DOCUMENTATION: A GROWING NEED... A NEW TOOL

ABSTRACT

The Software Design and Documentation Language
(SDDL) has proven to be an effective, automated
documentation tool. This paper presents the
purpose, timing, and components of documentation.
SDDL is introduced and related to the different
timing scenarios; its capability to provide
reasonable documentation is discussed and
demonstrated by the use of several examples.

I. INTRODUCTION

Documentation has typically been viewed as the
drudgery of software development. Weinberg
refers to documentation as the castor oil of
programming [1]; Kleine says that if design is
Cinderella, then certainly documentation is her
ugly sister [2]. And it logically follows that
documentation became seen in this light since,
usually, by the time the documentation stage
was reached, the main characters were tired of
the program and ready to move on to another
project.

However, as more and more programs come into
existence, and the need for meaningful documenta-
tion also increases, it will be necessary to
correct this image if reasonable documentation

is to be produced. Without it, the task of
understanding, updating, and/or modifying a
program becomes increasingly difficult (if not
impossible) and costly.

This paper is organized in the following manner:
the purpose, timing, and various components of !
documentation are discussed. Next, the

automated tool, SDDL, is presented and related

to the different timing scenarios; its capability
to provide meaningful documentation is discussed
and demonstrated through the use of several
examples. Finally, conclusions are drawn.

A. PURPOSE OF DOCUMENTATION
The primary purpose of documentation is to

provide undistorted communication between the
parties interested in the software, both

Marcia A. Metca\lfe

present and future [3]. Documentation should convey
such information as:

¢ What the program does; how it functions
e How the data/information is represented

¢ How the various segments/routines relate to
one another

This information becomes increasingly valuable as
modification is required, and the original
developer(s) is no Tonger available or has for-
gotten program details [4]. .

B. TIMING OF DOCUMENTATION

Three documentation timing scenarios will be
addressed. The first, "before the fact" documenta-
tion, usually presents the program specifications
and/or design. The second scenario, "concurrent”
documentation, occurs throughout the various phases
of software development and provides a working
vehicle to prevent distortion of ideas, promotes
project control, captures design changes, and)
permits the orderly development of software. It is
useful to the development programmer as well as to
the maintenance programmer. The third scenario,
"after the fact" documentation typically records the
history of development, demonstrates that the
Erggram works, and provides a means for maintenance
5].

C. COMPONENTS OF DOCUMENTATION

Given that different users need different informa- .
tion, and that no one document could probably ever
provide all the information which in the future may
be required, the following documentation components
have been identified to accommodate the changing
requirements of documentation over the program's
Tifecycle.)

From the very early stages of software design
forward, several components become essential. One
such component is a high-Tevel description (over-
view) of the program in prose. It should include
such information as what function the program is
being designed to perform and what its limitations

297’

DOCUMENTATION. . .continued

and assumptions are. As the design progresses,
the data structure becomes more defined and the
algorithms/procedures which operate on the data
are identified and developed. Therefore, data
structure diagrams and a calling sequence diagram
which shows the interrelationships of the
procedures become two additional basic components
of documentation.

As the design matures and coding begins, other
components surface. These include the procedure
(job control runstream) necessary to execute

the program. It should contain a written explana-
tion of the various steps, as well as the input/
output declarations, definitions, and
allocations. Another component includes descrip-
tions of the data files which contain examples of
reasonable data in terms of its mode and size/
length. Source code 1istings, preferably with
cross reference tables become an invaluable
component. Machine specifications can also be
documented at this time.

By the time the program code is completed and the
usual documentation phase begins, current versions
of the previously-mentioned components coupled
with actual data files, a sample testcase with
output, and references to other'related documents
(i.e., user's guide, design document, supporting
technical papers) will provide a full complement of
meaningful documentation.

II. SDbL: A TOOL
The Software Design and Documentation Language
which was developed by Henry Kieine [6] at the Jet
Propulsion Laboratory of the California Institute
of Technology, has as its main objective
communication. It facilitates communication
between all the characters in the software
déevelopment process (i.e., managers, customers,
designers, development programmers, maintenance
programmers, and the machine). SDDL automates
the documentation task; it processes input
(expressed in natural language or source code)
and produces formatted, software documentation.

Further, methodologies have been developed for
displaying representations of data, project
management, and the direct processing of source
code. Automatic features provided by SDDL

include a table of contents, module reference tree
(calling sequence diagram), and cross reference
Jisting. User-defined features include specific
cross reference 1istings and SDDL keyword
definitions.

The remainder of this section will present
SDDL's capability to address the changing docu-
mentation requirements in a program's lifecycle,
and relate them through the various timing
scenarios.

298

A. SDDL AS A DOCUMENTATION TOOL FOR THE DESIGN

" PHASE ("BEFORE THE FACT")

SDDL has been used successfully to design both
SIMSCRIPT and FORTRAN programs. The processing

of natural language statements aliows a high-level
description of the program's function, Timitation,
and assumptions, which does not have to meet typical
programming language syntactical requirements.
Figure T [7] demonstrates this capability. Capturing
the physical representation of the data is also
facilitated by SDDL. Figure 2 [7] illustrates this
capability; Figuré 3 [7] shows a refined design of

‘a data structure.

