THE ALLOCATION OF REAL-TIME COMPUTING WITHIN A MULTIPLE-USER

ORGANIZATION

ABSTRACT

The allocation of computer time among competing
uses within an organization has received consider-
able attention in the Titerature. Most approaches
focus upon the use of decentralized mechanisms for
.effecting resource allocation of computer time
within the non-market setting of an organization.
Under the simplifying assumption that the only
resource to be allocated is computer time, this
paper investigates a decentralized mechanism, based
upon bidding, for the optimal real-time allocation

of computer time within a multiple-user organization.

A simulation model is then develgped to generate
alternative decision rules for the cases in which
no known analytical rules exist. A general
principle for simulation methodology, called
"reducto ad credibilis," is proposed for restrict-
ing the class of simulations.

INTRODUCTION

The spectacular growth in the use of time-sharing
services by organizations has been accompanied by a
variety of pricing schemes to assist the computer
center management in allocating these services.
However, the problem of effectively allocating a
time-sharing system (TSS) within an organization in
real-time has to date received 1ittle attention.
This paper considers a decentralized allocation
scheme which greatly minimizes implementation and
operational costs both from the standpoint of TSS
operation and the user interference.

The analysis considers an organization which
operates a TSS whose operating cost is independent
of its utilization. For convenience the organiza-
tional payoff function to be optimized is assumed to
be the sum of its members individual quadratic pay-
offs from use of the TSS. Each user's utility
function for the session is assumed to be a member
of a simple quadratic family of utility functions.
It is assumed that the maximum expected response
time by the TSS to a request is a published
statistic and is guaranteed to users of the system,
at least on the average. Furthermore, it is assumed
that the utilization of the TSS will be limited so
as to prevent violation of the guarantee. This is
accomplished by requiring every customer, defined as
a person desiring to become a user of the TSS
throughout a session, to submit a bid at the
beginning of his use of the TSS. Since it is
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assumed that requests submitted by all users during
a session are independent and share a common
service time distribution, the allocation assigned
to a customer in response to a bid is the rate
parameter of his (Poisson) request arrival process,
less a fractional amount for the incremental TSS
overhead his presence introduces. It is further
assumed that all customers of a session are not
simultaneously present to participate in the bidding
and that the only resource in short supply is CPU
processing time. Finally it is assumed that once
an allocation is made by the TSS, the allocation
decision must be honored. That is, it is assumed

-that once the customer submits a bid and receives

his allocation, he will not be required to engage

in re-bidding even in the Tight of bids from new
customers. However, the TSS will not know in
advance what a customer will bid and so there is
uncertainty in the allocation problem, as represent-
ed by a (known) bid distribution.

THE MODEL

Define A, to be the parameter of- the Poisson request
arrival process which for the given known service-
time distribution yields an expected request
response time, W, equal to the guarantee and define,
A < A, to be the aggregate arrival rate allocated

to all current users' of the session. The ratio,
A/A, will be called the congestion, ¢, of the TSS.
The complement of congestion will be called the
reserve, x, of the TSS:

A/ A 0<c<1,
1-¢ 0<x<1.

X

The fraction of x allocated to the i-th customer
will be called his assignment, a;. The assighment

uniquely determines the request arrival rate of

cutomer i, Ai = aiAx. The congestion introduced to

an uncongested TSS by a single utility-maximizing
user will be called the stress, k, on the TSS. It
will be assumed throughout that k << 1. That is,
each customer is assumed to be atomistic.

A11 customers are assumed to have utility functions
of the same quadratic family, but each is allowed a
different scale factor, defined for each customer,
i, as his bid, bin A simple bivariate quadratic

function for customer, i, will be used and is given
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by:

2

), (1)

Ui(xi’ai) = bi(kaiai - a

where X; is the reserve of the TSS when customer i

arrives, a; is the assignment he receives in
response to his bid, b1.s and k is the stress of

the TSS. An extended discussion is given in [1],
Justifying this utility function as appropriate for
the class of quadratic payoff functions. The goal
of the computerized speculator is to:

n
) E[guj(xj,aj)],

max Vn = max
a=(a1,a2,a3,..a,,an

subject to
Xq = X, an initial reserve
0 <a, <X, J=1,2,3,...,n

- J—3

Xj1 = PXg - ag J= 2,3,....n

bj >m>0 Jj=1,2,3,...,n

where bj is assumed to be from the view of the TSS

an independent identically distributed random
variable, bj e {m,MI1.M < =, with distribution

function, B, and mean b. 1 - p is the proportion
of the reserve dedicated to the overhead necessary
to accommodate the presence of a user on the TSS
and 1is. assumed to be independent of his assignment.

