o A SIMULATION ANATYSIS OF DYNAMIC INVENTORY.POLICIES IN..A GENERALIZED .STOCHASTIC ENVIRONMENT

ABSTRACT

This paper presents a simulation-based comparative
analysis of several of the more prominent inventory
lot~sizing models under multivariate stochastic
conditions. Specifically included as stochastic
system variables are lead time variation, demand
forecast error, and inflation rate. The six rules,
classic E0Q, periodic order quantity, least unit
cost, part-period balancing, lot for lot, and
Wagner-Whitin, are adjusted to deal with a dynamic
situation.

Each dynamic lot-sizing rule was simulated for a
period of three years with each stochastic variable
introduced at three levels. The results were then
analyzed on the basis of a complete factorial de-
sign and, secondly, as a series of randomized block
designs.

INTRODUCTION

There are many unique details which require careful
consideration during the design of an inventory
control system. However, there are two fundamental
decisions which are common to the design of all in-
ventory control systems. The first basic decision
regards the degree of control applied (or adminis~
tered) to each item, or item class, inventoried in
the system. Typically, this decision problem is
resolved by utilizing the well-known technique re-
ferred to as ABC Analysis, although this is not the
only available alternative; e.g., see Mayer (3).
Subsequent to the classification of inventoried
items for control purposes, a second basic decision
problem must be resolved. This decision encom-
passes the selection of an inventory policy (or
control mechanism) to be utilized in making opera-
tional inventory decisions for items contained in
the different control classifications. Obviously,
the most important items, i.e., those comprising
the highest total dollar usage class, should re-
ceive (or be subjected to) the most sophisticated
level of control. These control mechanisms typi-
cally include complex lot-sizing and buffering
rules and also the use of computerized real-time
systems to maintain perpetual records and perform
updates and reviews.

The essential functions of an inventory policy are
to determine when (or at what time) an order should
be placed (or a setup started), and what quantity

John E. Hebert and Richard F. Deckro
Assistant Professors of Management Science
Virginia Polytechnic Institute and

State University

should be ordered (or produced). Ordinarily, the
selected policy is expected to satisfy some speci-
fied management objective(s), such as minimizing
total inventory costs, maximizing return on invest-
ment, maintaining a specified service level, and so
on.

Most of the currently available inventory lot-
sizing models have been developed under assumptions
of deterministic conditions. These models must be
combined with a buffering technique to protect
against uncertainty if they are adapted for use
under stochastic conditions.

Some research has been conducted regarding the per-
formance of inventory lot-sizing models under con-
ditions involving limited stochastic variation;
e.g., see 6, 7, and 9. The purpose of this study
is to perform a simulation—-based comparative analy-
sis of the well-known models in a generalized sto~
chastic environment.

OBJECTIVES

The primary objective of this study is to investi-
gate the performance of the most prominent inven-
tory lot-sizing models under multivariate stochas~
tic conditions. Specifically included as stochas-—
tic system variables are lead time, variation,
demand forecast error, and the rate of inflation.

Two criteria are utilized to evaluate the perfor-
mance of the lot-sizing models over an arbitrary
time horizon. They are:

(a) the total net present cost (INPC) of a policy,
where TNPC = PV (unit costs + ordering costs +
carrying costs + shortage costs), and

(b) the shortages experienced under a policy, mea-
sured as:

(1) average shortage in unit-periods, and
(2) the standard deviation of unit shortages.

There are two secondary objectives. The first is
to identify, if possible, the general stochastic
conditions for which each of the lot-sizing models
is "best suited." The second is to analyze the ef-
fect of buffering methods on the performance of the
total inventory policy. The overall intent is to
make a significant step towards providing general
guidelines for inventory systems designers and man-
agers-faced with decisions regarding the selection
of comprehensive inventory policies.
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Stochastic Inventory Simulation (continued)

ASSUMPTIONS REGARDING ENVIRONMENTAL CONDITIONS

The development of mathematical inventory decision
models has provided the practitioner with a large
number of useful tools for analyzing inventory
problems. The need to formulate these models in
operational form has necessitated the abstraction
of the real-world environment by specific limiting
assumptions, which may vary from model to medel.
As one closes the modeling loop via utilization of
a particular decision model in an actual situation,
it becomes necessary to investigate the effects of
these simplifying assumptions on the 'optimal" so-
lution determined by the application of the model
under '"nonideal" conditions.

