM79 Adam, N.R. and Dogramaci, A. (Eds)

"Gurrent Issue in Computer Simulation"
Academic Press 1979

ANDR78

ATKI80

BABA75

BOBL76

BRYA80

BURF78

BUXT66

CHAQ7L

CHEN78

CLEM73a

CLEM73b

COMF79

COOL77

COOL79

DAHL66

DAVE76

DIJK68

ENGL78

DISCRETE EVENT SIMULATION LANGUAGES 117

Andrews, R.W. and Schriber, T.J.
"Interactive Analysis of Output from GPSS-Based Simulations"
WSC 1978, pp. 267-279

Atkins, M.S.
"A Comparison of SIMULA and GPSS for Simulating Sparse Traffic"
SIM Volume 34, #3, March 1980, pp. 93-98

Babad, J.M. and Stohr, E.A.
"The Effect of Different GPSS Random Number Generators on Simulation Results"
SL Volume 6, #4, July 1975, pp. 55-73

Bobillier, P.A., Kahan, B.C. and Probst, A.R.
"Simulation With GPSS and GPSSV"
PH 1976

Bryant, R.M. >
"SIMPAS: A Simulation Language Based on PASCAL"
WSC 1980

Burford, R.L.

"Additive Multiplicative Uniform Pseudo Random Number Generators in the Generatilon
of Erlang Variates"

Wsc 1978, pp. 909-918

BUXTON, S.N.
"Writing Simulations in C.S.L."
Computing Journal, Volume 9, August 1966

CHAO, Y.W.
"Simulation with SIMSCRIPT!
WCS 1971, pp. 268-269

Cheng, R.C.H.
“"Generating Beta Variates with Nonintegral Shape Parameters”
CACM Volume 21, #4, April 1978

Clementson, A.T.
"Computer Aided Programming for Simulation'
University of Birmingham 1973

Clementson, A.T,
"Extended Control and Simulation Language"
University of Birmingham 1973

Comfort, J.C.
"A Taxonomy and Analysis of Event Set Management Algorithms for Discrete Event Simulation"
TAMPA 12,1979, pp. 115-146

Cooley, B.
"Documenting Simulation Studies for Management Use®
WSC 1977, pp. 742-747

Cocley, B.
"Documenting Simulation Studies for Management"
SL Volume 10, #3, Spring 1979, pp. 24-28

Dahl, 0.J. and Nygaard, K.
"Simula — An Algol-Based Simulation Language"
CACM Volume 9, #9, 1966,pp. 671-687

Davey, D. and Vaucher, J.

"An_Analysis of the Steady State Behavior of Simulation Sequencing Set Algorithms"
University of Montreal 1976

Dijkstra, E.A.

YThe Structure of T.H.E. Multiprogramming System"
CACM Volume 11, #5 May 1968

Englebrecht-Wiggins, R. and Maxwell, W.L.

"Analysis of the Time Indexed List Procedure for Synchronization of Discrete "Event
Simulations:

MS Volume 24, 1978, pp. 1417 - 1427

118

FARR77

FAVR79

FISH73

FISH78

FRAN77a

FRAN77b

FRAN78

GASS78

GONN76

GORD75

GORD78

GORD79

GRAY80

GUFF75

HENR77a

HENR77b

HENR78

HIGH76

HIGH77

Charles M. SHUB

Farrell, W.
"iterature Review and Bibliography 6f Simulation Optimization" WSC 1977, pp. 116-125

Favreau, R.R.
gomputer Graphics in Simulation' SIM Volume 33 #1, July 1979, pp. 34-36

Fishman, G.
"Concepts and Methods in Discrete Event Digital Simulation" Wiley 1973

Fishman, G.
"principles of Discrete Event Simulation" Wiley 1973

TFRANTA, W.R.
"The Process View of Simulation" North Holland 1977

Franta, W.R. and Maly, K.
"An Efficient Data Structure for the Simulation Event Set"
CACM Volume 20, #8, August 1977, pp. 596~602

Franta, W.R. and Maly, K.
"A Comparison of Heaps and the TL Structure for the Simulation Event Set™
CACM Volume 21, #10, October 1978, pp. 873-875