Automatic features of the SDDL processor inglude:
e a table of contents

e a module reference tree (forward-calling
sequence diagram)

e a module cross reference listing
¢ logic error detection

Figure 4 [7] is a segment of an automatically-
generated module reference tree; it provides
information regarding the interrelationships of
the various, identified program procedures. A
glossary of terms can also be facilitated by the
SDDL processor.

'B. SDDL AS A DOCUMENTATION TOOL FOR THE CODING

PHASE ("CONCURRENT")

SDDL provides a working vehicle which facilitates
the coding phase of software development (see
Figure 5 %75). This is the point at which coding
conventions can be adopted to allow for the direct
processing of source code; and the external data
file representation can be documented. Proceduyres
for flagging revisions tan be instituted; and user-
specified cross reference 1istings (for global
variables, data files, footnotes, etc.) can assist
the development programmer. Project management
techniques (including a calendar of events, mile-
stones, and progress charts) can be incorporated
into the document for use during this phase.

C. SDDL AS A TOOL FOR THE DOCUMENTATION PHASE
("AFTER THE FACT")

Two methodologies for using SDDL during the
documentation phase have been developed. The first
is the direct processing of SIMSCRIPT, and other
high-Tevel languages, source code through SDDL; the
second s using the SDDL processor to generate a
supporting document to existing source code list-
ings.

1. The Direct Processing of SIMSCRIPT Source
Code

Figure 6 is the result of processing SIMSCRIPT
source code through SDDL. The document format-
ting features enhance both the clarity and flow
of control in this routine. User-defined cross
reference 1istings can be generated at this point
to capture machine portability considerations and
1/0 devices. The automatically-generated SDDL
features provide additional information about the
source code.

2. As a Supporting Document for an Existing
Program

SDDL can be used to document existing software
written in any programming language. Figure 7 [8]
shows SDDL being used to capture the physical

data representation of an existing FORTRAN
program. Meaningful identifiers have been.added
to clarify the cryptic descriptors; and their
instances can be gathered in a user-specified
cross reference table. Additionally, variable
mode and units of measure have been supplied.

Figure 8 [8] illustrates SDDL being applied to
capture the structure/algorithm, at a high level,
of an existing FORTRAN program. Natural language
statements lend clarity to the routine descrip-
tion; automatic document formatting features lend
flow of control visibility.

LII. CONCLUSIONS

SDDL can take some of the "drudge" out of
documentation by capturing meaningful infor-
mation during the various phases of software
development as well as by transfering the burden
to the computer. It allows for details, usually
recalled from someone's memory at the end of a
project, to be recorded as they occur during the
project. This single, automated medium
facilitates the communication between the various
members in the software development process over
time, thereby providing a two-dimensional
docur;entation tool (i.e., between peopie, over
time).

Additionally, SDDL provides a framework for
implementing documentation standards. It

skews the documentation effort away from the end
(when developers are very busy verifying, debug-
ging, and testing) and toward the beginning of
the project (when developers are less busy).

When used in a "concurrent" documentation mode,
SDDL provides a-working vehicle which begins as a
designer's tool, then becomes a development pro-
grammer's tool, and finally emerges a a main-
tenance programmer's tool. When used in an
"after the fact" documentation mode, SDDL can
produce a document- in support of existing source
code which adds clarity and visibility into the
program's actions. Further, SDDL can generate
documentation directly from source code.

REFERENCES
1. WEINBERG, Gerald M. (1971) The Psychology of

Computer Programming. New York: Van Nostrand
Reinhoid Company. '

2. KLEINE, Henry (1977) “A Vehicle for Developing
Standards for Simulation Programming." Pre-
sented at the Winter Simulation Conference, .
Gaithersburg, MD., December 5-7.

3. COOLEY, Belva J. (1977) "Documenting Simulation
Studies for Management." Presented at the
Winter Simulation Conference, Gaithersburg, MD.,
December 5-7.

4. HARPER, William L. (1973) Data Processing
Documentation: Standards, Procedures and
Applications. Englewood CTiffs: Prentice-Hall,
Inc. :

5. TAUSWORTHE, Robert C. (1976) Standardized Deve-
lopment of Computer Software. Pasadena: dJet
Propulsion Laboratory, California Institute of
Technology.

6. KLEINE, Henry (1977) Software Design and
Documentation Language. Pasadena: Jet Pro-
pulsion Laboratory, California Institute of
Technology.

7. CHAMBERLAIN, R.G., P.J. FIRNETT, D.A.
HEIMBURGER, M.H. HORTON, B.L. KLEINE, M.A.
METCALFE (1978) SAMIS III Design Document.
Pasadena: Jet Propulsion Laboratory, Calif-
fornia Institute of Technology.

8. Jet Propulsion Laboratory (1978) PARAMET (An
Electric Vehicle Simulator) User's Manuai.
Pasadena: Jet Propulsion Laboratory, Calif-
ornia Institute of Technology.

