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ABSTRACT: It is convenient to analyze social systems by applying techniques of
abstract algebra to the social relations within the system. Two complementary
techniques of analysis are given: one heuristic; the other computational. The
former is a dynamic use of graphs and their algebraic properties. This can result
in the uncovering of new social relations. Examples given include the study of
couple relationships, and management structures.

1.  INTRODUCTION:

The analysis of social systems is replete with concepts such as structure and stratification. There
is good reason to wonder whether these constructs have more than a superficial depth. Although much
of mathematics is qualitative in nature (graph theory, abstract algebra, topology, etc.) too little
effort has been spent on applying these theories where they may be useful, such as the analysis of
social systems. It will be shown here that the relations in a social system can be analyzed by
precise methods from algebra and graph theory to illuminate the structure imposed by these relations.
It will further be shown that this can be done in a practical and even convenient.manner.

There are a multitude of theories that deal effectively with qualitative relationships. We will draw
upon algebra for its wealth. Graphs are used as a heuristic device to manipulate algebras. 1In both
cases the emphasis on binary relations is practical and not theoretical (the extension of graphs to
greater-than-binary relations is "hypergraphs"): we usually process (understand) binary relations with
more clarity than greater-than-binary relations. Since graph theory is essentially the theory of
binary relations it is no surprise that we can use graphs and algebra in a synergistic manner. From
this there is also an apparent approach from the theory of automata and we will touch upon that
1ightly.

The class of social relations we will address is exhaustive. Emphasis will be placed on algebraic
analysis of binary social relations. The algebra will be groupoids, that is, any algebra with one
operation and closure. Even the closure condition is not strictly binding, as a new dummy product can
be added to the algebra which represents "none of the above". Thus maximum generality is achieved.
Section 6, "Social Systems" is here for theoretical completeness. Since the substance is better
learned from examples, I recommend that the reader skim that section.

In particular we will study but not be limited to semigroups. For this reason matrix techniques are
avoided since matrix multiplication is associative. In the analysis of social relations it will not
be necessary (although it is interesting) to observe whether the relation is reciprocal, asymetric or
transitive. This is not important to the actual analysis.

The partition classes generated by a hormormorphism are precisely "congruence" classes. These are
subpopulations that function and are acted on as a unit. Congruence classes are extended to right
semicongruence classes which only act as a unit. An example of the advantage of the latter is to
consider the political notion of the "fifth column". A fifth column is a group of people who act as a
unit but whose very purpose is not to be recognized (until too late). Again, through right semicon-
gruence classes, maximum generality is achieved.

A very simple and efficient algorithm "the method of congruences" is given for identifying all right
semicongruence and congruence classes. (It is appropriate here to identify the genesis of this
method. In 1936, Todd and Coxeter developed a method for testing the abstract definition of a finite
group. It has many other uses and is best discussed in Coxeter and Moser (1972, pp. 12-18). The
method of Todd and Coxeter is based upon multiplication tables of cosets and elements of the group so
that the defining relations are exploited. Neumann (1967) extended the same technique to semigroups.
The difference between Todd and Coxeter, and Neumann is just that, in semigroups, inverses are not
considered (e.g., in a group with U, V, W as cosets, and T an element, UT = W and VT = W imply U = V;
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this is not necessarily true in semigroups). The method of congruences which is much simpler grew out
of an attempt to extend Neumann's method to arbitrary groupoids. The right semicongruence relations
that will be explored yield a very large class of partitions. I believe that this is a deeper and
richer theory than the theory of blockmodels so popular in mathematical-sociology.

In an earlier work (Cargal, 1978) much use was made of graphs, many identical to those of other
researchers. However, in that work use was made of the fact that graphs can represent algebraic
groups as well as social structures. Graphs of groups are extended here to graphs of arbitrary
groupoids and even to graphs of right semicongruences. This yields an important technique for un-
covering new social relations. It is one thing to know how to anlayze social relations, but how does
one know what relations to analyze? There will never be a satisfactory answer to this question, but
the best device for uncovering such relations is to use graphs of groupoids. One tries to find the
relations whose graphs yield the most algebraic structure. Another method is to relabel existing
graphs in order to yield more algebraic structure. Both techniques are illustrated in the earlier
paper. In this way graphs become many times more important. Rather than just representing structures
they become a dynamic¢ part of the analysis. The genesis of this is the work of A. Cayley (1878a,
1878b, 1889) who first studied graphs of groups.

2.  SOCIAL RELATIONS

The relations we are interested in are said to be "social" because they are on people. The extension
to other species i$ obvious and unnecessary to pursue. Otherwise, social relations are similar to
mathematical relations. "A general n-ary social relation" is a set of ordered n-tuples of people
within the system of our interest.

Good examples of general binary social relations might be "A Tikes B," or "A dislikes C," or “A com-
municates with D" or perhaps "A sleeps with E." We will define a "social relation" as a general
social relation that is also a commutative function. The property of commutativity only enters if the
relation is more than binary. For example, in the military example below, the top ranking soldier is
independent of the order of the soldiers. The function requirement is not the restriction it appears.
"A T1ikes B" is replaced, for n people, by n social relations, "A likes X the most," ..., "A Tikes X
the fourth," ..., "A likes X the Teast." An example of a social relation is the military system of
rank. It is designed (in theory) so that given any n personnel there is a highest ranking member of
that set. Rank is a stratifying (partitioning) relation on the military. For many purposes, this is
the only relation-on the military of any conséquence.

