INTRODUCTION TO SIMULATION LANGUAGES

INTRODUCTION

The purpose of this paper is to give a brief intro-
duction to simulation languages. The paper contains
" a discussion on the hierarchy of computer languages
and their relation to simulation, the advantages

and disadvantages of using simulation languages,
factors to consider when selecting a language, and
some of the characteristics of the three most popu-
lar discrete simulation languages. A more thorough
treatment of simulation languages and their use are
contained in [2], [4], and [10].

A significant portion of the effort in any simula-
tion study is in programming the model to runm on a
digital computer. This programming occurs after
the model has been defined. The selection of the
language should, in general, be done prior to devel-
oping the model to be programmed because (i) there
must be a comptibility between how the system is
modeled and the computer language used and (ii)
some simulation languages aid in the modelling pro-
cess. The language selected is usually a general
purpose language (higher level language) or a simu-
lation language.

HIERARCHY OF COMPUTER LANGUAGES

The digital computer operates in a language called
machine language which consists of 0's and 1's. We
do not program in this language due to its complex-
ity. The next level of computer languages is assem—
bly languages and they are usually machine dependent.
Programs are written in assembly language only if
they are to be used over and over again because the
programming effort required is considerable. Anal-
ysts almost never used assembly language to program
simulation models.

The next level of computer languages is general
purpose or higher level languages. They are user
oriented and are usually machine independent. Ma-
chine independent means that if an application pro-
gram is written in one of these languages, that
program will generally run on any computer having
that language. General purpose languages are either
compiler or interpreter languages. A compiler lan-
guage uses a compiler to convert application pro-
grams into machine language or into assembly lan—
guage for conversion to machine language. This
compiling (conversion) takes a certain amount of
computer time. The computer then "executes" the re-
sulting machine program.

Robert G.Sargent

In interpreter languages, each line of the applica-
tion program is converted to machine language each
time it is executed. This means that if a line of
an application program is used several times, it
must be converted to machine language each time.
Interpretive languages generally require more com-—
puter time for discrete event simulation than com-
piler languages because a considerable portion of
discrete event simulation programs are used over
and over again. Figure 1 contains examples of com~-
piler and interpretive general purpose languages.

General purpose languages are frequently used in
programming simulation models with ‘Fortran being
the most commonly used one for discrete event simu-
lation. In fact, Fortran may be the most used of
all languages for discrete event simulation. Gen-
eral purpose languages are also the implementation
language of several of the simulation languages,
e.g., GASP.

The next level of computer languages are problem

or application oriented in addition to being user
oriented. Simulation languages belong to this level
of languages. Beginning in the late 1950's and
earlier 1960's, different groups of individuals per-
forming simulations recognized that several of the
same functions were used in almost every simulation
and they therefore could be programmed into sub-
routines and "tied" together to be used for future
simulations. From these special programs (languages,
if you wish), simulation languages have evolved un-
til today we have commercially available several
general and special purpose simulation languages,
including some extremely sophisticated ones. Some
examples are given in Figure 1.

General purpose simulation languages can be broken
into three general classes: discrete, continuous,
and combined (discrete/continuous). Discrete simu-
lation languages are for programming discrete event
simulation models, i.e., simulation models whose
"states" change at specific points in time. Con-
tinuous general purpose simulation languages are
for models whose variables (states) change con-
tinuously over time. Combined languages are of
recent development and provide the capability of
allowing models to have some variables that change
continuously over time and others that change at
specific points in time.

Special purpose simulation languages are simulation
languages that have been developed for modelling

15



Simulation Languages (continued)

FIGURE 1

Hierarchy of Computer Languages With Examples

Machine Languages

‘ASSembly Languages

General Purpose Languages
Compiler:
Fortran, PL/1, BASIC, ALGOL, COBOL
Interpreter: '
APL

Simulation Languages
General Purpose

Discrete:
GPSS, GASP, SIMSCRIPT, SIMULA

Continuous:
DYNAMO, CSMP, MIMIC, MIDAS

Combined (Discrete—Continuous):
GASP IV, C-SIMSCRIPT

Special Purpose: A
CSs II, ECSS, BOSS, Q-GERT

and simulating specific systems. Specialized simu-
lation languages for simulating computer systems
are examples of these languages. Many of the spec—
ial purpose simulation languages have evolved from
general purpose simulation languages.

The remainder of this paper, unless otherwise
stated, will be restricted to the use of general
purpose and discrete simulation languages for dis-
crete event simulations.

WHY SIMULATION'LANGUAGES

The major advantage of using simulation languages
over other languages -is the reduction in prograim-
ming time required to program the model. This is
extremely important as it allows the analyst perfor-
ming the simulation study to devote more time to
other phases of the study. Some of the simulation
languages provide, in additiom, conceptual guidance,
modelling capability, and aid in communication and
documentation.

The major disadvantages of using simulation lang-
uages are (i) that analysts must learn the simula-
tion languages they plan to use, and (ii) the cost
of obtaining them. The computer time for using a
simulation language may be more and rarely is less
than using a general purpose language.