It is shown in [1] that if the assignment policy
* * % ok ok L. .

T = (an,an_],...,az,a]) maximizes the organiza-
tional payoff Vn for any n > 1, then an approxi-

mately optimal policy can be found without need for
dynamic programming recursion from the infinite
horizon policy:

* *

I =1limQ

I'l->°°n

Under this condition it is also shown in [1] that
thé optimal assignment by the TSS in response to a
bid, b, from a customer is given by

2’ = lima. = kx 9:5%9— ' (2)
oo 1 b-k®

where & is the fixed point of the integral

n(¢) = f bﬁ%ﬁﬁm da(b) (3)

That is, ® is a point such that
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& = h(e).

The fixed point, @, of h(¢) is unique under the
restriction that for every bid, b, the following
holds:

b > pke. (4)

Although no closed form solution for & exists, a

computer program has been written to numerically

find by recursion the fixed point of h (¢) for

various k and p and for representative bid distri-

butions: constant, uniform, exponential and

normal. Surprisingly, for some parameter combina-

tions the calculation of & is onerous, requiring up

to a CPU hour or more of computation (FORTRAN H,

IBM 360/67). Fortunately, the calculation need be

done only once for a given TSS and a given B. The

formulas for finding ¢ and an easily found upper

bound on the fixed point, which for a large TSS is }

tight, are reported on in [2]. - |
|

Although the analysis thusfar appears to be a bit
obtuse, its implementation on a given TSS is quite
simple:

1. For a given TSS determine the parameters k
and p.

2. Assess a reasonable representation for the
bid distribution, B, of the user group.

3. Solve (3) once for the fixed point,

4. Install the optimal assignment function (2)
as an interactive routine, automatically
involked upon sign-on of a new customer to
the TSS.

5. Evaluate (2) to yield the customer's assign-
ment in response to his bid.

SIMULATION MODEL

The analytic model thusfar has assumed that users
are allowed to arrive at random times during the
session; no pre-planning or pre-bidding is required.
However, the model implicitly assumes that once a
customer becomes a user of the TSS that he will
remain a user of the TSS until the end of the
session. A more reasonable assumption would be
that users come and go randomly. That is, a user
would remain on the TSS for a session of randomly
determined Tength. No closed form expression for

a* is known to exist for this case and simulation
appears to be the only alternative under this more
reasonable condition. Unfortunately it is unclear
what is to be simulated. One cannot simulate the
allocational behavior of the TSS without an assign-
ment rule to govern its use. But the appropriate
assignment rule to use is in functional form
determined by parameters of 1SS behavior. This
simultaneity is a common problem in economics:
optimal production and prices are a function of
demand, while demand (and hence supply) is in turn
a function of the prices. There is a clear analogy
in the problem addressed here. It is all the more
insidious, however, since not even the functional
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form of optimal assignment rule is known, much Tes$
the value of its parameters.

In order to proceed, some form of heuristic must be
adopted to identify plausible assignment rules so
that their performance can be simulated for varibus
customer arrival and départure rates. As a guide
in identifying plausibie rules, the following
principle--called Reductio Ad Credibilis--is
proposed for this and similar simulation studies in
which decision rules are to be evaluated. The
concebt is quite simple: Any candidate decision
rule must be rejected if it doesn't behave
optimally under conditions where optimal behavior
can be conclusively idertified.

Reductio Ad Credibilis: Any simulation
model must produce responses consistent
with  known analytical results when the
simylatioh model is reduced to conform
with the assumptions of that analytic
model. )

Reductio Ad Credibilis means, literally, reduce to
credibility and would appear to be a necessary, but
not sufficient, validation condition of a simula-
tion model. Note that Reductio Ad Credibilis is
not a statement about optimality properties in
general of a simulation model. A decision rule
could conceivably be found for a given simulatioh
model and criterion which on the average out-
performs any single reductio-ad-credibilis decision
rule. However, it would be serendipitous to Find
such a rule and there remains the problem of vali-
dating it, given that it fails to pass optimality
tests in the particular cases where known analytical
results are available.