This paper will concentrate on binary social relations. The primary tool of analysis will be the
extension of these binary relations via operators to ternary relations. As a result, the method used
applies very well to ternary relations which, by the above, will be commutative groupoids. However,
the binary relations will usually yield groupoids that are not commutative, but will be what we will
call "right semiquasigroups.”

3.  GROUPOIDS

A groupoid is a set with a well-defined binary operation. We will generally refer to the operation of
the groupoid as "multiplication.” It is convenient to view a groupoid on n elements by its corres-
ponding multiplication table, This table is a matrix with n rows and n columns corresponding to the
groupoid elements. The i~jth ntyy is defined to be i + j. Since any of the n elements can be de-
fined to be i - j, there are nin?/ groupoids of n elements.

In an organization of ten people, there are 101°° (the well known "gogool") possible groupoids on
those people. Since for n = 10, the number of groupoids, 10'°° is something like the number of 'sub-
atomic particles in the universe it is a reasonable assertion that if none of these groupoids can
yield insight into the social structure of the n people, then perhaps the concept of social structure
is essentially valueless. Algebraically, many of these groupoids on n people are isomorphic (that is,
Jjust different Tabelings of the same algebraic structure). Socially, they are often not isomorphic.
"Isomorphism”" is an equivalence of size and structure and is sensitive to the particular theory. As a
rule we do not always see individuals as equivalent (although sometimes we can). Consider the fol-
lowing groupoids that are algebraically isomorphic. We have a business organization of ten people, A,
B, ..., J. Suppose that multiplication is defined by X « Y = 7 where Z is that individual that X and
Y choose in the organization {closure) that they 1ike least. By definition, the groupoid is commuta-
tive. We will consider two cases:

1. X -«Y
2. XY

A for every X, Y in the organization, and
J for every X, Y in the organization.

uun

Both groupoids are said to be "zero semigroups," and they are algebraically isomorphic. If A is the
manager and J is a secretary, we would view these cases quite differently. If both A and J were
secretaries we might (or might not) view the groupoids as equivalent. Incidentally, the relation
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defined above is a commutative ternary fun%t1 n. For n people, if each individual.is consjdered to
have unique attributes (of interest) the n corresponding groupoids are all nonisomorphic.

The best known types of groupoids are groups, and the literature on groups is extensive. Associative
groupoids are said to be "semigroups." If a groupoid G has the property that for any a,b €@, ax = b
and ya = b have unique solutions, G is said to be a "quasigroup.” Of particular interest to us will
be groupoids with the property that a,b G, implies, ax = b has a unique solution. We will call these
right semiquasigroups, with left semiquasigroups being the dual case. There should be no confusion
between semiquasigroups and semigroup/quasigroups since the latter are precisely groups.

4.  GRAPHS OF GROUPOIDS

A model of the use of the methods that are the subject of this paper is the precursor paper {Cargal,
1978). In it, the primary groupoids are groups. Also, great use is made of graphs of groups. It is
remarked (p. 158) that “any groupoid...may be graphically represented..." This will be expanded upon
here because graphs of groupoids have enormous utility. The reason this has received so little atten-
tion is that most algebraic studies are theoretical. Our interest is quite different. We desire the
techniques to manipulate particular (social) groupoids so as to uncover truths peculiar to each
(social) groupoid.

Given a groupoid, G, with n elements, A, B, ..., N, the corresponding (directed) graph has n vertices
Tabeled by the elements of G. Each vertex has outgoing degree n and each arc is also labeled by an
element of G. Specifically, one arc corresponding to each element of G leaves each vertex. Given the
vertex, X, the arc labeled y leaving x, has the endpoint xy. That is, each type of edge corresponds
to multipTlication on the right by its corresponding element of G. This is the "complete" graph of the
groupoid. Since types of arcs are differentiated, the graph is a "multigraph." Examples of graphs of
groups are given in the prior paper.

Unlike the case of groups, tracing an arc against its direction does not necessarily correspond to
multiplying on the right by an inverse. This is because in an arbitrary groupoid inverses do not
necessarily exist and when they do, they are not necessarily unique. It is convenient (more often
necessary) to have graphs of groupoids where not all of the multipliers (arcs) are represented. That
is most graphs of groupoids (order n) will have outgoing degree m, with m labels, and m < n. We say
such a graph is a graph of a particular type of groupoid (e.g., quasigroup) if it can be extended to a
complete graph of that type of groupoid. Such extensions are not always unique. The extension of the
graph of a semigroup with an identity and a defining set of generators (to the complete graph of a

semigroup) 1is ¥n1que In general, the graph of a groupoid of order n with m labels (on arcs) can be
extended n{n-MN yays.

A graph can be labeled as a graph of a groupoid if all vertices are of equal outgoing degree. In
general, if a graph can be labeled oxn nefabeled as a groupoid with significant structure, greater
insight can be gained into the structure of the subject of study. This is a very important strategy
to keep in mind, but it carries the caveat that the new labels should be meaningful to the analyst.