Gass, S.I.
"GComputer Model Documentation'
WSC 1978, pp. 281-288

Gonnett, G.H.
"Heaps Applied to Event Driven Mechanisms"
CACM Volume 19 #7, July 1976, pp. 417-418

Gordon, G.
"The Application of GPSS to Discrete System Simulation"
PH 1975

Gordon, G.
"System Simulation"
PH 1978

Gordon, G.
"The Design of the GPSS Language"
Appears in [ADAM79]

Graybeal, W. and Pooch, U.W.
"Simulation: Principles and Methods"
Wintrop 1980

Guffee, C.0. and Ulfers, H.E.
"SOL 370"
sCsc 1975, pp. 1-11

Henrikson, J.0.
"An Improved Events List Algorithm"
WSC 1977, pp. 546-557

Henrikson, J.O.
"An Interactive Debugging Faciltily for GPSS”
WSC 1977, pp. 330-339

Henrikson, J.0.
"An Interactive Debugging Facility for GPSS"
SL Volume 10 #1, Fall 1978, pp. 60-67

Highland, H.J. (Ed)

YRandommess and Random Number CGenerators"
SL Volume 8, #1, October 1976

Highland, H.J.
"A ‘Taxonomy Approach to Simulation Model Documentation"
WSC 1977, pp. 724-728

DISCRETE EVENT SIMULATION LANGUAGES 119

HIGH79 Highland, H.J.
A Taxonomy Approach to Simulation Model Documentation"
SL Volume 10, #3, Spring 1969, pp. 19-23

HURS73 Hurst, N.R.
NGASP IV: A Combined Continuous/Discrete FORTRAN-Based Simulation Language"
Doctoral Dissertation, Purdue University 1973, 263 pages

HURW76 Hurwitz, J.A. and Quirk, D.A.
"Quirks Iota and Hurwitz! a Nu Statistical Measures of I-N~Significance"
SL Volume 8, #L, October 1976, pp.76-77

HUTC75a Hutchinson, G.K.
"Introduction to the Use of Activity Cycles as a Basis for System's Decomposition and
Simulation"
SL Volume 7, #1, October 1975

HUTC75b Hutchinson, G.K.
"An Introduction to CAPS - Computer Added Programming and Simulation"
SL Volume 7, #1, October 1975

IBMC76 IBM Corporation
VAPL GPSS Form SH20-1942"
White Plains, NY 1976

JOHN79 Johnson, G.R.
"A Portable Discrete Event Simulation Package for Microcomputers'
TAMPA 12, 1979, pp. 27-50

JONA75 Jonassen, A. and Dahl, 0.J.
"Analysis of an Algorithm for Priority Queue Administration”
BIT Volume 15, #4, 1975, pp. 409-422

KAY171 Kay, I.M.
"Digital Discrete Simulation Languages: A Discussion and an Inventory"
TAMPA 4, 1971

KAY172 Kay, I.M.
"An Over the Shoulder Look at Discrete Simulation Languages"
Proc AFIPS §.J.C.C. 1972

KAYI75 Kay, I.M., Kisko, T.M. and Van Houweling, D.E.
"GPSS/SIMSCRIPT — The Dominant Simulation Languages"
TAMPA 8, 1975, pp. 141-154

KISK76 Kisko, T.M.

"An Automated Method of Creating Piecewise Linear Cumulative Probability Distributions"
WSC 1976, pp. 487-496

KIVI67 Kiviat, P.J.
"Development of Discrete Simulation Languages"
SIM, Volume 8, #2, February 1967, pp.65-70

KIVIes Kiviat, P.J.
"Introduction to the SIMSCRIPT II Programming Languages"
Digest on 2nd Conference on Application of Simulation, NY December 1968, pp. 32-36

KIVI73 Kiviat, P.J., Villaneuva, R. and Markowitz, H.M.
"SIMSCRIPT II.5 Programming Language"
CACT 1973

KNUT68 Knuth, D.E.