The purpose of this study is to compare inventory
lot-sizing models in a "realistic" operational
environment, i.e., under generalized stochastic
conditions. However, the assumption of a stochas-
tic -environmént violates many, if not all, of the
assumptions under which the lot-sizing models were
developed. Therefore, it seems reasonable to con-
sider what effect "relaxing" these assumptions has
on the performance of the models.

In the stochastic environment lead time, demand
fluctuation and demand forecast error ‘are repre-
sented as random variables. Further, prices and
costs are allowed to vary by coupling them to a
variable rate of inflation.

In this study, it is assumed. that:

(a) the lead time is uniformly distributed around
a mean value of 15, with the range expressed
as a percentage of the mean value;

(b) the demand forecast is generated from a uni-

form distribution with a mean = 100, and a
range = 50, I.e., uniform (75, 125).
(¢) the forecast error (actual demand - fore-
casted demand) is normally distributed about
the forecasted demand value.
the rate of inflation is normally distributed
about a mean value, which is related to the
discount rate.
Other assumptions regarding procedural details
include:

(d)

(e) orders received during a given time period
(day) are not available for use until the
following time period (day).

(f) inventory carrying costs are computed on the

average number of units on hand during a given
period, i.e., (BOP + EOP)/2.0, where BOP and
EOP represent the inventory on hand at the
beginning and end of a period, respectively.

10T-SIZING MODELS AND INVENTORY POLICIES

As was previously mentioned, the principal function -

of an inventory policy is to determine when an .
order is to be placed, and what quantity is to be
ordered: Under various assumptions and determin-
istic conditions, the most prevalent .inventory lot-
sizing rules readily provide the required- decision
values. (The when decision is implicitly specified
once the guantitz decision is known, or vice versa.)
However, in a stochastic environment, the when
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decision requires a separate analysis apart from
the quantity decision. Uncertainty regarding the
demand during lead time is the central issue, and
the two main approaches utilized in confronting
this problem are safety stocks and safety lead time,
as suggested by Whybark and Williams (9).

As a matter of convenience, we have arbitrarily
chosen to combine a safety stock buffering method
with each of the inventory lot-sizing models under
investigation in order to create operational inven-
tory policies. The six lot-sizing models selected
for comparison are taken from those suggested by
Orlicky (4). They are listed here and described in
the next section, along with the procedure utilized
to determine the safety stock factor.

(a) Economic Order Quantity (E0Q),

(b) Periodic Order Quantity (POQ),

(¢) Lot for Lot (LFL),

(d) Least Unit Cost (LUC),

(e) Part-Period Balancing (PPB) (or least total
cost with extensions), and

Wagner-Whitin (WWM), a dynamic programming
approach.

(£)

The following notatiom is utilized in the descrip-
tion of the lot-sizing models:

Symbol Represents

C1 = cost to place an order

C2 = carrying cost per unit-period

C3 = backordering cost |

di = demand during period i -

H = number of periods in the plan-
ning horizon

n = last period covered by previous
order(s)

P = unit price

Q = otder quantity

Q* = "optimal" order quantity

R = the demand over the planning

horizon

A.. BEconomic Order Quantity (E0Q)

There have been numerous versions of the economic
order quantity model presented in the literature;
e.g., see 2, 3, and 5. For the purpose of this in-
vestigation, the classical E0Q model was used. In
this model, the total cost (TC) is

TC=RP+ (C1 - R)/Q+ (Q - H + C2)/2.0

n+H
where R = z di
i=n+l

and the optimal order quantity is given by:

Q* = SQRT{(2.0 - C; « R)/(H - Cy)]

In a stochastic environment, it is likely that the
value of Q% will vary each time an order is placed
because the demand over the planning horizon (R) is
subject to variation.



B. Periodic Order Quantity (P0OQ)

The development of the periodic order quantity
(POQ) model is quite similar to that of the EOQ
model. The emphasis, however, is on the order
interval (or time between orders) rather than on
the quantity ordered.

In a planning horizon of length H, the number of
orders placed (according to EOQ) is R/Q. Thus,

the order interval will be (HQ)/R. 1In the dynamic
sense, this rule indirectly specifies the order
quantity by determining the time interval the order
is to cover. Thus,

ntI
Q%= I d;, vhere I = (HQ)/R
i=ntl

C. Lot for Lot (LFL)"

The lot for lot model is similar to the P0Q model
in that the order quantity is indirectly specified
by first determining the time interval to be cov-
ered by the order. The difference is that in the
lot for lot model the order interval (how often to
order) is rather arbitrarily set by management.
Given a management decision to order for G periods,
the quantity ordered would be

n+G
Q= 1 d
i=n+l i
This model has no theoretical foundation and is
included in this study for control purposes.