299

DOCUMENTATION. . .continued

529
547

PROG

APRIL 27, 1978 : PAGE

RAM OBJECTIVES

33636 69636 2696 36 369 3626 26 N 96 636 26 IR 336 36 36 0696 636 36 I 96 363 K 3 236 36 36 2696 36 36 36 3 I3 36 3 36 JE MMM HR MMM M KRN MM MHHN NN KNH MK MR NXHHNNKHRMNMARKRKNKR

XK KK KX

END

KKK KKK MK KKK KKK KKK B KK KN KKKEKKKKEKKKEEKKK XK

SAMIS IIT IS AN ECONOMIC MODEL OF A HYPOTHETICAL U.S. INDUSTRY TO MANUFACTURE SILICON SOLAR

IT IS INTENDED THAT THE SAMIS III PROGRAM FACILITATE STANDARDIZED COMPARISON OF THE RELATIVE
ECONOMICS OF COMPETING MANUFACTURING PROCESSES. IT IS ALSO INTENDED THAT IT FACILITATE ASSESSMENT
OF COMPLETE SEQUENCES OF PROCESSES WITH RESPECT TO THE LOW-COST SOLAR ARRAY (LSA) PROJECT
ggékg.OFFggggEEéHIT IS INTENDED TO PROVIDE INFORMATION THAT WILL HELP IN DETERMINING FRUITFUL

THE INPUTS TO THE "SAMIS IIX MODEL FALL INTO SEVERAL GROUPS:

A) DESCRIPTIONS OF THE ECONOMIC CHARACTERISTICS OF EACH MANUFACTURING PROCESS/MACHINE
1) PROCESS PARAMETERS (PRODUCT PRODUCED, RATE, DUTY CYCLE, ETC)
23 EQUIPMENT COST FACTORS
3) FACILITIES AND PERSONNEL REQUIREMENTS (PER MACHINE)
%) BYPRODUCTS PRODUCED AND UTILITIES AND COMMODITIES REQUIRED (PER MINUTE)
5) PRODUCTS USED IN THE PROCESS (AND THE ASSOCIATED YIELDS)

B) DESCRIPTION OF THE TECHNOLOGICAL AND ECONOMIC STRUCTURE
1) OF FIRMS IN THE INDUSTRY
2) OF PROCESSES IN EACH FIRM

C) STANDARD DATA
1) PRICES OF PERSONNEL, COMMODITIES, ETC. AS FUNCTIONS OF QUANTITIES
2) INDIRECT REQUIREMENTS AS FUNCTIONS OF QUANTITIES
3) RELATIONSHIPS FOR ESTIMATING INITIAL CAPITAL
4) INFLATION RATES AND OTHER ECONOMIC PARAMETERS

D) RUN TIME DATA
19 RANGE OF DEMANDS FOR PHOTOVOLTAIC POWER
2) RANGE OF ANOTHER PARAMETER TO BE VARIED [T0 BE IMPLEMENTED IN A LATER RELEASE]
3) "SWITCH" SETTINGS (SUCH AS THE INTEGRAL.MACHINES.FLAG)

FROM DESCRIPTIONS OF THE MANUFACTURING PROCESSES, DETERMINISTIC EQUATIONS DESCRIBING THE
MANUFACTURING -COSTS OF EACH PROCESS, AND BUSINESS COSTS OF EACH FIRM HOUSING ONE OR MORE OF THESE
PROCESSES, THE M3IDEL ESTIMATES THE PRICES THAT MAY REASONABLY BE EXPECTED FOR SOLAR MODULES. AND
ANY RECOGNIZABLE INTERMEDIATE PRODUCTS THAT ARE USED IN THEIR MANUFACTURE. COST ELEMENTS ARE
ALLOCATED TO EVERY PROCESS.

BY PERFORMING SENSITIVITY ANALYSES OF VARIOUS PARAMETERS INVOLVED IN THE MODEL, AND' BY
ANALYZING THE EFFECT ON PRICE OF DIFFERENT INDUSTRY CONFIGURATIONS, INFERENCES CAN BE DRAWN WITH
RESPECT TO RESEARCH PRIORITIES AND THE EFFECTS OF GOVERNMENTAL AND INDUSTRIAL ACTIONS.

WHILE SAMIS III WAS DESIGNED FOR THE NASCENT SOLAR ARRAY INDUSTRY, THE METHODOLOGY IS NOT
INDUSTRY DEPENDENT. APPLICABILITY TO MANUFACTURERS IN OTHER INDUSTRIES CAN BE ACHIEVED BY RATHER

- MODEST AUGMENTATION OF THE STANDARD DATA.
RN HHRMNNNINHMNMNRKIMRRKMNN RN R RRHNHNNKRHMMRKNNNHHKEIN N MK KKK I KKK H RN RREKERRHERR KRR IHRRNRRHRERRRRRRKRKK

MODULES, WHICH ARE USED TO GENERATE ELECTRICITY DIRECTLY FROM SUNLIGHT BY THE PHOTOELECTRIC EFFECT.