An example of this sort is given in the earlier paper (Cargal, 1978, pp. 161-162) where relations are
shown on the subsections of the Kariera tribe of Australia. The two relations are "subsection of son"
and "subsection of daughter." The edges are relabeled according to "subsection of child of the same
sex" and "subsection of child of the opposite sex." The change in structure is from a non-associative
groupoid without well defined inverses, to a group. This new perspective was noi based on insight: I
relabeled for group structure and found afterward that the relabeling was meaningful. Furthermore
Tooking at subsections rather than sections is based on sound anthropo1og1ca1 principles. I believe

that the previously undiscovered algebraic group of subsections is more significant that the group of
sections {clans).

Graphs of groups were discussed in detail in the previous paper. The graph of a quasigroup is dis-
tinguished by no parallel arcs, and by every generator entering every vertex once. Graphs of semi-

groups will be discussed Tater. For convenience, undirected arcs represent two arcs, one in each
direction.

5. CONGRUENCES

Structure in social systems 1mp11es the existence of stratification, both para11e1 and perpendicular
to the parameters of the analyst's interest (such as income). Stratification is the partitioning of a
system. We can always look at a partition or collection of partitions at the most particular level:

as a mathematical partition. (Note: the intersection of mathematical partitions is another mathe-
matical partition.) Such a partition is the separation of elementsinto classes with no element in two
classes. The binary relation of belonging to the same class is thus an equivalence relation. Simi-
larly, an equivalence relation on a set partitions the set.
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Within a groupoid, H, given an equivalence relation t (ath if only if a and b belong to the same T~
class) T is said to be a "right semicongruénce" if a,b,x €H and atb implies axthkx. It is a "left
semicongruence" if a, b, xeH and atb implies xarxb (Neumann, 1967, p. 1024). = is a “congruence" if
it is both a Teft and right semicongruence. If ¢ is a homomorphism from groupoid M onto groupoid N (¥
(ab) = w(a)y(b)) the inverse classes of N (¢ *{x), xeN) in M form a congruence on M. If T is a con-
gruence on K, thére is a homomorphism from K to the natural groupoid formed from its congruence
classes. For any groupoid there are two trivial congruences; thé congruence consisting of one class,
and the congruence where each element constitutes a congruence class. Right semicongruence relations
can be graphed by letting arcs correspond to multipTication on the right. If it is a congruence, this
merely yields the graph of a groupoid.

6.  SOCIAL SYSTEMS

Let G be a collection of n people, A, B, ..., N. Let ¢ be a collection of K(K < n) binary social
relations ¢1, ..., ¢k, on G. (Note that in general ¢; is not an equivalence relation.) Assign ele-
ments of G to ¢ arbitrarily on a one~to-one basis. I} xeG and x is assigned to ¢5s define for all
Yeb, y « x = ¢j(x) (which is well defined since o5 is a function). For xeG, not assigned to ¢, define
for all zeG, z' « x = z. G is thus a groupoid under this multiplication. If T is a partition (equi-
valence relation) on G such that axtbx for every x corresponding to an element of ¢ (let us say xe¢)
then for any yé¢, ayrby also, and 7 is a right semicongruence on G. We will consider G, ¢ and the
defined multiplication a "social system” usually referred to only by "G".

The preceding blithely assumes that there are no more than n social relations on a system of n indi-
viduals. There is no reason the techniques discussed here cannot be extended to more than n rela-
tions. However, in most cases the existence of more than n generators will imply that some are redun-
dant.

If T is a nontrivial right semicongruence relation on a social system G{¢, <), then ¢ partitions G
into classes that act collectively with regard to the relations ¢ and the other t classes. This
indeed constitutes social structure by most reasonable criteria. The rest of this paper is devoted to
showing by example that the converse is generally true: that non-trivial social structure implies
right semicongruences. It is interesting to note that given a set of people the only social struct-
ures we can assume are the two trivial cases corresponding to the only two right semicongruences we
can assume: the identity relation and the "unit" relation (where every element belongs to the same
class). Given-an arbitrary set of people, we can always view them collectively or individually and if
there are not complex relationships amongst them (for instance, if they are strangers) these may be
the only sensible viewpoints. Also, the following technique will be offered that along with graphs of
groupoids facilitate analysis of social systems. Examples to be presented were not specially sele-
cted. They are representative of the methods of this paper.

7.  THE METHOD OF CONGRUENCES

We desire to partition social systems meaningfully via right semicongruences and congruences (homo-
morphisms). Consider a multiplication table of a groupoid G. Let xeG. We are interested in minimal
right semicongruence classes containing x. In general, the identity relation leaves x as an entire
right semicongruence class. The right semicongruence (or congruence) containing x and y (yeG, x # y)
in a minimal class is a different matter.

Postulate x and y (x # y) as belonging to the same class. This can always be satisfied by the unit
relation. We want the right semicongruence containing x and y in the smallest class. The method
itself will show that the minimal class is unique. Chieck the x and y rows of the multiplication
table. Any elements in those rows in the same column are also in the same class. That is, if a is in
the x-z position (row x, column z) and b is in the y-z position, a and b are in the same right semi-
congruence class. The extension to three or more elements is in the obvious way. The only rule is
that if any element falls in two classes, the two classes are the same. That is, if x is in the same
class as y, and x is in the same class as z, then x, y and z are all in the same class. We start
again with our new class; any elements found in the same column of the x, y, z rows are in the same
class. Every time a class is enlarged we begin again. (Note we begin with certain elements defined
to be in the same class; the other elements are assumed to be separate classes.) Once the process
has ended, i.e., the rows have been checked for each class without enlarging any class, the classes
themselves define the relation (rts if and only if r and s belong to the same class).