Simulation languages generally provide at least the

following functions:

(a) Generation of Random Numbers

(b) Generation of Random Variates

(c) Time Flow Mechanism (Advance time and keep a
list of future events)

(d) Collect Data for Analysis

(e) Perform Analysis on Collected Data

(£) Provide Error Diagnostics

le6

SELECTION OF A LANGUAGE

There are two different levels in selecting lan~
guages for simulation. The first level is concern-
ed with what languages should be available for sim-
ulation in a given organization. The second level
is what language should an analyst use in a speci-
fic simulation study.

Some of the factors that need to be considered in

selecting languages for an organization are:

(1) Language compatibility with organization's
computer system;

(2) Language adequately supported;

(3) Language suitable for problems that likely
will be simulated;

(4) What are the costs to obtain, install, main-
tain, and update the language;

(5) Difficulty in learning language;

(6) Documentation on language;

(7) Language computer time efficiency;

(8) Language flexibility;

(9) Language capability, including error diagnos-
tics, modelling capability, data analysis,
etc.;

(10) Will use of the language justify its cost.

In selecting a language for a specific problem the
analyst generally considers at least the following:
(1) What is available, either inhouse or commer-
eially available elsewhere such as on time
sharing systems.
(2) What languages does the analyst know.
(3) What type of problem does the analyst have.
(4) What are the language capabilities including:
(a) which world view: event, activity, or
process
(b) problem compatibility
(c¢) data collection and data analysis
(d) ability to expand model, if necessary
(e) generation of random numbers and variates
(£) error diagnostics and documentation
(g) communication ability, particular to
user of model's results.
(5) Programming effort required.
(6) Computer time required.

The analyst is generally able to quickly reduce the
choice of a language down to at most one special
purpose simulation language, one genéral purpose
simulation language, and one general purpose lang-
uage. The analyst then will usually choose the
language requiring the least programming effort
provided it will allow flexibility to expand the
model in the future, if it should ever need it, and
the computer time required to use that language is
reasonable.

SOME SPECTFIC SIMULATION LANGUAGES

The most popular discrete simulation languages in
the United States today are GASP, GPSS, and
SIMSCRIPT. These languages were born in the early
1960's and they continue to evolve. Each have their
own strengths and weaknesses. Table 1 contains

some of the characteristics of the current versions
of these languages.



TABLE 1

Characteristics of Some Simulation Languages

GASP
GASP II (Discrete),
GASP IV & GASP-PL/1
(Discrete, Continu-
ous & Combined)

Characteristic
Current Versions

Implementation
Language

Fortran or PL/1

Any computer having
Fortran or PL/1
compilers

Computer Usage

Language Orienta-
tion

Statement

Discrete World View Event

Storage Management Fixed

Langgage Type Compiler

Language Cost Inexpensive

References [5, 6, 71

CONCLUSIONS 10.

Simulation languages are used in a vast majority of
simulations and their use is increasing. Simula-
tions languages have always evolved and this trend
will continue in the foreseeable future. The
recent availability of combined (discrete/continu-
ous) simulation capability in GASP was extremely
well received by analysts. Currently, several of
the simulation languages are being developed for
use on minicomputers. The use of computer graphics
and interactive capability will probably become
popular in the future.

BIBLIOGRAPHY

1. Bobllier, P.A., B.C. Kahan, and A.R. Probst,
Simulations with GPSS and GPSS V, Prentice-
Hall, 1976.

2.. Emshoff, J.R. and R.L. Sisson, Design and Use
of Computer Simulation Models, McMillian, 1970.

3. Gordon, G., The Application of GPSS V to Dis=—
crete System Simulation, Prentice-Hall, 1975.

4. Gordon, G., System Simulation, 2nd Edition,
Prentice-Hall, 1977.

5. Pritsker, A.A.B., The GASP IV Simulation Lan-
guage, John Wiley & Sons, 1974. ‘ ’

6. Pritsker, A.A/B. and P.J. Kiviat, Simulation
with GASP II, Prentice-Hall, 1969.

7. Pritsker, A.A.B. and R.E. Young, Simulation
with GASP-PL/1, John Wiley & Somns, 1975.

8. Russell, E.C., Editor, Simscript II.5 Program-
ming Language, CACI, 1973.

9. Schriber, T.J., Simulation Using GPSS, John
Wiley & Somns, 1974.

GPSS
GPSS/360, GPSS V,
GPSS-H, and sever~

" al others” (All

Discrete)
Assembly

Most large compu-
ters (some commer-
cial time sharing
services)

Block

Process (Trans—
actions)

Dynamic
Interpreter

Moderate

{1, 3, 9]

Shannon, R.E., System Simulation:

SIMSCRIPT
Simscript II.5 (Dis-
crete), C-Simscript
(Discrete, Continuous
& Combined)

Assembly
Most large computers

(some commercial
time sharing services)

Statement
Event oxr Process

Dynamic
Compiler
Moderate.

[8]

The Art and

Science, Prentice-Hall, 1975.

17



