. DEVELOPMENT OF "APPLES" -~ A GENERALIZEP DISCRETE EVENT MODEL

ABSTRACT

This paper describes the development of APPLES

(A11 Purpose PLant Event Simulator), a general
discrete event modeT used for simulating certain
classes of chemical plants. The model, which was
developed to eliminate the need to build additional
single plant models and to replace a series of
successful models [3], has demonstrated better
results and lower costs.

Special features of APPLES are its open-endedness
and its rear-end driven flow. Open-endedness means
that the authors have constructed a basic model
which is complete in itself, but which can easily
be changed and appended. APPLES is rear-end driven,
i.e., the yser specifies what is to be removed from
the system and the program generates what is to
enter the system.

This paper presents a synapsis of the model fol-
Towed by a simplified example. The heart of the
paper is, however, the discussion of the stages of
the APPLES development. The techniques described
can be applied to the development of any large
computerized model.

The APPLES project is on-going. At the end of the
current phase, another project will start, bringing
additions and modifications to extend the useful-
ness and applicability of APPLES.

INTRODUCTION

For more than a decade, Union Carbide Corporation
Chemicals and Plastics Division has used discrete
event models of chemical plants as a source of use-
ful information about the operation of the plants.
With few exceptions, each model represented a
single manufacturing facility [3]. These efforts
had to be specific to a single plant because of the
depth of detail modeled. Discrete event simulatic.
as an information gathering tool was a new field;
the details in the model gave a semblance of reality
which made it possible to convince users that these
-new; techniques -could produce reliable.results.
+Modeling in detail.also helped disguise the ignor-
.ance of-what was -and what ‘was :not -important. ' For,
- as. Robert-E. :Shannon :says. in-his~book; System
- Simulation The Art and Science [4]:

Most systems operate according to the

Gordon E. Mead and :Gandice Howard Prince

Union Carbide Corporation

Pareto principle, that in terms of
performance and effectiveness there
are few significant factors and many
insignificant ones. In fact, the rule
of thumb is that in most systems 20%
of the factors will account for 80% of
the performance, whereas the other 80%
of the factors contribute to the re-
maining 20% of the performance. Our
problem is to decide which are the
significant few.

The development of each new model allowed previously
used techniques to be polished and new ones to crys-
tallize, Each simulation was more sophisticated than
the previous one.

In 1976, a time was reached when:

1. similarities between models and facil-
ities had become apparent, (to the users
of models as well as the developers),

2. cosmetic features (i.e., those which
make a model appear realistic but have
no effect on results) and irrelevant
parameters were recognized, and

3. the development of most major compon-
ents of a general model had occurred.

By eliminating the cosmetic, simplifying the un-
necessarily complex, and concentrating on the im-
portant, a general purpose model of most chemical
plants could be produced.

APPLES models a wide range of chemical plants that
are characterized by most of the following attri-
butes:

1. The plant produces many different
materials in discrete amounts.

2. Utilization of multipurpose storage
is an important consideration in
plant operation.

3. There are stochastic elements such as
- random equipment-outages;- random re-
- ceipt of customer -orders, random fluc-
- tuations “in quality of products, and
random résults from laboratory analyses
of material.

Winter Simulation Conference 779

APPLES . . . Continued

This paper begins with some necessary definitions,
then briefly describes an APPLES model of a simple
chemical plant. This is followed by an overview
of the stages of APPLES system development, high-

- Tighting some of the more important model design
-and: buitding constderations, many of which could be

--applied to :the development -of any large computer

780

model.

DEFINITIONS

The following definitions and operating rules are a
synopsis of the APPLES model.

The entities of the APPLES model are of the follow-
ing types [2]:

1. A material is a chemical substance -- a mixture
or a compound. ’

2. An operating unit changes the substance or
status of material and is of the three follow-
ing types:

(a) An initiating unit (e.g., a reactor)
creates from sources outside the system,
as if from "nothing", one or more
materials at a constant rate and ratio.

{b) A processing unit converts one or more

materials into one or more other

materials at a constant rate.

(c) A terminating unit (e.g., a loading

station) transfers material out.of the

system, either directly or by loading
into containers which are sent out of
the system.

3. Aim is on-specification material produced during
a run of an initiating unit or a processing unit.

4, A shipping order represents the shipment of a
single material to a customer, i.e., to a point
outside the system,

5. A storage unit (bin, tank, etc.) is a vessel of
fixed volume which receives, stores, and dis-
penses a single material.

6. A storage unit area is a collection of storage
units. Each unit belongs to one and only one
storage unit area.

7. A storage unit group is a collection of storage
unit areas. Each storage unit area belongs to
one or more storage unit groups.