¥
*
*
¥
¥
*®
*
¥
*
*
X
*
E
%
X
*
X
*
¥*
*
*
¥
E
X
*
*
*
%
*
*
*
*
*®
*
¥
*
¥
*
*
®
X
¥
*
*
%*
E
*

8

RGC

300

Figure 1. SDDL Processing High-level, Natural Language Statements

APRIL 27, 1978

DATA_STRUCTURE NOMENCLATURE

3636 96 26 36 36 2636 JEH 36 N 36 256 3363636 36 36 2 36 36 3 ¢ I636 6 2 3 3 2 2 2 33 36 266 3 X XX NN M X

xxxxxxxxxxxxxxxx*xxxxxxxxxxx*xx*x

b XY et e Y laTa el e

*
x

SENTED IN THE DATA STRUCTURE LIKE ATTRIBUTES,

KHAZTIO O C =20

2 COST_ACCOUNTS DATA_STRUCTURE-=~-=

PAGE

IS MR N KO I I3 330 K 3 3 I3 3R K9 3 MM KK M X MMM KN N X NKK

DATA STRUCTURES ARE DESCRIBED IN TERMS OF ENTITIES, WHICH ARE THE OBJECTS OUT OF WHICH THE MODEL %

N N s s

V)
z) INTEGER VECTOR

L] xxxxxx*x*xxxx*xx*xxxxxx*xxxxxxxnxxx*x*xxx*xxxxxx**xxxx*xxxxxxxxxxxxxxxxxx*xxxxxxxxxxxxx*xxxwx*xx

DATA STRUCTURE CONSISTS OF

AR ENTITY THEY DESCRIBE (AS, FOR INSTANCE, THE

OTHER ATTRIBUTE VALUES ARE CALCU-
AND ARE NOT STORED AS PART OF THE ENTITY DESCRIPTION. Is
A D (TO MEAN "DYNAMIC" OR YDERIVED") AT THE RIGHT HARD MARGIN.

SETS ARE "OWNED™ BY ENTITIES AND IN CONSEQUENCE, ARE VERY MUCH LIKE ATTRIBUIES. THEY ARE REPRE~-
EXCEPT THAT THEIR NAMES ARE PRECEDED BY THE WORD
YSET", THE KIND OF ENTITIES WHICH "BELONG TO" THE SET FOLLOW THE SET NAME AND ARE INDENTED.

THE HIGHEST LEVEL OF STRUCTURE CAM BE AN ENTITY (SUCH AS A PROCESS:), A SET (SUCH AS THE
COST.ACCOUNT.STRUCTURE), OR AN ATTRIBUTE. ATTRIBUTES AT THE HIGHEST LEVEL DESCRIBE OR ARE USED BY
THE MODEL ITSELF, AND ARE CALLED "“GLOBAL VA

IN_ADDITION TO THE S OR D DESCRIBED ABOVE, EACH ATTRIBUTE IN THE DATA STRUCTURE
HAS ITS UNITS OF MEASURE AND ITS MODE. THE FOLLOWING CODES ARE USED FOR THE MODES:

RIABLES™ (SUCH AS THE NORMAL\INPUT\UNIT).
DESCRIPTIONS

IS CONSTRUCTED; ATTRIBUTES, WHICH DESCRIBE VARIOUS CHARACTERISTICS OF THE ENTITIES; AND SETS, WHICH %
DESCRIBE STRUCTURED RELATIONSHIPS AMONG THE ENTITIES.

ATTRIBUTES CONTAIN VALUES, USUALLY NUMERIC, BUT SOMETIMES ALPHABETIC OR ALPHANUMERIC. _SOME OF
THESE VALUES ARE CHARACTERISTIC OF THE PARTICUL
EXPENSE ITEM: PRICE.VS.QUANTITY.TABLE)., THIS KIND OF ATTRIBUTE IS IDENTIFIED IN THE DATA STRUCTURE
BY AN 5 (TO MEAN "SAVED"™ OR "STATIC") AT THE RIGHT HAND MARGIN. VALUES OF THESE ATTRIBUTES ARE
STORED WITH THE ENTITY WHENEVER THE ENTITY IS SAVED ON FILE.
LATED DURING THE COURSE OF A RUN,
KIND OF ATTRIBUTE IS IDENTIFIED BY

*®

TH

*
*
®
*
X
¥
*
*
*
*
*
*
E
*
*
X
X
*
*
*
*
X
*x
®
%
X
¥
¥
X
*
X

>

CURRENT_TECHNOLOGY DATA_STRUCTURE~-~

>(

AVAILABLE _COMPANIES DATA_STRUCTURE

>(

CURRENT..CONFIGURATION DATA_STRUCTURE faiad

- >(

DIRECTORIES DATA_STRUCTURE-

>(

GLOBAL_VARIABLES DATA_STRUCTURE

——— >(

PARSER DATA_STRUCTURE

-3¢

TABLE_EXAMPLES

9
80 END_DATA_STRUCTURE

>(

12
RGC

132
15)
16}
173
22)
23)
24)
25)