"The Art of Computer Programming"
Volume 1, Fundamental Algorithms
AW 1968

KNUT69 Knuth, D.E.
"The Art of Computer Programming"
Volume 2, Semi-Numérical Algorithms
AW 1969

120 Charles M. SHUB.

KNUT73 Knuth, D.E.
"The Art of Computer Programming"
Volume 3, Sorting and Searching
AW 1973

KNUT74 Knuth, D.E. and McNeley, J.L.
MSOL - A Symbolic Language for General Purpose Simulation'
IEEE Transactions on Computers, Volume EC-13
#2 August 1974

KRAS65 Krasnow, H. and Merkallio, R. ,
"The Past, Present, and Future of General Simulation Languages"
MS Volume XI, #2, 1965, pp. 236~267

KRAS69 Krasnow, H.S.
"Simulation Languages"
in "The Design of Computer Simulation Experiments"
Duke University Press, Durham, NC 1969, pp. 320-346

LAUG75 Laughlin, G.W.
"Reducing the Run Ration of a Multiprocessor Software System Simulator"
TAMPA 8, 1975, pp. 115-134

LEFK71 Lefkowitz, R.M. and Schriber, T.Jd.
"Use of an External Optimizing Algorithm with a GPSS model”
WCS 1971

LEWI57 Lewls, H.R.

"The Data Enrichment Method"
OR Volume 5, 1957, page 551

MAIS72 Maisel, H. and Gnugnoll, G.
"Simulation of Discrete Stochastic Systems"
SRA 1972

MARK62 Markowitz, H.M., Hausner, B. and Karr, H.W.
"SIMSCRIPT: a Simulation Programming Language"
PH 1962

MARK79 Markowitz, H.M.

"SIMSCRIPT: Past, Present, and Some Thoughts about the Future"
appears in [ADAM79]

MART78 Martin, M.D.
"General Purpose Simulation System for the DECsystem~10"
University of Western Ontario, London, Ontario, Canada 1978

MCCO79a McCormack, W.M.
"Analysis of Future Set Algorithms for Discrete Event Simulation”
Doctoral Dissertation, Syracuse University 1979

MCC079b McCormack, W.M. and Sargent R.G.
"Comparison of Future Event Set Algorithms for Simulations-of Closed Queueing Systems"
appears in [ADAM79]

METC79 Metcalfe, M.A.
"Documentation: A Growing Need, A New Tool"
SL Volume 10, #2, Spring 1979, pp 35~46

MILL76 Miller, L.W. and Morgan, H.L.
"Simulation Language Features in 1976: Existing and Needed"
WSC 1976, pp. 75-78

NANC77 Nance, R. and Roth, P.
"Documentation of Computerized Models: Prospects and Problems"
WSC 1977 page 722

NANC79 Nance, R.E.
"Model Representation in Discrete Event Simulation: Prospects for Developing Documentation
Standards"
appears in [ADAM79]

NAYL66

NORD78

OREN74

PALM75

PEGD77

PEGD79

PEDG80

PRIT69

PRIT74

PRIT75

PRIT76

PRIT79a

PRIT79b

PRIT79¢

RAHE71

REIT76

REIT80

ROBE80a

DISCRETE EVENT SIMULATION LANGUAGES

Naylor, T.H., Balintfy, J.L., Burdick, D.S. and Chu, K.
"Computer Simulation Techniques"
Wiley, 1966

Anon.
"GPSS/Norden Simulation Language"
National CSS Inc., 1978 Norxwalk, CT

Oren, T.I. (Ed)

"Annotated Bibliographies of Simulation"
Proceedings of the Simulation Councils
Volume 4, #1, June 1974, SCS La Jolla, CA

Palme, J.
"Putting Statistics into a SIMULA Program'
SL Volume 6, #4, July 1975, pp. 39-43

Pegden, C.D, and Gately, M.P.
"Decision Optimization for GASP IV, Simulation Models"
WSC 1977, pp. 126-133

Pegden, C.D. and Pritsker, A.A.B.
“SLAM: Simulation Language for Alternative Modeling"
SIM Volume 33, #5, November 1979, pp. 145-157

Pegden, C.D, and Gately, M.P.
"A Decision Optimization Module for SLAM"
SIM Volume 34, #1, January 1980, pp. 18-25