8. A resource is an entity which must be available
when certain operating units run, and is one of
the following two types:

(a) A crew represents the people who must
be present for certain operating units
to run.

(b) A transfer unit is needed when material

December 5-7, 1977

is moved from one operating or storage
unit to another or to the .same operat-
ing or storage unit.

8. A resource unit group. is-a collection of re-
sources such as transfer units or crews.. Each ..
resource (crew or.transfer unit) belongs to one
or more resource groups.

10. A container is a vessel of fixed volume which
is filled with material and sent out of the

system,

RULES GOVERNING OPERATION OF THE MODEL

T. The user is able to (1) connect any operating
unit to any storage unit or any storage unit to
any other storage unit and (2) to specify the
order “in which the storage units are to be con-
sidered for possible use. To accomplish this,
each storage unit is assigned to one and only
one storage unit area. Each storage unit area
is assigned to one or more storage unit groups.
The user specifies the group to which material
can be transferred from an operating or storage
unit,

2. A transfer unit cannot feed directly to another
transfer unit.

3. Transfer units belong to resource groups. The
user indicates which resource group an operat-
ing unit can use when making a transfer if a
transfer unit is required.

4, Orders for shipment of aim material are usually
generated from product mix information supplied
by the user.

FLOW IN THE MODEL

Most discrete event models are front-end driven,
i.e., entities or quantities flowing through the

_ system are generated either deterministically or

stochastically, according to a distribution func-
tion (specified by the user) and placed into the
system at an entry point. These entities or
quantities leave the system when their processing
is completed,

APPLES is rear-end driven, i.e., the user specifies
the quantity of each material to be removed from
the system. The product mix of material is then
used to generate shipping orders which are tagged
with information such as due date, material, and
amount. These orders are then used for scheduling
the operating units. The initiating units respond
to the removal of material from the system by
scheduling production of the material needed to i1l
the first order., The material has no memory. Once
a material is produced, it can be used anywhere in
the system regardiess of where or how it entered the
system,

The processing units are scheduled using the know-
ledge of material needed first to fill orders and

the availability of feed materials.

Processing units do not relay information directly
to_initiating units, but are slaves to them in that
all feed*hatéria1s‘ékefsupplied by the initiating

units. In a similar manner, the terminating units

are slaves to initiating and processing units. The
terminating units load containers or move materials
to outside the system in the sequence needed to fill

orders.

Rear-end driven means flow is pulled, not pushed
through the system, The resulting system is more
easily perturbed by changes in input data. However,
"rear-end driven" is better than "front-end driven"
in approximating the real-world situations of supply
and demand in a manufacturing facility.

EXAMPLE

Figure 1 shows a very simple chemical plant with one
initiating unit, one processing unit, and one ter-
minating unit, The dotted Tine represents the
boundary of the plant, i.e., system being modeled.
Haterial enters the plant via the initiating unit,
and leaves the plant by a shipment of containers.

The initiating unit produces two ajim or "good grade"
materials, X and Y. The processing unit uses mater-
ials X and Y to make product PX. Materials PX and

Y are shipped out of the system to customers. Ma-
terial X has corresponding inferior grade materials,
XNA and OFF while material Y has YNA and OFF,

FIGURE 1
A SIMPLE CHEMICAL PLANT

ENTER
SYSTEHN

lmivtating | _&SYSTEN BOUNDARY.
Uit TTTTTETT T TS

STORAGE
URIT

1
i :
! I
! TRANSEER |
I [] UNIT !
1]
! i

OPERATING
________________ e JUHLT

LEAVE
SYSTEMN

This plant has five storage units designed as STU1
through STUS. These are aggregated into storage
unit groups and areas shown in Tables 1 and 2.

Note that since the order in which we consider the
storage units is important, group STU-GRP3 consists
of storage units STU4, STU5, and STU1, not STU1,
STU4, and STU5. Materials are stored in the storage
unit groups indicated in Table 3.

The initiating unit produces materials X, Y, XNA,
YNA, and OFF, Usually, inferior grade materials
are produced between the production of two aim ma-
terials. The sequence in which materials are pro-
duced by the initiating unit is determined by
either the automatic scheduling algorithm, which
locates the material needed first per customer
orders, or by a user irnput schedule. Materials are
fed from the initiating unit to the respective stor-
age areas as indicated in Table 3. From there, ma-
terials go to the processing unit (to be used when
producing PX) or to the terminating unit (to be
Toaded into containers). The formula for making
product PX indicates that feed materials X and Y
are needed, When material PX comes from the pro-
cessing unit, it is sent to storage units STU4,
STU5, or STU1, Shipping oirders and their due dates
determine when materials are loaded and shipped,
and in which containers. Materials cannot leave
the system unless a shipping order for materials
and the proper containers are available. In this
example, the containers are called boxes. The
information about materials 5 summarized in Table 3.

