SIMULATION MODELING WORKSHOP

ABSTRACT

This paper reviews the fundamentals of computer
simulation modeling. Simulation is viewed here as
a technique for the experimental manipulation of

a model of a real-world system, drawing heavily up-
on computer science, mathematics, probability and
statistics. Simulation involves modeling the
entities in a physical system and the activities

in which those entities engage. It affords the
opportunity to construct ideally configured systems
and select optimum system operating conditions on
the basis of results obtained by simulating such
configurations and conditions on a digital computer.
Models of some simple material handling systems are
used to illustrate the simulation concepts presented
here. '

INTRODUCTION

Simulation is a problem solving procedure for de-
fining and analyzing a model of a system. Simula-
tion can take several forms, including electrical
analog, fluid analog, and the more familiar digital
computer simulation. This paper focuses on the
latter. In that context, simulation can be defined
as the establishment of a mathematical-logical:
model of a system and the experimental manipulation
of that model on a digital computer.

This paper provides a survey of computer simulation.
It describes a frame of reference by which the
salient features and characteristics of a system
are captured in a computer model. It briefly re-
views the basic steps in model development and
operation, and surveys various simulation languages
which can be employed in structuring the model.This
paper does not purport to give a detailed treatment
of computer simulation, but rather attempts to
motivate practitioners to take advantage of a power-
ful, readily available, and relatively inexpensive
analytical tool.

Computer simulation offers a convenient means of
studying the behavior of a system. By system, we
mean some circumscribed sector of reality upon

which we focus analysis for the purpose of accom—
plishing some logical end. A system is a collection
of related entities,each characterized by attributes.
These entities engage in activities, which elapse
over time and culminate in events. An activity may
last some known or deterministic time, or some

William E.Biles

uncertain or probabilistic time. An event, which
marks the termination of an activity, is generally
such that it alters the state of the system by
changing the values of the attributes associated
with one or more of its entities.

To illustrate these basic concepts, consider a

simple material handling system consisting of the

following entities and their associated attributes:
Entity

1. Fork/truck driver

Attribute

Status (idle, moving loaded,
moving unloaded)

Number of pallet loads of
received goods waiting for
placement in storage

2. Receiving dock

3. Pallet load Class of goods (slow mover,

moderate mover, fast mover)

4. Rack storage slot Status (empty, occupied)
Activities in which the fork truck/driver entity can
engage are (1) waiting at the receiving dock, (2)
moving to a rack storage slot with a pallet load,
and (3) moving to the receiving dock empty. The
events corresponding to the end of these activities
are, respectively: (1) arrival of a pallet of
received goods on the receiving dock, thus ending
the "waiting" activity in which the fork truck/
driver entity has possibly. been engaged; (2).
arrival of the loaded form truck/driver entity at a
designated rack storage slot! and (3) arrival of the
empty fork truck/driver entity at the receiving
dock. The first of these events alters the state of
the receiving dock by adding one pallet, and if the
dock has been empty and the fork truck/driver entity
idle, changes the attribute of the fork truck/driver
entity by making it "move loaded'. The second

event alters the state of rack storage slot from
Yempty" to "occupied", and changes the status of the
fork truck/driver to "moving empty'. The third
event changes the status of the fork truck/driver
and possibly the dock status as well. Thus, the
operation of this system involves a number of inter-
related entities, attributes, activities, events and
system states changing values over time.

Simulation is the action of performing experimenta-
tion on a model of a given system. A model is a
representation of a system based on theory,empirical
observation, or a combination of both. Thus a
computer simulation model of a system must represent

19

the system entities, maintain values for the attri-
butes to these entities, cause the entities to ~= -
engage in activities, and mark the occurrence of
events at the culmination of these activities. The
simulation model must be able to represent the
passage of time, expanding or compreéssing time as
necessary to achieve the desired experimentation.