Pritsker, A.A.B., and Kiviat, P.J.
"Simulation with GASP II"
PH 1969

Pritsker, A.A.B.
"The GASP IV Simulation Language'
Wiley 1974

Pritsker, A.A.B. and Young, R.E.
"Simulation with GASP-PL/1"
Wiley 1975

Pritsker, A. A. B.
"Ongoing Developments in GASP"
WSC 1976, pp. 81-83

Pritsker, A.A.B. and Pegden, C.D.
"Introduction to Simulation and SLAM"
Halsted Press 1979

Pritsker, A.A.B.
"Modeling and Analysis Using Q-GERT Networks"
Halsted Press 1979

Pritsker, A.A.B.
"GASP: Present Status and Future Prospects"
appears in [ADAM79]

Rahe, G.A.
"Simulation and Computer Graphics"
SIM Volume 16, #1, Japuary 1971

Reitman, J.
"Ongoing Developments in GPSS"
WSC 1976 page 87

Reitman, J.
Private Communication, June 1980

Roberts, D.L. and Hodges, J.M.

"Interactive Graphics for Enhancement of Simulation Systems"

TAMPA 13, 1980, pp. 191-206

121

122 Charles M, SHUB

ROBE80Ob Roberts, Stephen D. .
Private Communication, July 1980

RUBISO Rubin, J.
"Imbedding GPSS in a General Purpose Programming Language"
Abstract submitted for WSC, 1980

RUSS76a Russell, E.C.
WSIMSCRIPT II.5 New Directions"
WSC 1976 page 86

RUSS76b Russell, E.C.
"Simulating with Processes and Resources in SIMSCRIPT II.5"
CACI 1976

SAMM69 Sammet, J.E.
"Programming Languages: History and Fundamentals"
PH 1969

SAX079 Saxon, C.S. and Schriber, T.J.
"Statistically Suitable Initial Multiplier Values for IBM's GPSS V Random Number
Generators"
WSC 1979, page 252

SCHE78 Scher, J.M.
"Structural and Performance Comparisons Between SIMSCRIPT II.5 and GPSS V"
Proceedings of the 9th Annual Pittsburgh Conference on Modeling and Simulation,
April 1978, pp. 1267-1272 '

SCHM78 Schmeisser, B.
"Methods of Modelling and Generating Probabilistic Components in Digital
Computer Simulation When the Standard Distributions are not Adequate”
SL Volume 10, #1, Fall 1978, pp. 38-43

SCHM70 Schmidt, J.W. and Taylor, R.E.
"Simulation and Analysis of Industrial Systems"
Irwin 1970
SCHR74 Schriber, T.J.
"Simulation using GPSS"
Wiley 1974
SCHR77 Schriber, T.J. and Tadikamalla, P.R.

"Sampling from Weibull and Gamma Distributions in GPSS'
SL Volume 9, #1, Fall 1977, pp. 39-47

SHAN75 Shannon, R.E,)
"Systems Simulation, The Art and Science"
PH 1975, 387 pages

SHAW74 Shaw, A.C. -
"The Logical Design of Operating Systems"
PH 1974

SHUB78 Shub, C.M.

"On the Relative Merits of Two Major Methodologies for Simulation Model Constrﬁction“
WSC 1978, pp. 257-266

SIBL78 Sibley, V.
"Management Oriented Documentation of Simulation”
WSC 1978, pp. 289-296

SMIT73 Smith, D.E.
“An Empirical Investigation of Optimum Seeking in the Computer Simulation Situation"
OR Volume 21, 1973, pp. 475-497

SMIT76 Smith, D.E.
"Automatic Optimum Seeking Program for Digital Simulation"
SIM Volume 27, #1, July 1976, pp. 27-31

STEW73

TAKI78

TANE76

TEIC66

TOCH65

ULR178

VAUC75

VAUC76

WIMMBO

WIRT71

WYMA75

XERO72

DISCRETE EVENT SIMULATION LANGUAGES 123

Stewart, J.P.
"Simulation Language", SIM PL/1
SL Volume 4, #2, January 1973

Tadikamalla, P.R.
"Computer Gemeration of Gamma Random Variables"
CACM, Volume 21, #5, May 1978