D. Least Unit Cost (LUC).

The least unit cost model is based on the premise
that it is most economical to order a quantity
which is expected to result in the lowest average
cost per unit for the period covered by the order.
In essence, it is another trade-off between order-
ing costs and carrying costs. The procedure to
determine the order quantity (Q) is conducted as
follows:

(1) Set A* = Cl

(2) Fork=n+1,n+2,...,n+H

(3) Compute k
TC(k) = C, + r [d, * (4 -n-0.5) -C,]
1 =nHl i 2
k
(4 RE&) = 3z 4,
i=n+1 *
(5) A(k) = TC(k)/R(k)

(6) 1Is [A(k) < A*]?
Yes ~ Stop: Period k-1 is the end of the
current order interval; place order
for R(k-1).
No - Set A* = A(k), increment k; Go to 3.

E. Part-Period Balancing (PPB)

The Part-~Period Baldncing model is an extension of

the least total cost (LTC) model. The least total
cost model is based on the premise that the total
inventory cost, i.e., the sum of the ordering and
carrying costs, for an entire planning period will
be minimized if these costs are as nearly equal as
possible. (Note the similarity to the EOQ results.)
The LTC method attempts to achieve this objective
by ordering quantities such that the ordering and
carrying costs are approximately equal. The part~
period balancing model extends the least total cost
model by incorporating a "look-ahead, look-~back"
adjustment feature. The adjustment is made by com-
puting the savings and costs associated with in-
cluding (or excluding) the requirements for an addi-
tional period. The procedure begins with the
"look~ahead" adjustment after the LTC interval and
quantity has been determined. If savings exceed
costs, the adjustment is made, and the procedure
continues. If costs exceed savings, the procedure
either terminates or switches to the '"look-back"
adjustment if no '"look-ahead" adjustment has been
made. Mathematically, the model is developed as
follows:

An order of Qn+l units is placed so as to arrive in
period n+l, where,
nt+k

= L d,

Q
ntl i=ntl *

and k is determined by the following series of cal-
culations.

(a) Let kj be the largest integer, such that

nt+ky
c, r {d

+ (L~n-0.5]=c¢c(k)<C
2 i=n+l 1

i 1

and ky be the smallest integer, such that

¥
2 ¢
i=n+1

C .

2 di *(1~-n-0.5]= C(kz) >C

1

(b) if Cp - C(ky) < C(kp) -~ C3, then k = kj;
otherwise C(kp) - C3 < €1 - C(ky), and k = kp.

The "look~ahead," "look-back' adjustments are made
as follows:

(A) Look-ahead procedure:

(1) The objective is to determine Min [Costs,
Savings] of including d in the order
for period n+l. bkl

(a) Cost = d ¢ (k+1/2) - C

n+k+1 2

C

(b) Savings = dnﬁkﬂﬂ' 2

(2) 1If Costs < Savings: Then set k = k+l and
Repeat 1. Otherwise: Go to "look-back"
(if k has not been altered); or STOP.
(B) Look-back procedure:
P

(3) The objective is to detérmine MIN
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Stochastic Inventory Simulation (continued)

[Cost, Savings] of excluding d

+k from
the order for petiod ntl. e
(a) Costs = dn+k+l. C2

(b) Savings = dn+k « (k- 1/2) - c,

(4) 1If Costs < Savings: Then set k=k -1
and Repeat 3. Otherwise: STOP.

F. Wagner-Whitin Model

The Wagner-Whitin model is a dynamic programming
approach to lot-sizing, which guarantees an
"optimal" solution for deterministic problems.

This approach performs an implicit enumeration of
all possible solutions in a given planning horizon.
It begins by determining the optimal solution for
the first period (a one-period problem), then for
the first two periods (a two-period problem), and
so on until an optimal solution is found for the
first H periods - the planning horizon. Mathe-
matically, the Wagner-Whitin Method is expressed in
the following fashion:

Let C*(k) = the cost of the optimal k-period solu-
tion

B,(k) = the cost of the k-period solution which
J orders for period k in period
k- j+1

The following.recursive relationships are repeat-
edly solved to determine the optimal H-period solu-
tion.