Figure 2. High-Tevel Data Representation

302

DOCUMENTATION. . .continued

"DATA_STRUCTURE FOR CURRENT_TECHNOLOGY

APRIL 27, 1978 . PAGE
3724/78 1.9

HIEHHHIEIEH KRR ICK K HHH NN TN K KN K HNHINHHIONRH KK KK N HIEH NN K KN KN HHKHHK K IO KHIH K KKK K HNA KRN KK HHH K KHK
% THE CURRENT TECHNOLGGY SET CONTAINS A ™CATALOG™ GF THE PROCESSES THAT HAVE BEEN DESCRIBED. EACH X
% PROCESS DESCRIPTION IS THE COMPUTER EQUIVALENT OF A "FORMAT A"™ (JPL FORM 3037~-5). _IN ADDITION ¥
¥ TO THE INFORMATION PROVIDED ON THOSE FORMATS IS A LOT OF STANDARDIZED DATA, WHICH THE USER CAN %
¥ CHANGE ON A PROCESS BY PROCESS BASIS FOR SENSITIVITY STUDIES OR FOR A MORE REALISTIC DESCRIPTION. X
KK HHHK IR N K I KK HHHKR K HHKIH KKK K HH I NN KK HHH K IHHK K HIHK KNI HK K HHK KOO KIHK KNI KR KKK HHEKHHH KRNI KR HHRHHH

SET "CURRENT.TECHNOLOGY'
ENTITY "PROCESS:'
YREFERENT® (SEE TABLE 3 IN DATA_STRUCTURE TABLE_EXAMPLES)
"DESCRIPTIVE.NAME"
"PRODUCT .REFERENT' (SEE TABLE 4 IN DATA_STRUCTURE TABLE_EXAMPLES)
"PRODUCT . NAME'

"PRODUCT.UNITS" (SEE TABLE & BELOW)
TOUTPUT.RATE' OUTPUT UNITS/OPERATING MINUTE

YPROCESSING.TIME" CALENDAR MINUTES AT THE WORK STATION
TUSAGE.FRACTION' (MACHINE DUTY CYCLE) OPERATING MINUTES/FACTORY OPEN MINUTE
SET "MACHINE.DESCRIPTION® '

ENTITY TCOMPONENT:*

'REFERENT' (SEE TABLE 5 IN DATA_STRUCTURE TABLE_EXAMPLES)

YDESCRIPTIVE.NAME' i
'PRICE.YEAR' DATE YEAR
*PURCHASE.COST" PRICE YEAR DOLLARS
YUSEFUL.LIFE' YEARS
YSALVAGE.VALUE' PRICE YEAR DOLLARS
*REMOVAL .AND.INSTALLATION.COST' PRICE YEAR DOLLARS
TPAYMENT.FLOAT.INTERVAL® i YEARS
*INFLATION.RATE.TABLE' YEAR, PERCENT/YEAR
YTAX.LIFE! YEARS
YEQUIPMENT.TAX, DEPRECIATION METHOD' .
*ACCOUNTING.LI YEARS

'EQUIPMENT. BOOK DEPRECIATION METHOD'
SET 'BYPRODUCT.OUTPUT S
ENTITY 'BYPRODUCT:
YEXPENSE.ITEM. REFERENCE' (SEE TABLE 2 IN DATA_STRUCTURE TABLE_EXAMPLES)

YEXPENSE.ITEM.POINTER' CORE LOCATION

YAMOUNT.PER.CYCLE" : : UNITS/CYCLE -

SET 'FACILITIES.AND.PERSONNEL .REQUIREMENTS'
ERTITY 'FACILITY.OR.PERSONNEL:'
'EXPENSE.ITEM.REFERENCE" (SEE TABLE 2 IN DATA_STRUCTURE TABLE_EXAMPLES)
YEXPENSE.ITEM.POINTER® CORE LOCATION
YAMOUNT.PER.MACHINE' URITS/MACHINE
SET 'UTILITIES.AND.COMMODITIES.REQUIREMENTS"
ENTITY 'COMMODITY:'
YEXPENSE.ITEM.REFERENCE" (SEE TABLE 2 IN DATA_STRUCTURE TABLE_EXAMPLES)
*EXPENSE.ITEM.POINTER" CORE LOCATION
"AMOUNT .PER.CYCLE" UNITS/CYCLE
SET 'REQUIRED.PRODUCTS®
ENTITY "REQUIRED.PRODUCT:'

TPRODUCT.REFERENCE' (SEE TABLE 4 IN DATA_STRUCTURE TABLE_EXAMPLES)
YYIELD" OUTPUT UNITS/INPUT UNIT

2 .
236 END_DATA_STRUCTURE

e latatalatatalatalalate)
A AN 070 -t
"t AP M o A N s Nt Ml N o N

I lalalalalelalel
VAN~~~
SRRV PRy

Amn
P e
Nt o P

~Am~
20 bt

s

~en
7o -t
[y

(T
(R)