An important consideration in any computer simula=
tion is the necessity to identify and comntrol
sources of variation, eliminating unwanted variation
in order to assess the relationship between indepen-
dent (input) variables and dependent (output)
variables. Moreover, it is occasionally desirable,
in the comrse of a simulation, to stop the experi-
ment and review the results to date. This means
that all phenomena associated with the experiment
must reétdin their current values or states until the
experiment resumes. Finally,it is necessary at the
conclusion of a simulation experiment to perform an
analysis of the results, In many cases it is
desirable to replicate the experiment; that is, re~
peat the simulation at the same conditions to
examine the effects or random variation én the
results.,

Computer simulation allows us to do all these things.
It provides the ability to experiment, to test and
evaluate proposed systems or proposed changes in
existing systems in advance of investing time, money
and effort in their physical development. Computer
simulation affords the opportunity to evaluate
proposed system configurations and operating policies
without interfering with the operation of any exist-
ing system or constructing a new system,

This paper presents the basic approach to developing
and operating a simulation model of a real system,
reviews several languages one might apply in develop-
a simulation model, and suggests procedures one might
apply in performing an analysis of the input para-
meters and output variables.,

MODEL DEVELOPMENT

In computer simulation, we attempt to develop a
model which captures the important features of the
. system under study. One approach to describing the
basic features of a given system is to adopt the
"black box" view as illustrated in Figure 1. The
purpose of any systems analysis is to optimize one
or more measures of effectiveness. For the illustra-
tive problem described earlier, a suitable measure
of effectiveness might be the time a pallet of
received goods remains on the dock. TFor example, if
the goods are frozen foods and the receiving dock
is maintained at ambient temperature, it is desirable
to minimize dock "residence" time. A decision
variable might be the number of trucks assigned to
the bin stocking operation, so that appropriate
values for this variable could be 1,2,3,... An
uncontrollable variable might be dock temperature,
depending as it does on climatié: conditions. (Of
course, in a variant of this problem, the dock
temperature could be brought under control of the
decision-maker by installing refrigeration units,
at some investment of capital.) Thus, in the "black
box" approach to model dévelopment, the simulationist

20

must (1) identify the measures of system effective-
ness, (2) establish those factors which can be
controlled in the design and operation of the .
system, and (3) identify, if possible, those vari~
ables which cannot be controlled. This is the first
step in developing a credible model of the system.

The second step is to formulate the logical ‘intexr~
actions among the entities represented in the model,
to provide a means of genmerating random variations
in the several variables in the model, to cause

time to flow from the start to the termination of a
simulated time period, to collect statistical data
on the model variables over the-course of the simu-
lation, and to generate a report at the conclusion
of the experiment. These procedures are performed
by comnstructing a flow chart which represents the
mathematical and logical operations embedded in the
model. This flow chart is then translated into a
computer program, using the selected language. This
program must be verified, which means that one must
establish that the program actually possesses the
features intended for the model. Verification is an
essential step in the development of a credible
model of the system.

Uncontrollable
Factors

b

System

Decision — —» Measures

Variables - or b of

Effectiveness
™ Model —

A "black-box" view of computer
simulation.

Figure 1.

The final step in the simulation process is the ex-~
perimental manipulation of the computer model.

This involves assigning values to the decision
variables, executing the model at these conditions,
and analyzing the results of the simulation. When
the values of the decision variables represent con-
ditions which have been observed for the real system,
one is able to validate the model. Validation is
the process by which one establishes that the model
behaves like the real system, and is a crucial step
in producing a credible model. Thus the credibility
of a model is ascertained thiough the joint pro-
cesses of verification and validation.

SIMULATION LANGUAGES

One of the first steps in model development is the

choice of a simulation language. Simulation models
of real-world systems can often be programmed in
one of the problem-oriented languages such as
FORTRAN-IV, ALGOL AND PL/l. However, these langu-
ages require extemsive programming to establish
data structures, define the classes of entities
within a system, adjust the numbers and attributes
of such entities as time flows, schedule events and
cause their occurrence within the flow of time,
maintain statistics during the progress of the
experiment, and generate the detailed summary re-
ports needed at the termination of the experiment.
Schmidt and Taylor [1l] provide an excellent treat—
ment on the use of FORTRAN to develop simulation
models.