Resources are, in effect, auxiliary entities needed
when activities take place. In this plant, the

resources are transfer units A, B, and C, and crew
ONLY CREM. The transfer units are needed when

material is fed to the. processing unit or terminat-
ing unit, and.the crew is.néeded when the tepminat- -
ing unit is loading out material,

An outage is really any operating unit run calling
for the unit not to make or ship any material for
a period of time. In effect, an outage preempts
the current run of material from the unit. At the
end of the outage, the operation of the unit on
the current run is resumed.

Please understand that this is a very simple plant.
An actual plant would include many more materials,
operating units, etc.

TABLE 1

Storage Unit Areas

Area # Area Name Storage Units
1 Area 1 = STUT
2 Area 2 STU2
3 Area 3 STU3
4 Area 4 STU4, STUS

Winter Simulation Conference 781

APPLES . . . Continued

TABLE 2

Storage Uni; Areas

Group # Group. Name Area #'s Storage Units
1 ST-GRP1 1,2,3 STU1, STU2, STU3
2 ST-GRP2 T3 STU3
3 ST-GRP3 4,1 STU4, STU5, STU1
4 ST-GRP4) 4 STU4, STUS

. STAGES OF MODEL DEVELOPHMENT

This paper is not only about the APPLES model, but
also about its development. This model is an off-
spring -of many parent models of specific chemical
plants. These old models were tedious and costly
to build and had difficult to use input and output.
In effect, these were "throw-away", non-reusable
models. APPLES is intended for general usé on
different chemical plants in a variety of ways.

The stages in the deve]opment of the APPLES model
were:

1. determination of the need for such a model and
selling the concept to management,

2. development of specifications and definition of
entities,

3. desién and coding of the editor program and the
input subroutines of the simulator program,

4, design and coding of the simulator program
proper,

5. debugging, testing, and validation, and
6. production running of the model.

Selling the Model

Since both authors work for "service groups" within

the corporation, it was necessary to sell money-
supplying users of the benefits and cost savings to
bé derived from developing and using APPLES rather
than an individual model for each manufacturing
facility. These benefits included quicker results,
a more "user-oriented" system, easier changing and
correcting of programs, and, consequently, more
cost effective modeling.

A model of a single facility, such as was used until
1976, took five to eight months and tens of thou-
sands of dollars to develop. Because of costs and
time, such models were impractical to develop for
all but the largest plants and even then only when
major engineering studies were being undertaken.
The modeling was most often done under conditions
of extreme stress, including long hours and at
times other than 8 a.m. to 5 p.m. to assure faster
computer turnaround. In contrast, APPLES now pro-
vides an off-the-shelf system that can be used for
even a small study.

The specific models, developed under severe cost
and time constraints, required information to be
input in a form easiest for the program and the
programmers. As a result, the users had to reform
much of the data and usually had to make several
computer runs to remove all errors and inconsisten-
cies from the data. The users needed a knowledge
of the program logic of the specific model in order
to diagnose problems in the data and in the model.
Since the new APPLES model is "user-oriented", most
problems can be diagnosed ejther from the many
error messages within the Editor or from the APPLES
user's manual. An editor program allows the user
to input his/her data in a logical fashion. This
program also supplies defaults for most values not
input and checks for missing information which
could cause the program to terminate during execu-
tion. The users need only know the chemical plant
being modeled and apply intelligently the 1nforma-
tion provided in the extensive APPLES user's manual.

Program maintenance, the inevitable changing and
appending of programs, was very difficult on the
single plant model. Changes to input parameters,

which deviated much from those used to develop the

) TABLE 3
Summary of Data on Materials

Corresponding Made on
Material AIM Unit
X X init. unit
Y Y init. unit
XNA X init. unit
YNA Y init, unit
OFF X&Y -~ init. unit
PX m—— P. unit

Feed Stored

to Unit in group # Shipped Grade
. unit 2 no aim
. unit & 3 yes aim
. unit
. unit 1 no near aim
. unit 1 no , near aim
. unit 1 no off grade
. unit 4 yes . aim

782 December 5-7, 1977

model, often caused logic errors which necessi-
tated program updating. Since the programs were
hastily written and designed for a specific set of
input datda, these alterations were often difficult
to implement and debug. In fact, one to three
months elapsed time was required for all but minor
model revisions. APPLES, because it has been sys-
tematically designed and thoroughly tested, can be
used for a wide range of parameters and operating
conditions. There is only one well~-documented
program to maintain instead of a dozen programs,
some of which were kept in source form on well-
worn 80 column cards.