In the TSS allocation problem to be examined here,
one known analytical result exists, (2), under the
no-departure-of-users assumption. A second
analytical result can also be found under the
assumption that a user departs instantanegusly
after receiving his assignment. Under this Condi-

* "
tion a can be shown to bé given by:

* *
a = lima_ = kx (5)
n-os

Note that the optimal assignment in this casé is
independent of the bid submitted, so long as it is
non-zero. This is because instantaneous departure
implies no congestion, and hénce no reason exists
to 1imit access to the TSS. It can also be |
verified that, calling the optimal assignment for
the condition in (2), a" and calling the optimal
assignment for the condition in (5), 5*:

% *

a >a

Furthermore, it would never be optimal to make an
assignment outside these bounds. Therefore for the
case of departures in general

ok * *

a >a >a.,

Usihg thése analytical results, a simulation model
was written to sifiulaté the bidding scheme for
allocating the TSS under both arrival and departure
of customers. It was assumed that the TSS was an
M/M/e system, implying that the TSS was an infinite
server (no queuing of customers waitihg for a TSS
terminal) system with both session lehgths (holding
times) and customer irter-arrival times exponentially
distributed. As a practical matter, however, it is,
not relevant to assume an infinite number of
customers would arrive during a session. The
number of users was limited to 2/k after a few

trial simulations revealed.that this was the
practical maximum number of users accommodatable

by the TSS, i.e. the system became so "loaded" with
users that assignments for customers beyond that
number became very small, even for large bids.

A total of séven candidate assignment rules were
tested, only three of which exhibited reductio ad
credibilus (RAD). The others were considered
plausible alternatives and were included for
contrdst. The rules tested were:

*
1. Use a in all cases
. -—-—*,
2. Use a in all cases
* .k *
3. Alternate a and a ; use a for customer 1,

. . * —k
a for customer 2, a for customer 3, a for
customer 4, etc.

* N
4. Use a for the first 2 customers, then use

—* * .
a for the 3rd customer, then a. for the next
2 customers, etc.

. ke *
5. Usea=(a +a)/e.
~k . - . .
6. Use a 1if the previous system transition was

n * .
caused by a customer departure; use & if the
previous system transition was caused by a
customer arrival.

* &
7. Use a weighted average of a and a :

* % * . .
a =Pa + (1-P)a , where P is the ratio
of the departure ratée to the arrival rate.

Note that Rule 1 eéxhibits RAD for the no-departure
case and Rule 2 exhibits, RAD for the instantaneous
departure case. Rules 3, 4 and 5 take various

combinations of gf and E*. None of these rules
exhibit RAD. Rule 6 applies the instantaneous

—
departure rule, a , if the last transition was a

*
departure and uses the no-departure rule, a , if
the Tast transition was an arrival. Rule / :
explicitly uses the customer departure and arrival
rates in a weighted avérage. It exhibits RAD
whenever RuTes 1 and 2 do, and it was hypothesized
that Rule 7 would dominate both Rules 1 and 2 in
all cases.

The simulation model was run for the following
parameter values: k=.05, p=.99, b=100. And

for four bid distributions: Uniform, Constant,
Exponential and Normal. The fixed point, 9, was
calculated for each distribution and used to
determine the minimum acceptable bid by (4). A
bid from a customér which is below the minimum is
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always rejected as being too low relative to other
bids Tikely from future customers. The maximum
number of simultaneous users of the TSS was set to
40 and P, the ratio of departure rate to arrival
rate, was set to (1, .5, .25, .1, .05, .01, O).

Tables 1-4 present the results of the simulations.
For each bid distribution, assignment rule and

P ratio, 40 simulation runs were made and the
aggregate organizational payoff for all the
customers was calculated for each run, under the
assumption that the customer process was M/M/40.

The aggregate payoff was averaged over each of the
40 runs to produce an entry in each of the tables.
The computer time involved in producing Tables 1-4
was 6.2 CPU minutes (FORTRAN H, IBM 360/67). .

DISCUSSION

As can be seen from the payoff maximizing rules

for various combinations (each is marked with a *),
no one rule is optimal for every case. There is a
clear pattern, however, for high P, RAD rules are
best and similarly for low P. Surpr1s1ng1y, for
intermediate values of P the s1mp1e average of the
two RAD rules is best, dominating in all cases the
more complicated averaging schemes. The hypothesis
concerning Rule 7 was not confirmed. This suggests
for intermediate values of P that a non-RAD rule
(Rule 5) be used. This would seem to violate the
RAD principle. However this could be easily
rectified by:

Rule 8: If .5 > P > .05 Use Rule 5; otherwise,
Use Rule 7.