Taneri, D.
"The Use of Subcalendars in Event Driven Simulation’
SCSC 1976, pp. 63-66

Teichrowe, D. and Lubin, J.
"Computer Simulation — Discussion of the Technique and Comparison of Languages"
CACM, Volume 9, #10, 1966, pp. 723-741

Tocher, K.D.
"Review of Simulation Languages"
OR, Volume 16, #2, 1965

Ulrich, E.G.
"Event Manipulation for Discrete Simulation Requiring Large Numbers of Events"
CACM, Volume 20, #9, September 1978, pp. 777-785

Vaucher, J.G. and Duval, P.
"A Comparison of Simulation Event List Algorithms:
CACM, Volume 18, #4, 1975

Vaucher, J.G.
"0On the Distribution of Event Times for the Notices in a Simulation Event List"
INFOR, Volume 15, #2, 1976, pp. 171-182

Wimmert, R.J.
MGAP — a GPSS/Fortran Package"
TAMPA 13, 1980, pp. 111-126

Wirth, N.
"The Programming Language PASCAL"
Acta Informatica Volume 1, 1971, pp. 35-63

Wyman, F.P.
"Improved Event Scanning Mechanisms for Discrete Event Simulation”
CACM, Volume 18, #6, 1975

Xerox Corporation
"Yerox General Purpose Discrete Simulation"
File 1x13, Doc. 9017588 Xerox 1972

6.3 SUBJECT INDEX

6.3.1

6.3.2

6.2.3

Books
6.3.1.1 Language Books

GASP/SLAM/Q-GERT: HURS73, PRIT69, PRIT74
PRIT75, PRIT79a, PRIT79b

GPSS: BOBI76, GORD75, MART78
NORD78, SCHR74, XERO72

SIMSCRIPT: KIVI73, MARK62, RUSS67b
SURVEYS: SAMM69Y
6.3.1.2 Text books
FISH73, GORD78, GRAY80, MAIS72, NAYL66, SCHM70, SHAN75
Bibliographies and Summaries
ADAM79, FARR77, OREN74
Articles
6.3.3.1 Documentation

COOL77, COOL79, GASS78, HIGH77, HIGH79, METC79, NANC77, NANC79, SIBL78

124 ‘ Charles M. SHUB

6.3.3.2 Efficiency
LAUGH75, MARK79
6.3.3.3 Event Set Management

COMF79, DAVE76, ENGL78, FRAN77b, FRAN78, GONN76, HENR77a, JONA75, KNUT73, MCCO7%a
MCCO79b, TANE76, ULRI78, VAUC75, VAUC76, WYMA75

6.3.3.4 Graphics
FAUR79, RAHE71, ROBES8Oa
6.3.3.5 Interactive Simulation
ANDR78, HENR77b, HENR78
6.3.3.6 Languages
CSL: BUXT66, CLEM73a, CLEM73b, HUTC75a, HUTC75b
GASP: PRIT76, PRIT79c¢
GPSS:T GORD79, IBMC76, REIT76, RUBI80, WIMMB0O
PASCAL-like: BRYA80, JOHN79
SIMPL/1l: STEW73
SIMSCRIPT: CHAU71, KIVI68, MARK79, RUSS76a, RUSS76b
SIMULA: DAHL66
SOL: GUFF75, KNUT74
6.3.3.7 Language Comparisons

ATKI80, KAYI71, KAYI72, KAYI75, KIVI67, KRAS65, KRAS69, MILL76, SCHE78, SHUB78,
TEXIC66, TOCH65
6.3.3.8 Optimization

FARR77, LEFK71, PEDG77, PEDG80, SMIT73, SMIT76
6.3.3.9 Random Numbers

BABA75, BURF78, CHEN78, HIGH76, KISK76, KNUT69, SADO79, SCHM78, SCHR77, TADI78
6.3.3.10 Statistics

ANDR78, BABA75, HURW76, LEWI57, PALM75
6.3.3.11 Summaries and Surveys

ADAM79, FARR77, KAYI71, KAYI72, KIVI67, KRAS65, KRAS69, MILL76, TEIC66, TOCH65