If a, b, ..., n belong to the same left semicongruence class, any elements in their columns and in the
same row, are in the same left semicongruence class. By applying this and the above, the congruence
with the smallest class containing a particular set of elements can be found. For twenty elements or
less, I have found this technique surprisingly easy. For groupoids with many elements the technique
is easily computerized.
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My technique for finding congruence classes is to construct a table with columns numbered as high as
necessary. I put elements of the same class in the same column. When an element occurs in two col-
umns, those columns are merged.

8. TWO IMPORTANT GENERALIZATIONS

The principal algebraic approach we have is the analysis of right semicongruences. In general, we will
extend m (m < n) relations to n relations in order to attain a groupoid. This makes it possible to
take advantage of a well developed theory. However, it is clear that the method of congruences
applied to right semicongruences works whether m < n, m=norm > n. If m relations on n objects are
graphed, we have the structure of a finite automaton (Hopcroft and Ullman, 1979, Chapter 2) with the
exception that start and final states are not indicated. This implies that the theory of automata and
Tanguages can be utilized as well (it has been (Skvoretz and Fararo, 1980).

A useful and well written introduction to finite automata is by Hartmanis (1967). The example below
is borrowed from his paper (with a slight change of notation).

aooe
o0
OB TO

It is easy to see that these are no nontrivial right semicongruences in this system. Hartmanis dis-
cusses a type of extension we will not persue here, but is important to be aware of. It is "set
system decompositions". He produces the system below:

0

a0 oo
TO00aQ
O oTO =

This is identical to the prior example, except that c has been separated into two states. These two
states, ¢ and c', can be considered as two roles of c. What is accomplished is that now (through the
role partition ¢ to c and c') we have the following right semicongruence classes, abc|c'd. This
second example from Hartmanis is extremely important for an entirely new reason. It 1s not hard to
show that the relations can not be extended to five relations (thus yielding groupoids) (depending on
how the relations are relabelled)) and such that there are still nontrivial right semicongruences.
This shows that considering m relations (m < n or m > n) is a genuine extension of the theory.

9.  MARRIAGE SYSTEMS

In the previous paper it was pointed out that marriage rules are significantly more general than the
Australian systems studied in that paper would yield quasigroups: "Axioms 1 through 7 give a quasi-
group in that where one gives and receives wives is uniquely determined (Cargal, 1978, p. 159)." If a
society is divided into non-overlapping blocks such that any block receives wives from a particular
class, this structure is a right semiquasigroup. If any of the tribes discussed in the previous paper
were viewed on the individual level (rather than sections or subsections) appropriate marriage and
child relations should have yielded the section perspective found by the ethnographers. However, it
should have also found subsections where they existed that were not known to the ethnographers.
Ethnographers using only pencil, paper, and insight are 1imited to the obvious structural partition-
ings and those explicitly stated (such as clans) by the subjects.

10. COUPLES

A very simple and yet instructive application of the method of congruences is the analysis of friend-
ship on four people as partitioned by the relation of marriage. We will assume married couples
functioning as couples (i.e., not separated or otherwise at war) and we will assume heterosexual
couples. It is interesting that this Tast understanding does affect the analysis. It is implicit,
and important for this particular analysis that as functioning couples, people are more fond of their
spouses than they are of others.

Initially we will assume two married couples with ¢ married to d and a married to b. The first rela-
tion will be i (identity) XiX. The second will be m {married to) amb, bma, cmd, and dmc. The third
and fourth operators will be 1 and 2 which will rank the remaining two people by order of preference.
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{We will not pursue a rigorous definition here, but the ranking should answer the question "who do you
enjoy talking with the most?") Note we have defined a right semiquasigroup structure. Note also that
the multiplication table of g (finite) right semiquasigroup is characterized by no element occuring
twice in the same row.

Consider the follgwing matrix. We will Tabel the columns twice, according to operator and secondly to
yield a groupoid (and 1eft semicongruencés and thereby congruences). Note that in labeling the
columns by groupoid elements we have (4!=) 24 arbitrary choices. However, to achieve worthwhile
congruences, the trick is to find a labeling such that one element is a left identity. This can
always be done with a right semiquasigroup, and in n ways (where n is the order of the quasigroup).

a
i

anooe
a0 oy
oo I oT
OO0 =HO
ToU o N

Often in couple relations, one couple will associate with the other couple for the company of one of
the other individuals. In this example, both couples are doing that. a and b 1ike ¢. ¢ and d like
a. There are four right semicongruences: 1) abjc|d; 2) cd|alb; 3) ac|db; and 4) abjcd. The first
right semicongruence shows that a and b as a unit regard ¢ and d separately, and that ¢ and d, since
they are jndividuals, are consistent with themselves in how they regard each other and a and b. As an
illustration of this relationship, observe that if d leaves town, a and b will have c over for supper.
If ¢ Teaves town, a and b are 1ikely to go on vacation themselves.