Clearly no optimality claims can (yet) be made about
Rule 8, but the RAD principle is now preserved. In
genera] any non-RAD simulation can be converted to

a RAD simulation by a suitable choice of decision
rules. This is clearly a second best scheme--
analysis to yield the optimal resuTts is best. It
is proposed, however, that suitable convex combina-
tions of RAD simulation rules can arbitrary closely
approximate the optimal rule, in general.

For the TSS under simulation study a suitable RAD
rule has been identified. Further simulation
research will be, of course, needed to validate it
or some other rule. The results thusfar are
syggestive, however, that for the quadratic family
of payoffs studied, a simple scheme, involving
1ittle operational cost, can be utilized for real-
time TSS allocation.

1016

1]

[2]

BIBLIOGRAPHY

J.H. Moore, Decentralized allocation a time
shared computer in a quadratic team, Research
Report LR-25, Center for Research in Manage-
ment Science, University of California,
Berkeley (1974)

J.H. Moore, A b1dd1ng model for allocating
time-sharing services in an organization,
Proceedings of the Eighth International

Systems Science Conference, Western Publishing

Company, Los Angeles (1975)



Allocation

of Computing,..Continued
TABLE
AVERAGE TOTAL UTILITY FOR UNIFORM BID

1

DISTRIBUTION, k=.05, p=.99, n=40

P_RATIO IS 1.00 0.50 0.25 0.10 0.05 0.01 0.0
RULE 1 6.58 6.29 5.81 4.98 4.49 3.64 3.36%
RULE 2 9.16% 8. 38+ 7.19 5.24 4.22 2.84 2.52
RULE 3 7.93 7.42 6.57 5.19 4.35 3.17 2.83
RULE 4 7.45 7.03 6.32 5.14 4.45 3.34 2.39
RULE 5 8.65 8.10 7.20% 5.66% 4.79% 3.48 3.12
RULE 6 8.21 7.50 6.57 5.15 4.49 3.57 3.01
RULE 7 9.16* 8.10 6.71 5.23 4.58 3.65+ 3.36%

TABLE 2 .
AVERAGE TOTAL UTILITY FOR CONSTANT BID DISTRIBUTION, k=.05, p=.99, n=40

P_RATIO IS 1.00 0.50 0.25 0.10 0.05 0.01 0.0
RULE 1 6.90 6.65 6.17 5.29 4.56 3.56% 3.29%
RULE 2 9.12% 8.47* 7.31 5.48 4.20 2.81 2.52
RULE 3 8.05 7.61 6.78 5.44 4.38 3.10 2.81
RULE 4 7.66 7.29 6.58 5.41 4.44 3.27 2.39
RULE 5 8.69 8.21 7.34% 5.86% 4.74% 3.37 3.06
RULE 6 8.32 7.71 6.78 5.45 4.53 3.50 2.98
RULE 7 9.12% 8.21 6.93 5.51 4.62 3.56% 3.29%

TABLE 3 ‘
AVERAGE TOTAL UTILITY FOR EXPONENTIAL BID DISTRIBUTION, k=.05, p=.99, n=40

P_RATIO IS 1.00 0.50 0.25 0.10 0.05 0.01 0.0
RULE 1 6.89 6.62 6.11 5.25 4.55 3.55% 3.33*
RULE 2 - 9.22% 8.47+ 7.31 5.36 4.18 2.76 2.52
RULE 3 8.09 7.61 6.78 5.35 4.37 3.06 2.82
RULE 4 7.68 7.28 6.56 5.32 4.43 3.25 2.40
RULE 5 8.76 8.23 7.34% 5.78% 4.73¢% 3.36 3.08
RULE 6 8.37 7.70 6.84 5.39 4.46 3.49 3.01
RULE 7 9.22% 8.23 6.90 5.46 4.62 3.55% 3.33%

TABLE 4
AVERAGE TOTAL UTILITY FOR NORMAL BID DISTRIBUTION, k=.05, p=.99, n=40

P_RATIO IS 1.00 0.50 0.25 0.10 0.05 0.01 0.0
RULE 1 9.77 9.55 9.09 7.45 6.57 5.26% 4.68*
RULE 2 12.01* 11.09% 9.97 7.09 5.69 3.98 3.37
RULE 3 10.92 10.37 9.57 7.28 6.06 4.51 3.86
RULE 4 10.51 10.08 9.43 7.36 6.26 4.82 3.18
RULE 5 11.59 10.98 10.14% 7.73% 6.46 4.77 4.72
RULE 6 11.24 10.47 9.58 7.31 6.34 5.10 4.12
RULE 7 12.01% 10.98 9.78 7.60 6.60% 5.26% 4.68*
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