Several programming languages exist for the express,
purpose of simulation, and these typically require
far less programming than the géneral purpose langu-
ages. These simulation languages are classified as
either discrete-event or continuous, depending on
the manner in which the flow of time is treated.
Discrete~event simulation languages, including GPSS
[12], SIMSCRIPT-ITI [4], SIMULA [1] and GASP-II [7],
advance time either by moving in a discrete incre-
ment At or by moving directly from one event to
the time of the next scheduled event. The con-—
tinuous simulation languages such as CSMP [3],

MIMIC [5], AND CSSL [13] are typically applied to
those time~dependent processes which are modeled
through differential equations. Time is advanced

in very small increments, approximating the dt inter-
val in the derivative dx/dt. Two languages, GASP-
IV, a FORTRAN-based language [8], and GASP-PL/1, a
PL/1-based language [9] afford both discrete—event
and continuous simulation modeling.

There are other simulation programs which exist for
very specialized applications. One which could be
especially useful in modeling material handling
systems in GERTS [15]. This program models a sys-—
tem as a stochastic network, with nodes represénting
events and branches representing the passage of time
between events. (The term "stochastic" means pro-
babilistic with respect to the variable "time'.)
GERTS requires no programming, but employs a data
set which describes the characteristics of the nodes
and branches in a network representation of the real
system. A recent development called QGERTS [10]
eniables the modeling of queues, a very important
aspect of material handling systems.

The choice of a particular simulation language will
often depend on the type of computer hardware one - -
has available, but it is important to choose a
language which will have wide applicability within
the technology of one's firm or agency.

MODEL OPERATION

There are several processes involved in the operation
of a discrete-event probabilistic simulation model.
Two which are especially important are random number
generation and stochastic variate generation, the
former usually a component of the latter. To
illustrate these two processes, let us focus atten—
tion on one aspect of the simple material handling
system described earlier.

Suppose that there are three classes of goods, fast-
moving items, moderate-moving items and slow-moving

items, based on annual sales volume. For the sake..
of illustration,; suppose that 10%Z of the pallets
received are fast-movers, 607 are moderate-movers
and 30% are slow-movers. Stating these as proba-
bilities we get P(F) = 0.1, P() = 0.6 and P(S) =
0.3, respectively. In simulating the arrival of a
pallet of goods at’ the receiving dock, we might wish
to randomly generate the movement class (F,M or S)
of that particular pallet. We could assign the
numbers 00 to 09 to fast movers, 10 to 69 to
moderate movers, and 70 to 99 to slow movers, and
use a table of uniformly distributed two-digit ran—
dom numbers to generate the movement class of any
given pallet. TFor example, suppose that we want to
generate the classification of twenty newly arrived
pallets of goods. Suppose we arbitrarily choose a
column in the table which yields the following
sequence of two-digit random numbers;
84,07,55,93,30,10,43,21,67,28,05,10,42,43,88,
50,08,52,12,36)

The corresponding classes of item movement are as
follows:

5,F,M,5,M,M,M,M,M,M,F ,M,M,M,S ,M,F,M,M,M,

Thus,in simulating the arrival of twenty pallets,we
have generated 3 fast movers (15%), 14 moderate
movers (70%), and 3 slow movers (15%). If we were
to simulate a large number of arrivals, say 10000,
we would expect to more closely approach to expected
proportions than we have in this very small simu-
lation.

Observe the two processes which we -have employed
here. We first selected a set of 20 two-digit
randam numbers from a table. and then used a specific
random number (say 30) to generate a specific value
of a random variable (M). The first of these steps
constitutes random number generation, the second
random variate generation. We have done this with-
out the use of a computer, but similar processes

are executed when we employ the computer.