The second right semicongruence is symmetric to the first. The third divides the set into "popular
and unpopular” classes. Since it is not a congruence, the new classes do not constitute a new group-
oid-under the relations i, m, 1, and 2. However the graph of the right semicongruence is given in
Eigure 1. If we had a congruence and hence a new groupoid, the-new relations shown in Figure 1 would
e consistent.

i,y (i.2)

{m,2) N
AC | (m,1) "\ BD

<

Figure 1. Two Couples Split into Popular and Uripopular Classes (Not a Groupoid)
The fourth right semicongruence is also a congruence. Note that in all of the possible relations as
defined here on two couples, the couples themselves form a congruence and therefore a groupoid struc-

ture which is, in fact, a group. This is shown in Figure 2. So, as is to be expected, a system built
on two couples yields structures where the couples function as classes.

(1,2)

{im) (im)

Figure 2. The Group of Two (Happy) Couples

If we assume that one couple associates with the other more for one individual than the other, but
that the second couple is split with regard to the first couple, we get the following multiplication
table (or one 1ike it).
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a0 o

o0 Ty o
ooy o IO
T 00 =0
LU A

In this case, the right semicongruences are: 1) ablc|d; and 2) abjcd. We have already stated that
2) is a congruence and thus a right semicongruence. The interesting thing about 1) is that the dual
case cd|a|b no Tonger holds. c and d as a class do not consistently regard a and b as individuals.
Figure 3 gives the graph for ab|c|d which is not a groupoid since it is not a congruence.

Figure 3. Two Couples With D Unpopular (Not a Groupoid)

We can, of course, have that both couples are split with regard to how they feel toward each other.
There are two such cases. The first is:

oo o

o0 Ty
NnopgT ST
BT Oo0 =0
[= 28 VI o~V N W=

It is clear from its graph shown in Figure 4 that this structure is a group. In this graph, the solid
arcs represent m and the dotted arcs are 1. 2 is not shown because it s consistently 1's inverse.
(The consistency has to be checked if we don't know yet that we have a group.) The generator m is
also superfluous. The group is then the cyclic group Zg. If the columns are labeled in the other
three ways such that there is a left identity (badc, cdba, and dcab) the resultant groupoid is still
the group Z4 but with identities b, ¢ and d, respectively. Note that there are no other right semi-
congruences other than ab|cd. :

Figure 4. The Group of Two Couples Who Will Stop Seeing Each Other



Jdames M. CARGAL
146

The other "splitting" case is:

oo oo
a0 T -
(eI -- -
TN O0RFRO
D TOaNO

Again we have a group (verify by graph if you don't recognize it) and it is I x I2. This time
ab|cd, ac|bd, ad?bc are all congruences. The groupoids given by ac|db and ad|bc are again groups

and are shown in Figure 5. The last congruence reflects a consistent way of looking at the structure,
but does not reflect a physical partitioning 1likely to occur.

1) (i,

‘ AC > (m.2) J‘ B,D )

: {i,2) (i,2)

( AD ) (m1) ( B.C )

Figure 5. Two Groups on Two Very Compatible Couples

11. A FUNDAMENTAL PRINCIPLE

An empirical rule borne out by the examples of this paper and the previous paper can now be given.
In general the monre conghuences (homomohphisms) on right semicongruences a social sysitem yields, the
mohe cohesive Lt is for its given sdize.

In the couples example just given, there were four cases with one congruence in common. Beyond that,
the first case had three right semicongruences, the second has one, the third had none, and the fourth
had two congruences. Similarly, the fourth is clearly the most cohesive, the third is the least
cohesive, and the first and second fall in between.

The congruence in common reflects that all four cases have two couples who, by assumption, are drawn
to each other (i.e., spouse to spouse). In the first and second case, we might reasonably expect a
and ¢ also to be drawn into intercouple conversations. .I would argue that case 1 is slightly more
stable (it has more right semicongruences) since b and d being cool to each other can just read while
a and c fascinate one another. 1In case 2, d is in danger of driving b up the wall. If you don't
accept this, view cases 1 and 2 as being close. Case 3 with no extra right semicongruences or con-
gruences is cohesive as water. a likes ¢ likes b likes d 1ikes a. Furthermore, the person x likes
the most, Tikes x the least. An interesting additional insight is that one couple is consistently
drawn to the opposite sex (in the other couple) and the other couple is consistently drawn to the
same sex (in the first couple).

We have all known (at least I have) couples that go out a lot together where they split nicely. This
is Tike case 4 (with the additional two congruences). When they relate intercoupie, a concentrates on
¢ and b concentrates on d. Note that the division is either man-woman or man-man and woman-woman.
These are two separate structures (when sex operators are considered (sex relations actually)) but
both are highly stable.

