THE GENERATION OF ORDER STATISTICS IN DIGITAL COMPUTER SIMULATION: A SURVEY

ABSTRACT

Order statistics are often needed in computer
simulation. Common examples are quantile estima-
tion and censored data test statistics. Methods
for generating order statistics in various contexts
are surveyed. Sorting and the use of histograms,
the most general methods, are first discussed,
followed by a method for non-identically distribu~
ted samples. Finally,'the very powerful methods
applicable to iid random variables are surveyed.

I. INTRODUCTION

Let Xis Xy eees X be a set of random observations.

The associated order statistics are x(l), x(z),

ceey x(n) where x(i) is the it smallest value.

Although the assumption of independent and identi-
cally distributed values is commonly made, (David
[7], Gibbons [10]),in simulation studies the inde-

pendence assumption need not hold and ‘the identically

distributed assumption often does not hold.

Order statistics arise in simulation models in a
number of ways. X(i) is the time of failure for a

system requiring i of n components to operate,
where the distribution of the times to failure for
each component are not necessarily independent or
identically distributed. In PERT simulation the
value of x(n), the maximum of n observations, is

the time at which a future node is realized, where
the observations may not be independent and usually
are not identically distributed. In next-event
timekeeping, the time of the next event can be
viewed as the first order statistic of the times in
the future events calander.

In other cases, order statistics may be the desired
output rather than an input of only intermediate
interest. Queuing simulations often estimate the
pth percentile of the waiting time distribution by
the appropriate order statistics, as do Monte Carlo
studies of distributions of test statistics.

This paper considers order statistics in the simu-
lation context. In Section II, the various ways
order statistics arise in simulation are categori-
zed. Later sections then discuss by category the
methods available for generating order statistics.

Bruce W.Schmeiser

II. CATEGORIZATION OF ORDER STATISTICS

Order statistics in simulation can be categorized
several ways. In this section a categorization is
given yielding twelve separate situations. While
each 1s different, in later sections it will become
clear that similar methods sometimes apply to more
than one situation.

Letting F_l denote the inverse cummulative distri-
bution fufiction for the ith random variable, the
categorization is based upon

1. Distribution of the xi“s is

a. known, but F;l is not available for- some
i=1,2, ..., n

b. known, and F;l is available for all
i=1,2, ..V, n

unknown.

2. The xi's are

a. independent
b. dependent
3. The xi’s are
a. ddentically distributed
b. mnot identically distributed

which results in 3 x 2 x 2 = 12 separate categories
of order statistics in simulation.

The first partitioning is based on the manner in
which the order statistics arise. If the distri-
bution of the xi's is known, as in the PERT and

reliability examples above, the problem is to gen-
erate order statistics for the known distributions.
On the other hand, the simulation may be used to
estimate quantiles or entire distributions, which
corresponds to the xi's being the simulation out-

put having unknown distributions. In the latter
case some sort of selection or sorting must be per-
formed on the xi‘s to obtain the order statistics.

In the former case of the distribution of the xi's

being known, two situations arise. If the inverse
cumulative distribution functions, Fit i = i, 2,
««+, N, are available, efficient methods become
available for more direct generation of order sta-
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tistics than selection or sorting.

A second partition arises as to whether the xi's
are independent. As might be expected, indepénd-
ence sometimes leads to efficient methods.

The third partition is whether or mot the x.'s are
identically distributed. Idehticallj distr%buted
values lead to better methods than non-identically
distributed values. )

ITI. SORTING, SELECTION, AND HISTOGRAMS

A general method applicable to all twelve cases,
but not the best for several cases, is to generate
xl, Xysvees X and to sort the n values to obtain

x(l),<x(2), ceey x(n). Inefficient methods require

time proportional to n”, while efficient methods

require time proportional to n In n (see Knuth [14]).

There is no option to sorting if 1) all order sta-
tistics are needed and 2) no amount of approxima-

tion is allowed, except as noted in Section IV.

If only some order statistics are needed, improve-
ment over n 1ln n sorting can be made. Chambers [3]
gives algorithm PSORT for partially sorting x., Xos
cees X to obtain only specified order statistics.
For a small fixed number of specified order sta-
tistics, the time for PSORT is nearly proportional
ton. An 80 line FORTRAN implementation is given
in [37. (See also Chambers [4].) An example when
only a fraction of the order statistics are needed
would be in plotting the distribution function fram
a sample of many observations. Determining every
tenth, say, order statistic may be satisfactory.

Floyd and Rivest [8] give an algorithm for select~
ing the ith order statistic from n values. In [9]
they show the number of comparisons is n + min

(k, n-k) + o(n).

1f some approximation is 'allowed, a histogram can
be used. A histogram baving m << n cells can be
used to sort the observations in one pass (as they
are generated). For discrete distributions, histo-
grams can often be used with no loss of informatiomn.
For continuous values, however, information is lost
in that the ¢, values in cell i can not be recover-
ed completely} The cell containing the ith order
statistic may be determined with certainty, but how
to best determine the point in the cell to represent
the ith .oxdér statistic is not obvious. The cell
mid-point is the most straight forward choice.
David and Mishriky [6], who considered only n < 100,
state that "the  effect of grouping... is... of
minor importance for h = 0.6 (standard deviations)
which represents quite coarse grouping.” Schmeiser
and Deutsch illustrate, via deterministic calcula-
tions, three potentially serious idiosyncrasies
which occur.with the large sample sizes common in
quantile estimation via simulation. Two are poten—
tial problems concerning order statistics directly:

1. Theé expected value of the midpoint

estimator can depend heavily upon
both the histogram cell width and
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.-thelplacement.of the histogram.