In the final analysis, what really sells a model is
its cost effectiveness. Although APPLES cost
roughly four times as much to develop, this cost is
quickly being recovered. Running a study on a
single plant can now be accomplished in a fraction
of the time and for a fraction of the cost.

Development of Specifications and Definition of
Entities -

.The second stage, development of specifications and
definition of entities for the model, was lengthy
and sometimes discouraging. The authors walked a
thin 1ine between being too general (which would
result in-a model too complex to use and too ex-
pensive to run) and being too specific (generating
a model too difficult to use for modeling a variety
of chemical plants or too simple to have meaningful
results). This stage is critical since, unless it
is done well, difficulties may occur in subsequent
stages. Programmers frequently find such a Tengthy
planning stage traumatic because there is Tittle
concrete evidence (usually, measured in lines of
code) to show for one's labors. -

During this stage, it was decided that our system
should be "open-ended", i.e., it would be easy to
change and changes would not cause undesirable re-
percussions. The open-endedness of APPLES allowed
the authors to construct a basic model which was
complete in itself but which could easily be
changed and appended., To accomplish this, it was
decided that: ~

1. Al1 foreseeable program changes would be con-
sidered during the design phase,

2, The system would be well documented, i.e.,
readable code and meaningful comments in the
program, and extensive user's and programmer's
manuals.

3. Structured programming techniques would be used,
resulting in code that would be easy to read,
change, and debug,) -

4, During the design phase, users would be con-
sulted as to their ideas about what the model
should include,

In reference to the APPLES model, open-endedness
means, e.g,: -

1. There are no limits to the number of initiating
units, materials, etc. that a user can input.
This is accomplished by means of dynamic alloca-
tion of storage and list processing techniques.

2. HNew types of initiating units, storage units,
etc. can be easily added when needed.

3. Changes to the programs of the system have no
effect on the results from old sets of data.

Also in this phase, a rough Tayout of program and
system design was set down. It was decided that
the model would be run by executing two programs --
first a card editor program written in PL/I, then a
simulator program written in SIMSCRIPT I1.5. PL/I
was chosen for the editor because it is a language
with extensive 1ist processing and string handling
facilities, SIMSCRIPT II1.5 was chosen for the
simulator program because it is a simulation lan-
guage that is efficient to run, essentially self-
documenting, and well maintained.

Also in this stage, the specifications were written.
Much of what went into the specifications was later
to become part of a user's.manual. This preliminary
user's manual is, in effect, a written definition of
the model {1]. While writing is often a task much
disliked by programmers and model builders, the
benefits of this careful documéntation are great.

Design and Coding of the Editor Program and the
Input Subroutines of the Simulator Program

In the third stage of development, the input cards
were laid out, the editor. was designed and coded,

and the simulator- program subroutines to read the
editor output were written. The best model with poor .
input card Tayout and without printed forms can be a
tedious tool to use. The editor is one significant
difference between APPLES and the individual spe-

cific chemical plant models that Union Carbide used
previousiy.

The APPLES editor makes two passes through the in~
put cards. In the first pass, the cards are seg-
regated by card type and obvious data errors, such
as alphabetic characters in numeric fields are de~
tected. The second pass reformats the data for

use by the simulator program while detecting more
subtle errors, such as a missing operating unit def-
inition or a maximum run length less than normal run
Tength. The simulator program reads the output of
the editor program then performs a discrete event
simulation of the chemical plant described in the
data. A1l entities and arrays are dimensioned by
values which the editor calculates and passes to

the simulator program.

The editor program consists of 17 PL/I external
subroutines each of which. contains several internal
PL/I subroutines. The modular structured design
makes the program easy to maintain and change, For
the interested reader unfamiliar with structured
programming; a very good reference on the subject
is Edward Yourdon's Techniques of Program Structure
and Design {5]. Likewise, the read and initialize
subroutines of the simulator were modularized,

Many blank data fields are passed to the simulator
program; this leaves space for each addition of new
data items without change to other parts of the pro-
gram,

Winter Simulation Conference 733”

APPLES . . . Continued

Design and Coding of the Simulator Program Proper

In the coding of the simulator, much thought and
care was given to assure that the program would be .
easy to maintain and that program revisions and
additions would be transparent to the users. To
help reach these goals, techniques-such as elimina-
tion of constants, the use of long variable names,
and structured programming were adopted. Most con-
stants were assigned variable names, for example,
the variable EMPTY is set to one. The use of
meaningful -variable names, regardless of length,
¥Si£stressed} for example, LAST.TIME.UNIT.DOWN.OR.