12. MORE COUPLES

It is instructive to view the relations of a couple and any two other peopte. For the other two
people (c and d) it is natural to redefine m as 1, 1 as 2, and 2 as being the least preferred person.
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If ¢ and d both prefer each other, we have the previous cases with the automatic abjcd congruence. If
a and b both prefer ¢ over d (which is symmetric to d over c), then we have the right semicongruence
ab|c|d. Assuming ¢ didn't choose d first (above) then c chose d second or third, and we might reaso-
nably expect d to be dropped from the association. In the case below, we have a right semicongruence
which means 1ittTe or nothing.

i m 1 2
a a b ¢ d
b b a d ¢
c ¢c a d b
d d b ¢ a

There are other cases like this (with bclafd and bc|ad) which bear examination.

i m 1 2
a a b ¢ d
b b a d ¢
c c a d b
d d ¢ b a

However, in all cases if d (or ¢) is simply dropped from the picture, we have the following {or its
dual equivalent) left.

It has two right semicongruences, ablc and albc (and no congruence). The second right semicongruence
is the grouping of b and c according to their high regard for a. {(Perhaps they both listen well
together to a.) This certainly corresponds to my experience that a couple in dealing with two other
people, not a couple, will usually drop one; and, as a rule, such groups are not cohesive. Consider
the popular wisdom "it's a couple's world."
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13. POPULARITY !

A telling experiment is to consider n people who are absolutely consistent in their likes. We will
assume six people, a, b, ¢, d, e and f, whose order of popularity is fixed (alphabetically). The
multiplication table for the six people is as follows:

i 1 2 3 4 5
a a b ¢c d e fF
b b a ¢ d e f
c ¢ a b d e f
d d a b ¢ e f
e e a b ¢ d f
f f a b ¢ d e

The right semicongruences include ab|cd]ef, abc|def, abcd]ef, abecde|f, a]bc|def, a|bed|ef, a|bcde|f,
a|bcdef, ab|cde|f, abjcdef. There are, in fact, thirty-two right semicongruences (and no possible
Teft ones) on the above multiplication table. They all have one thing in common; each semicongruence
is partitioned by popularity. The minimum right semicongruence containing m and n contains m, n and
those elements intermediate (in popularity) to m and n. Conversely, every set containing a popularity
sequence (e.g., c-d-e) is a right semicongruence class. It can be shown that this property is unre-
lated to the number of people in the system.

Consider the right semicongruence, abc|def. This roughly partitions the six people given above into
popular and unpopular classes. However, there is no reason to expect the lower half to be chummy.
They don't 1ike each other either. However, &bc¢|def has the sub-right semicongruence abc|d]e]f.
This (again) reflects the reality. In high school, where popularity as a social relation perhaps
reaches its zenith, the unpopular are thrown together by necessity. Their togetherness is possibly
less cohesive than that of the more popular. (Lastly, it is easy to show by induction, that for a
popularity system of n people, there are 2N-1 right semicongruence relations.)

.
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14. MANAGEMENT AND: SEMIGROUPS

Management structures we will consider wiil be characterized by most employees having one immediate
supervisor. For generality, we will consider secretaries as having more than -one supervisor. We wili
Took at (small company) structures with four generators: Sj, Sp, S3 and C. XSi is the ith subordi-
nate of X. XC is the secretary. Figure 6 gives a good example of such a management structure. (This
example is to challenge the algebra; more realistic examples are less challenging. In general, I
have had consistent success representing different types of management structures as semigroups.)
Labeling of vertices is almost never unique. In Figure 6, secretaries are diamonds and others are
circles. The boss is defined to be the multiplicative identity 1. The generators Sy, Sz, S3 are
placed fron left to right under each vertex. One of the realistic features of such a graph is that
whereas the subordinate relation is theoretically transitive, it is actually only weakly so. 1In
general, it is bad form to fire one's subordinate's subordinate. The result can be @ midlevel manager
enraged over usurped power.

(N—

Figure 6. A Management Structure with Secretaries Assigned to Hierarchies (Not a Semigroup)

The key to graphing semigroups is adjoining a 1 if there isn't one already. Such an element can always
be added (even if there is a 1 already) by the rule 1 « x = x « 1 = x for each x in the semigroup. A
graph with a 1 and a set of generators is then the graph of a semigroup, if every word relation on 1
holds at every vértex.

A word is just a product of generators (no inverses!). A word relation is of the form W = Wp. Thus a
graph, with a vertex labeled 1, is a semigroup if every equality Wy = Wy (where Wy and HWp are products)
that holds at 1, holds at all other vertices. The act of graphing management structures is to satisfy
the semigroup condition since semigroups have perhaps the most important property one can ask in a
groupoid. A real-life justification is that in a semigroup the boss's perspective is true (often
trivially) for subordinates as well. The boss is in a better position to make appropriate decisions.
This rather compensates for the frequent human failing of lack of empathy.

In Figure 6 the operators S and S3 are often not explicit due to lack of appropriate subordinates.
Secretaries have only one possibility, for XC a secretary, XC = XC? = XCS1 = XCSp = XCS3. For an
employee, U, with only a secretary subordinate, U = USq = USp = US3 (instead of US) = US). Consistent
with this, I prefer for higher level vertices U, to de%ine US3 = U rather than US3 = USp. Often to
achieve a semigroup, I have to do both (US3 = U; VS3 = VS2) in the same graph. The result seems to
cause no problems except the need for extra care in writing the multiplication table. Both strategies
produce meaningful (intuitive) results.