© 2, Larger cells can result in smaller
variance, thus incorrectly indicating
an answer more accurate than actually
obtained.

Schmeiser [22] suggests estimating the rth order

Statistic as atb[q-(. ci—r+l)/(cq+l)] where q is
e q .
the smallest integer such that Z ciz r. This esti-

mator behaves considerably mqré=}ike the true order

statistic than does the crude cell midpoint
estimator. ’

1

IV. METHODS WHEN F," ARE AVAILABLE

When F_l is available, values of x, can be generated

i i
using F;l(u) where u ~ U (0;1).‘ This inverse trams—

formation method leads to efficient methods for

order statistics when F;l is available, Often F;l

is available as a closed-form formula, as is the
case for the Weibull, exponential, Cauchy, double ex-
ponential, uniform, triangular, and power series
distributions. The general families of distributioms
of Burr [12], Ramberg and Schmeiser [19,20] and _
Schmeiser and Deutsch [24] also have closed-form F,%
It has sometimes been overlooked that numerical
golution of F-1 is equally valid, even if not as
easy to implefient. For example, most computer. pack—
ages have routines to provide the uth quantile of
the normal and gamma distributions.

Schmeiser [23] gives a method for reducing the
effort to.generate the maximum, minimum and range

of a sample arising from non-identically distributed
random variables having easy-to-evaluate F7

Based on a preliminary check of u, to a pa%tition Pis
the calculation of x; = le(ui) ié sometimes aveoided.

Since the -evaluation of F;lis often time constming,

substantial reductien in Computation time can result
in simulations where generation times play a signi-

ficant role. While conceptually valid for dependent
random Yariables, the conditional distribution func-
tion F; (u§xl, X, , . xi—l) must be available.

Other than for the multivariate normal, this is rare

The most' impressive gains in efficiency, ease of
implementation, and memory requirements are obtaired
for independent, identically distributed valués gen-
erated via F71 Schucany [27] gives the following
method for generating x(i):

Let vy, Vos cens YV, be independent U(1l,0)values.

1/n _ 1/(-1)
Set u(n)=v:L N u(n—l)_ u(n) vy
- 1/ (n-1)
= Ylnti-1) i+l

and in
general Uln-1)

Set X4y = F-l(u(i)) for all desired order statis-

tics. That the ith uniform order statistic is tran-
formed directly to the itk order statistic of the
distribution of interest follows from F"lbeing a



monotonically nondecreasing function. This regur-
sive algorithm requires effort linear in n and is
therefore preferable to complete sorting for large
n. Even for small n this approach is efficient if
only a few of the extreme order statistics are re-
quired.

If the extreme order statistics are not needed,
this procedure can be improved by noting that

1
u(i) =1 - exp [jzl(ln vj)/(n+1—j)]

for i=1, 2, «.., N,

since v© is calculated as exp(m 1ln v). Lewis [15]
carries this a step further by pointing out that it
is faster to obtain 1ln v, as the negative of a
standard exponential variate than to take the log-
arithm of a randomly generated U(0,1) value v.
Either Marsalia's method (see Knuth [13]) or Lewis
and Learmouth [16] would be appropriate to generate
the exponential values.

Lurie and Hartley [17] published a method analagous
to Schucany's at about the same time, but began
their recursion at x(l) and proceeded toward x(n).

In addition to the recursive algorithm, under the
heading "Simultaneous generation of order statistics
for a multiplicity of sample sizes," they note that
the it! order statistic u( may be generated as a
ratio of gamma random varidbles. (Note the erron-
eous substitution of "1" for "i" in their equation
10.) Ramberg and Tadikamalla [21]noted more direct-
ly that u(.) has a beta distribution with parameters
i and 1+l 7/ Given the recent advances in beta vari~
ate generation (Cheng[5] and Schmeiser and Shalaby
[26]) this method is quite efficient when only one
statistic from the center of the sample is needed.
If more than one is needed from the center of the
sample, the recursion algorithms can be applied
beginning at the value generated as a beta variate.

Rabinowitz and Berenson [18] compare the "grouping
method" to the other methods for independent identi-
cally distributed random variables when all n order
statistics are needed. The grouping method. consists
of partitioning the unit interval into several sub-
intervals, generating n U(0,1l) values, performing

a permutation sort on each group of observations
for each subinterval, and using F-1 to generate the
X,.\'s from the sorted u,,,'s. This grouping
mé%ﬂod was fastest, but S%%iously was somewhat more
difficult to implement.

V. MISCELLANEQUS RESULTIS

1. 8illitto [31] gives some relationships between
expectations of order statistics which may be use-~
ful when various sample sizes are of interest.

2. Some recent work on quantile estimation not
referenced above included Goodman, Lewis and T
Robbins [11], Iglehart [12], and Seila[28,29,30].
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