Before examining how the computer would be made to
generate random numbers, it is instructive to
examine the properties of random numbers. As was
stated earlier, the table of two-digit random
numbers to which we referred was a table of uni-
formly distributed random numbers. That is, each
of the 100 numbers in the interval (00, 99) has an
equal chance of being selected, so that if we let
Y represent the random number, then
1

£ = 155
Three considerations play influential roles in
determining whether or not a particular set of ran-
dom numbers are adequate for the purpose of simu-—
lation. The numbers must pass a battery of statis-
tical tests designed to reveal departures from
independence and uniformity. For a truly rarndom
sequence Y3,Yy,...,the elements of any subsequence
of these numbers must be jointly independent and
each Y; in the sequence must come from a uniform
distribution. TFailure of a sequence of random
numbers to possess these properties can lead to
severely misleading results in simulation work.

00 <Y <99

Schmidt and Taylor [1l], Shamnon [14], and Fishman
[2] provide excellent treatments of the statistical
procedures used for testing random number sequences.
Phillips [6] presents a computer program which '
automatically applies any one of four statistical

21

tests to a set of observations for each of several
probability distributions.including the uniform
distribution. Phillips' goodness of f£it package, or
-one of equivalent capability, is practically indis-
pensible to sound simulation work.

For ‘the moment let us assume that the random number
generator program does produce acceptable numbers
for our application. There are other desirable
properties which the program should have. These
are as follows:

1. It should be fast. That is, it should generate
a random number in the minimum amount of time in
order to keep simulation running time as low as
possible.

2. The program should be short, so as to minimize
the core storage for the program itself.

3. It should have a long period. That is, it should

generate a long sequence of random numbers before

@ the-same :sequence reappears.

4. The generator should be able to reproduce the
same sequence of numbers at will, so that we can
‘duplicate the experiment as needed.

5. The generator should not degenerate. Degeneracy
is the condition in which the same number is
continuously reproduced by the generator.

6. The generator should be algorithmic, so that the
i-th term in the sequence is used to calculate -
the (i+l)-st term, the (i+l)-st term the (it+2)-
nd term, and so on.

There are several methods by which random numbers
are generated. The earliest method was the mid-
square technique, in which each successive number
is generated by taking the middle n-digits of the
square of the previous n-digit number. A similar
technique is the mid~product technique, where the
middle n-digits of the current number is multiplied
by the middle n-digits of the previous number.

The random number generators in common usé now are
based on congruential methods. The multiplicative
congruential method is one in which successive .
numbers are related by

Yi+l = aYi (mod m)
This means that the product a¥; dis divided by m
and the remainder is called Yi4j. The values of a
and m must be chosen in light of the number of
binary bits used to form an integer word in a ‘given
computer. For example.
_ 517 35
Tin = @
has been shown to produce acceptable sequences of
random numbers on machines -having 35-bit integer
words.

+ 3) Yi (mod 2 7))

The process of producing random variates uses the
uniformly distributed random numbers 0 < R < 1, and

22

makes use of the relationship between a random vari-
able X and its cumulative distribution function F(X).
Since from the laws of probability 0 < F(X) < 1 the
range of values for the cumulative distribution
function happens to coincide with that for R. Hence,
one must simply invoke the relationship.

X = ¢[F(X)]

where ¢ [F(X)].is the inverse of the cumulative
distribution function F(X). This relationship is
illustrated in Figure 2.(a) and (b).

For example, suppose that pallets arrive on the
receiving dock according to a Poisson distribution
with mean rate p pallets per minute. Then the ran-
dom variable X, the time between arrivals, follows
an exponential distribution with parameter A=1/yu,
so that the probability density function is
e —AX
£(x) = A s 0<xsg=
and the cumulative distribution function is
F(x) = 1-e ¥

The parameter A is the mean time between arrivals.
Solving for x in terms of F(x) we get

e-Ax = L-F(x)

Letting R = F(x), we have

e—}‘x = 1-R

Taking the natural logarithm of each side, we obtain

-Ax = 1n (1-R)

so that
X = - %-In (1-R)

Thus to generate an exponentially distributed random
variate x we first generate a random number R
between 0 and 1 and solve for x. TFor example if the
mean arrival rate of pallets is 0.4 per minute, the
mean time between arrivals is 1/0.4, or 2.5 minutes.
Suppose we generate the random number 0.56. Then
the randomly generated time between arrivals is