15

DLLLONTOVUNBOVTUVBVDUVOLTVODUBVVULOUULVLVOOUOOVOOVnY

302

Figure 3. Lower-level Data Structure Diagram

- -

=0 00N O N D NN M

-

et et $d et et
NOUVHWRN

18

PAGE

RREXKXRMKNNRAX MODULE REFERENCE TREE %X¥XX¥

TEAM_MEETINGS_AND_AGENDA
SCHEDULE_AND_MILESTONES
PROGRESS_CHART
MEMORANDA
ACKNOWLEDGEMENTS
OBJECTIVES

READING_CONVENTIONS
CALL_A_ROUTINE

ROMENCLATURE

. COST_ACCOUNTS

. CURRENT_TECHNOLOGY

. AVAILABLE_COMPANIES

. CURRENT_CONFIGURATION
. DIRECTORIES

. GLOBAL_VARIABLES

. PARSER

. TABLE_EXAMPLES

TOP_LEVEL_COMMANDS
MANIPULATION_COMMANDS

MAIN

. INITIALIZE PROGRAM

. .« GET_MACHINE_SPECIFICATIONS
. GET_PARSER_VOCABULARY
GET_FILE DIRECTORIES
GET_MODEL_DEFAULTS
. SEARCH_A_SET_FOR_A_REFERENT
. PRINT_A_WARNING

. .« . PRINT_ERROR_MESSAGE

CALL_A_ROUTINE

GET THE NEXT_COMMAND

. INTERPRET_THE_USERS_NEXT_WORD

LIST_COMMAND_CHOICES

HELP_WITH_TOP_LEVEL_COMMANDS

. INTERPRET_THE_USERS_NEXT_WORD

PRINT_TOP_LEVEL_HELP_MESSAGES
PRINT_ERROR_MESSACGE

. CATL_A_ROUTIN

CALL_A_ROUTINE

. PRINT EXCEPTION_MESSAGE
PRINT_ERROR_NESSAGE

SET PROMPT LTEVEL

. INTERPRET_THE_USERS_NEXT_WORD

. . PRINT_EXCEPTION_MESSAGE

P T T T S T T T
v e 0.

. PRINT_INTRODUCTORY_VERSION_OF_COMMAND_CHOICES

. PRINT_ADDITIONAL TOP LEVEL_HELP_MESSAGES

!

PAGE . 228

Figure 4. Automatically-generated Module Reference Tree

303

DOCUMENTATION. ..continued

LINE APRIL 27, 1978 PAGE 30
g% PROGRAM MAIN ROUTINE 3724778 2.2
94 693 336 36 26 966 96 36 36 6 JE 3696 2 2 I 26 2 3 626303 K IEHE 23 326 36 36 36369636 I3 6 26 96 36 X 223 36 I JE I H M H K I
32 x THIS IS THE STARTING POINT AND "HOME BASE" FOR THE PROGRAM. :

97 * THIS PROCEDURE RESPONDS TO THE USER'S WSAMIS TOP-LEVEL™ COMMANDS. X

98 33636 36 36 6 3636 36 96 36 36 36 36 36 3636 36 36 36 36 2 3 36 36 36 36 36 36 36 36 3 36 336 96 36 36 36 3 26 N 36 36 36 26 3 36 3696 36 3 2 I I HE 3 I K I W, K HHK ¥

99

%gg NOW INITIALIZE_PROGRAM- >(180)
{0% LOCP UNTIL USER TERMINATES PROGRAM EXECUTION

9

104 NOW GET_THE_NEXT_COMMAND >{120)
igg *¥ YIELDING; COMMAND NUMBER

ig; SELECT CASE PER COMMAND- NUMBER

109 CASE 1; mIv

110 NOW LIST_COMMAND_CHOICES >(124)
111 CASE 2; VHELP"™ OR "EXPLAINY

112 NOW HELP_WITH_TOP_LEVEL_COMMANDS—~ >(122)
113 CASE 3; VPROMPT"

114 NOW SET_PROMPT_LEVEL >(146)
115 CASE 4; "QUERY"

116 NOW QUERY_. EXISTING ENTITIES >(145)
117 CASE 5; "CREATE

118 NOW CREATE_. AND MANIPULATE_THE_ENTITY > 32)
119 CASE 6; YFINDW

120 NOW FIKND_. AND MANIPULATE THE_ENTITY >(34)
121 CASE 7; M“REPLA)
122 NOW REPLACE_ THE ERTITY [DEFERRED TO A LATER RELEASEI>(47)
123 CASE 8; "SIMULA

124 ROW STRUCTURE INDUSTRY AND_VERIFY_COHERENCE >(49)
125 % YIELDING; ABORT FLA

126 IF ABORT FLAG = "ABORT"

127 Lmmmemm==CY(

128 'ENDIF

129 NOW SIMULATE >(53)
130 CASE 9; "PLOT™ ; - .
131 NOW CALL A ROUTINE TO RLOT_A_GRAPH [DEFERRED TO A LATER RELEASE]>(200)
132 CASE 10; "STO
133 <-~---**-EXITPROGRAM
134
{gz ENDSELECT
1%; REPEAT UNLESS USER HAS TERMINATED -PROGRAM EXECUTION

1
139 END PROGRAM MAIN ROUTINE

Figure 5.