Given: C*(1) c, + (dl « 1/2 + C,)

1 2
then, 31(2) = Cl + (d2 - 1/2 - CZ) + C%(1)
Bz(Z) = (d2 - 3/2 - CZ) + C*(1)

or, in general,

. k N . B
B.(k) =C, + T [d,- G, (g-1/2)]+
3 SRS S
cx(k - 3)

where j =1, 2, . . . , k

and, C*(k) = Min[Bi(k), i=1,2, . .., K]

The efficiency of the model is a result of the
Planning Horizon Theorem which eliminates the need
to consider alternatives which order for period k
in periods previous to the period in which the op~-
timal policy for period k~1 would order the re-
quirements for period k~1. For a.complete state-
ment of the theorem, see Wagner and Whitin (8).

Safety Stock Factor’

A simulation-based procedure was developed to
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determine the "safety stock factor" utilized:dn
these experimental runs. In the .actual experiment,
both ‘lead time and daily sdemand are random vari-
ables. As such,-these two random variates jointly
determine the demand during lead. time (DDLT). To
develop a safety stock factor, the simulation model
generated a random lead time for each of 1000
sample observations. .- The next step was to generate
both forecasted and actual demand values for these
sample lead time periods. Summing these values
over the days in each lead time period resulted in
1000 values for forecasted demand during lead time
(FDDLT) and actual demand during lead time (ADDLT).

The next step of the process was to rank order the
actual demands during lead time, from highest to
lowest. The safety stock factor for a stockout
probability = 10% was then calculated by dividing
the 100th ADDLT value by the mean forecasted demand.

Mathematically, the safety stock factor may be ex-
pressed as:

SSF(p) = ADDLT(p * NSO)/XDDLT

where,
NSO
XDDLT = I FDDLT(i)/NSO
i=1
and,
p = probability of a stockout
SSF = safety stock factor
ADDLT (i) = ith ranked actual demand during lead
time from a sample of NSO observations.
FDDLT (1) = ith forecasted demand during lead time
from a sample of NSO observations
XDDLT = mean forecasted demand during lead time
NSO = number of sample observations (=1000)

During the simulation experiments, the forecasted
values were adjusted by the safety stock factor to
provide a buffer against uncertainty.

EXPERIMENTAL DESIGNS AND RESULTS

- In order to satisfy the objectives of this investi-

gation of inventory policies in a stochastic envi-
ronment, two separate experimental designs were
utilized to provide a foundation for analysis. A
complete factorial design was employed to analyze
the effect of the controllable factors om two dis-
tinct measures of performarice (net present cost and
total unit-backorders). A series of randomized
block designs was subsequently applied to analyze
the performance of the six inventory policies under
all possible combinations of stochastic conditions.

lLead time variation, demand forecast error, and in-
flation rate were treated as controllable factors,
each being varied over three levels. Inventory
policies were treated as the fourth factor, with
six different policies being tested. Two measures
of “performance-were collected ‘from.each simulation

« experiment=—the net present.cost of the policy

(over a three—yearmduration) and the pumber of unit-
backorders (representing service level). To




determine the effect of the four controllable
factors on these measures of performance, two com-
plete factorial designs were analyzed using net
present cost and unit-backorders, respectively, as
the independent.variable. Each combination of
 factors was replicated five times.

The analysis of net present cost indicated that
the inflation rate was the only significant factor
at an a = .05 level. However, the inventory poli~-
cies reflected significance at a marginally higher
level of confidence. In the unit-backorder anal~
ysis, both lead time variation and inventory poli-
cies were significant, along with the interactions
involving these factors and the demand forecast
_error.

In an effort to determine the "relative perfor-
mance' of the inventory policies under varying
combinations of stochastic conditions, each of the
twenty-seven cells in the complete factorial de-
sign discussed above was analyzed as a separate
block, with the inventory policies as treatments.
This analysis confirmed two intuitively appealing
suppositions. The first was that the inventory

policies were not significant in the cases in which

the demand forecast error was present at a rela-

tively large value (40% of the forecasted value).
Secondly, inventory policies became less signifi-
cant as the lead time variation increased.

SUMMARY AND CONCLUSIONS

This paper has reported on the results of one
phase of an investigation having as its ultimate
objective the development of an operatiomal in-~
ventory policy(s), which-is effective in a sto-

chastic environment. The results at this stage of™”

the analysis imply that the net present cost of a
dynamic inventory policy may be relatively inde-
pendent of lead time variation, demand forecast
error, and even inventory ordering rules in a
stochastic environment. It appears, however, that
service level (as measured by units-backordered)
is dependent upon these same factors.
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