Again in Figure 6, there is the relation S3C = S351C. Whether we define SpS3 = S2 or $p53 = So2,
this relation is not true at Sp. Therefore, the graph in Figure 6 is not a semigroup. The graph in
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Figure 7 treats S3C as two individuals and achieves a semigroup by the rule that, for mid-level ver-
tices U, if S3 isn't defined, US3 = U. Note that there is nothing intrinsically wrong with a relation
Tike S3C = S351C. The problem in Figure 6 is that it's inconsistent with the rest of the structure.
With respect to that organization, S3C seems to have two jobs. To a degree, associativity implies
consistency. (Relations on each vertex are consistent with relations on the 1.)

Figure 7. The Management Structure of Figure 6, as a Semigroup

The graph we have just examined is characterized by secretaries being assigned to employees of a par-
ticular hierarchy. It is more common in industry for secretaries to be assigned to a division as in
Figure 8. With the same convention as before {S1S3 = S1; S2S3 = S2; S3S2 = S3% = S3) the graph in
Figure 8 represents a semigroup. A multiplication table for this graph is given below. HNote that the
secretaries are all Teft zeros (ZU = Z for all U). In examining the multiplication table and disre-
garding order, no two rows will have exactly the same elements occuring. Similarly, no two columns
will have exactly the same elements. (This follows in a management type structure from elementary
results of Green (1951, 163-172).)

Figure 8. A Management Structure Where Secretaries are Assigned to Divisions (A Semigroup)
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I have performed several studies on Figure 8 that I cannot report here for reasons of space. None of
the results were of a theoretical nature. However, I feel that examining right semicongruences and
congruences is an important tool for restructuring an organization. If, for example, we decide to move
Y into X's division and Z is in every congruence class containing X and Y, perhaps Z should also be
reassigned to X. By working with congruences, we disrupt as few relations as we have to. Also, it is
usually instructive to graph the resultant homorphic structure (of the congruence classes).

An example of one study on Figure 8 is the Tisting of all congruence classes containing S22. Using the
method given in this paper and many photocopies of the multiplication table, I computed the sma11est
congruence class containing Sz* and each other element. For example, if we assume Sp? and S1? belong
to the same congruence class, so do SySp and SpS1. That is, every congruence class that contains

$p2 and S12 contains S$1S2 and S2S1. Since congruences are assoc1ated 1n a one-to-one manner with
homorphisms, another way of stating this is that if we view S1% and S22 as equivalent, so are S1S2

and S257 (and every pair of the four).

In every congruence where‘SQ is not isolated, S2S1 is in the same class as So%. $2S1 is the only
element which has this property. In other words, anything that affects S22 and anyone else affects the
other emp]oyee of that rank in that division, 5251 If I were boss, I would think twice before giving
S22 a raise and not giving Sle a raise. Th1s is consistent with my experience. The company I worked
for (at this writing), SAI, is organized into divisions of often around fifteen employees (range 1-100)
and maybe two secretaries. Secretaries are answerable to only one division (SAI has about 3,000 em-
ployees). In general, employees are oblivious to the happenstance of employees of nearly equa1 rank in
other divisions. Most, however, are acutely sensitive to the rise and fall of co-workers in their own
division. There is a custom against discussing salaries.

15. FURTHER SEMIGROUPS ON MANAGEMENT STRUCTURE

There is no reason not to look at management structures bottom up. However, this will rarely result in

. a semigroup. Also, one can go for inverses of sorts by defining a new .operator P where XP is the
highest ranking immediate superior of X. This will usually give a structure that is not a semigroup or
a quasigroup. I feel that the semigroup structures shown so far are much more useful.

A new “dummy” member can be added to any management structure. This is an individual,who is an indi-
vidual who is subordinate to everyone. In the management semigroups we looked at earlier, this indi-
vidual would be a zero. If we define "less than" to mean "subordinate to" and “"greater than" in the
obvious manner, we have a complete lattice. For every subset there is also a least subordinate. We
can define a multiplication *, where a*b is that individual who is the lowest ranking superior to both
a and b. If a is b's boss, a*b = b. Similarly, we could define a*b to be the highest ranking sub-
ordinate to both a and b. Both of these multiplications give rise to commutative semigroups (Petrich,
1973, p. 12). Let * be as in the former case, and let S be an arbitrary subset of a management struc-
ture M. Then S under * generates in M a subsem1group S. S contains all the managers that are directly
responsible for S. The product of all the elements in S (which is then in S)-is the lowest ranking
superior to all of S.
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16. A REAL SOCIOGRAM

One day I went to the eleventh floor of my building (different company) and with the help of the recep-
tionist, found six individuals who were acquainted with one another. 1 gave them each a slip of paper
and asked each to write his or her name on the top, and the names of the other five in the order they
liked them. The subjects themselves reformulated the problem as listing the others in the order of who
they wanted to spend the most time with. To the question of how to handle ties, I replied, "I don't
care." The whole process took five minutes. I would not recognize them again. I was even unaware of
the male-to-female ratio. Fortunately, they appeared to take my request seriously, partly because they
had 1ittle time to entertain uncooperative ideas. I have, for reasons of ethics, resisted all impulses
to return (to the receptionist) and test my hypotheses. The data is given in the table below with
X+i=Xand (for j=1,2, 3, 4, 5) X « j = the individual X likes jtP. There is vastly more quali-
tative data that could be added. The main drawback is that we're never certain whether X likes Y less
than Z or Z more than Y. We will use only the multiplication table and the fact that A, B C are the
women and D, E, F the men (I couldn't ignore the names).