304

Refined Design of a Routine with Project Management Information, Footnotes, and Various Auto-

matic Formatting Features

PAG
ROUTINE TO LIST.DATA.FOR.A.SYSTEM.ENTITY v

DEFINE EXCEPTION.CODE AND COMMAND AS INTEGER VARIABLES

NOW INTERPRET.THE.USERS.NEXT.WORD

GIVEN 2 'YYCONTEXT = ENTITY TYPES
AND 0 "NO TEXT TO BE RETURNED

YIELDING EXCEPTION.CODE AND COMMAND

IF EXCEPTION.CODE IS NOT ZERO ''AN INPUT ERROR WAS FOUND
NOW PRINT.EXCEPTION.MESSAGE
GIVEN EXCEPTION.CODE

LSE
+ IF COMMAND IS LESS THAN 1 OR COMMAND IS GREATER THAN 8
NOW PRINT.ERROR.MESSAGE GIVEN 3''OUT OF BOUNDS IN LIST DATA==w=mmmem e

SE
SELECT CASE(CONMAND)'
CASE(1)"*
NOW LIST.VERICLE.DATA
ETURN

CASE(2)'
NOW LIST.CHASSIS.DATA
ETURN

R
CASE(3)!
NON LIST.ENGINE.DATA

CASE(Q)
NOW LIST.TRANSMISSION.DATA
TURN

CASE(5)'
N0¥UE§ST.DRIVE.FONER.TRAIN.DATA

CASE(6)?
HOW LIST.SIMULATION.SPECS.DATA
RETURN

CASE(7)'
NOW LIST.DRIVING.SCHEDULE.DATA
e ~<RETU
CASE(8
NOW LIST.ENVIRONMENT.DATA
ENDSELECT
WAYS

ALWAYS
<--RETURN
END

E

>(

>(
>(

>
>C
>¢
>'(

>¢

>¢

>

>(

85
6.1

.

40)

22)
23)

86)
87)
89)
913
93>
95>
97)

98)

Figure 6. Actual SIMSCRIPT Source Code Enhanced by the SDDL Processor

305

DOCUMENTATION. . .continued

LINE PASE 7
172 PROGRAN DATA_STRUCTURE
178 ‘
175 sssss NOTE sesae ALL VARIABLES ARE REALs EXCEPT THOSE WYTH AN I AFTER THE
176 DESCRIPTION: WHICH ARE INTEGER TYPE ~~ NO LOBICAL VARIABLES ARE USED
311 UNITS ARE INDICAVED FOR EACH YARIABLEs EXCEPT B 1 WHICH
178 INOICATES UNITLESS QUANTITIES
379
180 COMMON IBATRY?! ALL PARAMETERS PERTAINING TQO THE SATTERY
181 SBATWE® BAYYERY.MEIGHT [0}]
182 SCHLIN® BATTERY.CHARGING.LENITY c 4=}
183 *OMASS? INCREMENTAL «CHANGE .OF . BATTERY.NASS we)y
184 LT ACCUMULATED. BATTZRY+NASS.OVER. DRIVXNE-CVCLE (L8}
185 OSLINY !A!!ERV-DKCNARGING.LXHH i-¥
186 *IOLTA® TOLING.TINE. ONoDRIVING.CYCLEs I {SEC)
187 *KDSCH?® BATTERY +CHARGE «D ISCHARGE «POLYNORIAL.COEFFICIENTS t-)
188 *RECUP?® BATTERY+RECUPZRATION.FALTOR {3y
189 SREGLNF * REGENERATIVE.ERAKING.FACTOR ($3]
190 *yyLIN® LOWeSPEEDLREIGENCRATION.LIAIL {RIZKRY
192
193 COMMON SCARY ALL PARANETIRS BASIC T0 VHE VEHICLE
194 "W VEHICLE.FRONTAL LAREA tSe FT)
195 *BKFAC® _R;GENERAI’IQE.BRAK[NG.EMER\-Y.FA"UR -
196 '] VERICLE.DRAGLCOEFFICIENT . (S0]
197 *COA* VEHICLESODRAGSCOZFFICIENT. FRONTALAREALPRODUZY €S0 FT)
198 *INRTA® DRIVELLINE.ROTAT INGHASS .FACTOR [£4]
19¢ *TIRE® TIRESCOZFFICIENTOF« RESISTANCE %)
200 ‘Wi TOTALVEHICLE «ME IGHT {18}
202
203 CONNON !CONST! CONSTANTS AND FLAGS.
204 SCFLAG® PRINTLCHANGEOPTIONSFLAGs I (-}
245 0% ACCELERATIONLDUE oTOLGRAVIFY (FY/SEC/SEC)
206 SMHFS® MIPER.HReTOeFToPERSSES.CONVERSIONLFACTOR tFT-HR/SEC/NIY
207 SPFLAG® PERFORMANCE JREQU IRERENTS «PRINTINGFLAGY I t-)
208 SWHERE®* LOOP.BACK.FLAGy I (3]
210
211 COMMON 2ETA! EFFICIENCY PARAMCZTERS
212 SECOEF® EFFICIENCY.LINE <CALCULATIONARRAY (-3
213 YEFAVE® AVERAGELEFFICIENCY {3)
218 YEFFAC® CALCULATEDLEFFICIENCYL.POINT (£ 3]
215 CEFTIN® AVERAGELSFFICIENCYLTINE.PERIODe X {5EC)
236 *ESPED® EFFICIENCY.SPEED.CALCULATION.BREAKPOINTS {RI/HR)
217 SEVALU® EFFICIENCY.VALUE.CALCULATIONL.BREAKPOINTS (3]
219
220 COMMRON NOW? TRACE PARAAETERS AND INSTANTANEOUS VALUES
221 SPRMAX® TRACE.PRINTING.TERMINATE TINEs I (SEC?
222 SPRMIN® TRACELPRINTING.START.TIME, I {SEC)
223 *PYQY" INSTANTANEQUS s TOTAL .PONER {HP)
228 ety INSTANTANZOUS.SPEED <RI /HR}
226 .
227 COMMON zourn! CALCULATED PARANETZIRS MHICA WILL BE PRINFED
228 - "COST® OPERATING.COST (S/NIY
229 ¢E* COHSUHED.EN‘RGV.OVER.CYCLE (XM~-HR)
230 M 21,34 CONSUMED. ENERGY-PER-DXSTA"CE.OVER «CYCLE (KW=-HR/PT}
231 *HAWHL® AVERAGE. POJ:.R.AT.HH_‘L;.OVER.CYCLE [E1.3]
232 SRANGE® TOTAL . RANGE «ON'oA oEATTERY sCHARGE [1,}8]
238