Structured programming .techniques, including modu-
larization of code and simplification of flow of
program control were used. GO TO's and statement
labels were allowed only for the "case" condition
where a choice of one of several alternatives is
made. Even there, all cases had to go directly

to the same termination point.

SIMSCRIPT I1.5 allows for implied subscripts on
entity attributes. Both PL/I and SIMSCRIPT I1.5
provide for defaulting variables not identified as
global (external) to local (internal) variables.
The use of these simplifying features was verboten,
for what is clear at the coding stage will be con-
fusing later to someone else doing program mainte-
nance. The rule used was array variables are sub-
scripted and all local variables defined as to type.

The clever coding of today is the confusing code of
tomorrow. Only if it is superior should such coding
be used, and only if accompanied by adequate docu-
mentation. The authors subscribe to the KISS prin-
ciple, "Keep It Simple Stupid".

Experience indicates one tends to read and rely on
comments rather than coding, and that inevitably
some comments are wrong. The use of modular coding,
simplified flow of program control, meaningful
variables names and the "English-1ike" features of
SIMSCRIPT II.5 made the code self-documenting, Com-
ments were relegated to -explanation of difficult
algorithms and to header comments explaining the
overall function of each routine.

Debugging, Testing and Validation

This stage was long and tedious. Test decks were
designed and temporary print statements were used
to check all calculational paths. Various program
functions were localized by use of modular routines
to reduce program interaction., Because the- number
of possible calculational paths through APPLES is
astronomical, synthetic input, designed to test as
many possible combinations of input and logic flow,
was run and debugged.

Validation of the APPLES model was extremely diffi-
cult, Input from previous models was recoded and

new results were compared with old. Output results
were examined to see if they appeared to be realis-

tic. Finally, the model was examined event by event

to see if it conformed to model specifications.

784 December 5-7, 1977

" Production Running of the Model

B -

A comprehensive user's manual, including an explana~-
tion of all input cards, was written. For each

card type, all fields are defined and defaults and
sample values given, The manual shows a typical

set of input cards and output data. A two day semi-
nar is available for instructing users in the pro-
gram's use. On-the-job training is available to

new users for new applications for APPLES, In pro-
duction status, the compiled programs are kept on a
direct access data set and run by nonprogramming
users with only Job Control Language cards and input
data cards.

CONCLUSION

-APPLES 1is a large discrete event model suitable for

use on a certain class of chemical manufacturing
facilities. It replaces individual models of these
plants and eliminates the need for expensive, tailor
made models for new and existing Union Carbide fa-
cilities. APPLES can simulate these plants more
quickly, more easily, and Tess expensively than the
individual models, :

The road to a general model would have been rocky,
indeed, without experience gained from the develop-
ment of the specific models. These precursor sim-
ulation activities helped the authors to discern
the important from the trivial, thus keeping APPLES
to a manageable size, and to develop efficient al-
gorithms, thus making APPLES a reasonably fast
running system of programs.

Yhile many of the techniques discussed in this
paper may seem obvious, they combine to form an
approach to model building which improves the
chances of success where failure is a real possi-
bility. The authors bring them together here so
that others may benefit from their experience.

Some of the methods., especially those in the coding
phases, are really techniques of good computer pro-
gramming and are nat specific to model building. -

ADiscréte event simulation models give practical,

useful results. However, unless efforts are made
to ensure that they are general enough to meet
future needs, easy to change where necessary, and
systematically programmed and debugged, these
models quickly become expensive and obsolete,
particularly in the rapidly changing world of

< industry.

REFERENCES

Donelson, W. S. "Project Planning and Control",
in Datamation, June 1976, pp. 73-77.

Mead, G. F. and Prince, C. H. APPLES Function-
al Specifications Phase I, a private document.

Mead, G. F., and Salisbury, P. L. "Use of
Stochastic Simulation in Design and Opera-
tion of Process Facilities" 1in Proceedings
of the 1975 Summer Computer SimuTation Con-
ference, Volume 1, pp. 285-291.

Shannon, R. E. Svstems Simulation the Art and
Science. Prentice-Hall, Inc., Englewood
CTiffs, NJ, 1975.

Yourdon, E. Techniques of Program Structure
and Design. Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1975.

Winter Simulation Conference 78§