%= .—2:13-111;(1-0.56)=-'o.4 In (0.44)=(~0.4) (-0.821)

x = 0,328 minutes

Similar random variate generators can be constructed
for any number of discrete and continuouis probability
distributions, or even for empirical distributions,

We have seen how the computer can be made to. gene<:
rate the random numbers and random variates needed
for a credible simulation model. These tools can
be used to generate many random variables in a
simulator, but one of the most important functions
is the generation of events. In the above example,
if we simply start a simulation with the arrival of
a pallet of goods, we can use the occasion of

F(X)

X

(a) Cumulative Distribution Function.

Figure 2.

that arrival to generate the next arrival, and so
on. Likewise, we have seen how we can use random
number generation to assign a particular charac-
teristic, such as class of item movement, to the
newly arrived pallet. By creating a program which
causes several types of events, and carefully
establishes the logic for the occurrence of each
event of the same type, we can proceed from some
starting time to some completion time. In this
fashion, we can simulate work shifts, weeks, or
years of elapsed time. We can simulate queues,
inventory systems, machining operations, court
trials, surgeries, and a myriad of other activities
in which men, materials and machines engage. It
should not be difficult to visualize how we can
employ simulation to analyze many different facets
of real-world systems.

REFERENCES

1. Dahl, 0., and K. Nygaard, "SIMULA-an ALGOL-
Based Simulation Language,” Communications of
the Association of Computing Machinery, Vol. 9,
No. 9, September 1966, pp. 671-678.

2. Fishman, G. S., Concepts and Methods in Dis-
crete Bvent Digital Simulation, John Wiley and
Company, New York (1973).

3. IBM Corporation, "Introduction to 1130 Systems

Modeling Program II," GH20-0848-1, White Plains,

N.Y. (1970).

4, Kiviat, P. J., R. Villanueva, and H. Markowitz,
"The SIMSCRIPT-II Programming Language,"
Prentice-Hall, Englewood Cliffs, N.J. (1969).

5. Petersen, N. D., "MIMIC, An Alternative
Programming Language for Industrial Dynamics,"
Journal of Socio-Economic Planning Science,
Vol. 6, June 1972, pp. 319-327.

6. Phillips, D. T., "Applied Goodness of Fit
Testing," AIIE Monograph Series, AITE-OR-72-1,
Atlanta, Georgia (1972).

7. Pritsker, A.A.B., and P. J. Kiviat, Simulation
with GASP-II, Prentice-Hall, Englewood Cliffs,
N.J. (1969). . .

10.

11.

12.

13.

14.

15.

F(X) ‘

(b) Inverse CDF

Constructing a Random Variate Generator.

Pritsker, A.A.B., "The GASP-IV Simulation .
Language,Wiley-Interscience, New York (1974).

Pritsker, A.A.B., and R. E. Young, Simulation
with GASP-PL/1l, John Wiley and Somns, New York
(1975).

Pritsker, A.A.B., The Q-GERT User's Manual,
Pritsker and Associates, Inc., 1201 Wiley Drive,
West Lafayette, Ind., September 1973.

Schmidt, J. W., and R. E. Taylor, Simulation and
Analysis of Industrial Systems, Richard D. Irwin,
Inc. Homewood, Illinois. (1970).

Schriber, T., A GPSS Primer, Ulrich's Books, ~ -,
Inc., Ann Arbor, Michigan (1972).

SCi Simulation Software Committee, "The SCI
Continuous System Simulation Language (CSSL),"
SIMULATION, Vol. 9, December 1967, pp. 281~303,

The Art
Englewood

Shannon, R. E., Systems Simulation:
and Science, Prentice-Hall, Inc.,
Cliffs, N.J. (1975).

Whitehouse, G. E., Systems Analysis and Design
Using Network Techniques, Prentice-Hall, Inc.,
Englewood Cliffs, N.J. (1973).

23