i 1 2 3 4 5
A A B D E C F
B B F D C E A
C c B D E A F
D b ¢ B F E A
E E F B A C D
F F E B C A D

The simplest metric is more than adequate to show B is most popular and A the least. In the above
matrix C, D, E, F are all roughly intermediate in popularity. No matter how we label the columns, we
don't seem to get non-trivial left semicongruences. Therefore, we will look for right semicongruences
instead of congruences. There are two non-trivial right semicongruences: AC|B|D|E?F and AC|EF|B|D.
The contrast between the pairs E and F, and A and C is illuminating. If any individuals should be
lumped together they are E and F. E and F are clearly buddies. They 1list each other first followed by
B and they seem to share a dislike for D (who ranks second with all the women). E and F are the only
pair who 1ist each other first. A and C are together because they are alike. They certainly don't
appear to be close. They agree on everything including low regard for one another. One should specu-
late about their regard for themselves and keep in mind the old saw that what people Tike least in
others is what they 1ike least in themselves. It is the fact that A and C function alike that makes
them a right semi-congruence class. B on the other hand is singular in her popularity and her view of
the others. D is the Tone male who, as we remarked earlier, is well Tiked by the women and not by the
men. A graph of this right semicongruence structure is provided in Figure 9.

Figure 9. The Partitioning By Friendships of Six (Real) People (Not a Groupoid)

17. ADJUSTMENTS

There is, in Targe structures, a tendency to consider "90%" or "95%" congruence classes. That is, one
wants to overlook these elements that spoil an "almost" congruence or right semicongruence. This is

a common technique in using blockmodels. Another way to do this is simply to try the congruence with-
out certain elements. Remember that a slight change in a multiplication table can change the con-
gruence classes considerably. If in the previous example we remove F, we get the following table:
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In this case, BCD|E|A is a right semicongruence. The individuals B, C, D give rise to a permutation
matrix. They cannot be decomposed at ali: B likes D who likes C who Tikes B. However, they are all
in total agreement about E ahd A. ’

That the removal of one individual so affects the structure is largely because of the small size of the
example. It follows that a good way to use the method of congruences is to use it on the 2" - 1
nonempty subsets of the system. It may then become obvious that one or two individuals are incon-
sistent with the system:. By the Fundamental Principle given earlier, if one individual is all the
difference between a commutative group and a groupoid devoid of nontrivial right semicongruences,
perhaps that individual should be transferred. For large systems, the various subsets can of course be
only analyzed selectively. A1l these approaches are statistical and thus transform the methodology
from qualitative to quantitative. For large social systems, statistical methods become attractive.
However, this is outside of the scope of this paper.

18. FINAL REMARKS

Little has béen said about n-ary relations for the obvious reason that they are a lot of trouble.
However, they should not be forgotten. Often binary relations imply higher order relations. For
example, in the commutative semigroup of the management Tattice, the relation on n individuals that
gives their least ranking superior is their product, i.e., the repeated application of the defined
binary operation. Most n-ary relations cannot be simplified to binary relations.

One of the hindrances to mathematical-sociology is that the practitioners are theory-and-academia
oriented (as this paper is) and not problem oriented. An exception is the work by Lipton and Budd
(1978) in data security. In that paper they are concerned with protecting computer memory from
unauthorized access. Some of the "objects" of this analysis are people, since people are what the
system is protected against. Although this work (Lipton and Budd's) is not considered social analy-
sis, it is, as 'surely as the study of marriage systems is, and it has a more clearly defined pro-
duct. They use in an integrated fashion, graph theory and the theory of languages (similar to our
use of algebra). (Significantly, they did not draw upon the mathematical-sociology literature.)
Although it is similar to .this work they produced primarily computational results via dynamic
programming. Budd (1980) corrected and extended their earlier work, and I have been able to gen-
eralize some of this considerably, to the point of calculating a very large class of social trans-
formations on a finite population in cubic time. The algorithm and many results are Budd's, and
my work (for which there is a manuscript) has been to show precisely how large is the class of
problems solved (it is very large). As a final result OAD Corporation now has an operational data
security analyser (DSA).

Two types of techniques have been touched upon in this paper. Graphing is a paper-and-pencil treatment
of groupoids that leads to a fast visual understanding. Congruences, and semicongruences can be
enumerated quite efficiently with computers. Graphs give the strongest method for analyzing relations.
They are a tool to be used to recognize the important relations and to discover new significant rela-
tions. That this is something of an art is not surprising. Although it means that these techniques
can be dismissed as "ad hoc," by that token, group theory is ad hoc, given the unsolvability of the
word problem.

There are many questions that need to be explored. We know something about finding new social rela-
tions, given an initial set of relations, but how does one choose the initial set? What can be done to
raise the Tabelling of graphs of groupoids beyond an art? How does one recognize for example, when a
graph of social relations can be decomposed into two graphs with significant structure? At present,
the application of these techniques is not difficult but usually requires some ingenuity. Also, a
knowledge of people is as important as the knowledge of mathematical techniques.
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