L J

Figure 7. SDDL Used to Document Data Structures in an Existing FORTRAN Program

306

LINE
358
359
380
361

"362
363
364
365
356
367
349
370
in
372
373
T
315
376
3717
318
379
380
381
382
383
388
385
388
387
388
389
390
391
392
393
394
395
395
397
393
399
400
%01
802
403
404
405
406
€07
808
%09
a10
a1
412
13
als

" PAGE
PROGRAN MAIN PROBRAN
e]
s
$ THE MAIN PROSRAW ESSERTIALLY IS USED TO CALL THE PRINCIPAL SUBROUTINES s
s
S5535555353555335333335335385835888% 5‘SS""’5"“5‘55’5““3““““""’
COMMON 1BATRY!s, fCARf, CONSTfe CETAZe INO4Yo IOUTPTI¢ IPDMER!s
TROLTE?
#eves NOTE weeve NO VARIABLES ARE TRANSFERRED IN THE MAIN LINE SUBROUTINES IN
*CALL™ STATEMENISe ALL VARIABLES ARE TRANSFERRED IN THE LABELLED CON®ONS
LABEL: START ’
NOd INITIALIZE_VARIABLES ¢INLINE} >
PRINT WELCONE MESSAGE
CALL SUBROUTINE_QUERY TO INPUT CAR PARAMETERS >
LABEL? HEW.OR.RECALCULATE.DRIVING.CYCLE '
CALL SUBROUTINZ.ORIVE 70 SPECIFY DRIVING CYCLE PARAMETERS- "
CALL SUBROUTINE_BEGIN 70 PRINT VEHIZLE PARARETERS - -3
IF CYCLE = D+ THAT IS CONSTANT SPEED LS SELECTED
CALL SUBROUTINE_SCALC TO CALCULATE FOR CONSTANT SPEED-~)
CALL SUBROUTINE.SRSLT TO PRINT RESULTS 3¢
ELSE ANY OF THE ORIVING CYCLES HAS BEEN SELECTED
CALL SUBROUTINE_CCALC TO CALCULATE FOR DRIVING CYCLE - >
CALL SUBROUTINE_CRSLT TO PRINT RISULTS~-- >¢
ENDIF ;
CALL SUBROUTINE.PRFRM TO PRINF PERFIRNANCE REQUIREMENES IF FLAG IS SET >
CALL SUBROUTIME_CHANSE TO ALLOM USER CHANGES - >

oYIELD USER CHOICE

SELECY -CASE PER USER CHOICE
CASE 13 LOGOFF

{===—=EXITPROGRAM
CASE 21 RESTART

C~=~—=G0 TO START
CASE 33 USER WANTS TO CHANGE DRIVINS CYCLE

Cv====G0 TO NEW.ORRECALCULATE .DRIVING.CYCLE TO GET A NEW CYCLE
CASE 4: USER CHANGED AN INPUT PARAMETER

C=====60 T0 NEWeOR+RECALCULATE .DRIVING.CYCLE TO RECALCULATE THE DRIVING CYCLE

PARAMETERS BEZAUSE THZ VEHICLE PARANETERS WERE CAANGED

ENQSELECT CASE

ENOPROGRAN MAIN PROGRAN

13}

L4
200

[31
25}

an
)

33
b14)

Figure 8. SDDL Used to Document a Routine/Algorithm in an Existing FORTRAN Program

307

