A STRUCTURAL APPROACHTO SIMULATION IN SUPPORT OF COMPUTER SYSTEM DESIGN

ABSTRACT

This paper describes the various features of a new
approach to supporting computer system design by
simulating the computer system as it progresses
through levels of increasingly detailed design.
These features include model specifications, use of
structured programming, choice of simulation sys-
tem or language, organization of simulation effort
and personnel, the "chief modeler'" concept, the
model development process, modeler/designer in-
formation flow and interfaces, and the modeling of
workload. An analysis is made of relative life
cycle cost between the structured approach to sim-
ulation and the traditional approach of supporting a
computer design effort.

INTRODUCTION

Simulation is all too often a stepchild of a computer
system design effort. This characteristic is mani-
fest in two ways:

1. The need for simulation is often not recog-
nized until well into the design phase,
resulting in a hastily written model which
is error-prone, inflexible, and
unstructured,

2. During the lifetime of a computer system
design, the simulation effort is duplicated
by as many as three or four mutually
exclusive models -- an (early phase) user-
oriented/problem-oriented simulation to
define the data processing problem and to
generate performance requirements, an
(architecture phase) hardware/software
model to make design tradeoffs and to pre-
dict performance, and an {implementation
phase) detailed model which simulates pro-
gram execution either at the machine
instruction level or microinstruction level
or both, to check out the hardware and
software. The simulations are developed
by different groups; they are discarded
when no longer needed; and little or no
information is passed from one modeling
effort to another.

The overall simulation effort can be greatly

. improved by a unique method which might be
termed ""'structured simulation'' because of its
analogy with structured programming. While

Melvin M, Cutler

Hughes Aircraft Company
Culver City, California

structured programming refers to the top-down
development of an eventually executable program,
we define structured simulation as the top-down
development of a single simulation program such
that:

i, It begins when the design begins and is
developed in tandem with the computer
design at each phase of detail;

ii. At each phase of design detail, the simu-
lation program is to function as the model
used in that phase in a typical design
effort as in 2., above.

STRUCTURED SIMUILATION

A successful computer system design effort can be
characterized by top-down development and step-
wise refinement of algorithms and implementations;
in short, structured design. The consequent sim-
ulation effort should also be structured; it should
proceed as follows:

1. A modeler should be attached to the design
team at the first opportunity. The
modeler will develop the user-oriented/
problem-oriented model of the system.
This functional model is the top-level sim-
ulation of the system, and is preserved as
it is refined during the design process.

2. When the design of the computer system
itself is undertaken, the first model is
refined so that the implementation of the
functional model is reflected in hardware
and software. The result is an architec-
tural model of the system driven by real-
world inputs.

3. When the computer system design has been
fixed, the second model is refined to pro-
duce a simulator for program execution
on the system at the instruction or micro-
instruction level. This third model is
used for hardware and software debugging,
and performance evaluation.

The simulation program which implements the
model must use structured programming techniques
so that it can be carried through these phases of a
design effort. Adequate time must be devoted at
the beginning of the project to the design of the

Winter Simulation Conference 677

STRUCTURAL APPROACH TO SIMULATION . .. Continued

inodel, -since the structure is preserved, whether
it is good or bad. A critical part of model design
is the choice of implementation.language.

- MODELING LANGUAGE

In the typical unstructured simulation effort
described earlier, a basic incompatibility among
the models developed for the design effort results
from the different languages used to implement the
simulations. The problem-oriented model is often
written ih a queuing or process-oriented language
such as GPSS: The architecture-oriented model
leans. toward an event-oriented language like
SIMSCRIPT. The debugging model is usually writ-
ten in a scientific language such as PL/1 or
FORTRAN, since the implementers of this model
are normally unfamilar with simulation languages.
It is clear that a structured sirmulation effort which
refines a single simulation program into the three
modeling levels must employ one language which is
extremely flexible. There is little doubt that ECSS
II (Extendible Computer System Simulator II) [1] is
the appropriate language:

e ECSS is a high-level simulation language
with powerful constructs which are ideally
suited to a concise and a readable high-
level computer system model;

. SIMSCRIPT, a lower-level simulation lan-
guage with powerful scientific language
features, is a sublanguage of ECSS;

° cspIi[2], a system for writing struc-
tured, table-driven coimputer system
simulations, is written in SIMSCRIPT II. 5
and thus can be incorporated into an ECSS-
based structured simulation.

In summary, it would be difficult to justify using
any language except ECSS II to implement three
models which have, in the past, required three dif-
ferent languages. The flexibility of ECSS II is
necessary to reduce the risk of the new approach,
but it does not guarantee success. It is also impor-
tant to reevaluate the model development process.

STRUCTURED MODEL DEVELOPMENT

It has become accepted that the use of advanced
software technology is necessary to reduce the cost
of a program through its lifetime. Thus, various
techniques; lumped together as ''structured pro-
gramming, ' have been developed to meet this goal.
A simulation program, despite its being a very
specific type of software system, can benefit from
the use of structured development techniques. Dis-
cussion of the use of these structured development
techniques for simulation models is outside the
scope of this paper; one comprehensive tutorial can
be found in [3]. What will be emphasized here are
the additional constraints on model development
necessary to achieve the top-down refinement of a
simulation model of a computer system such that at
any phase of the computer system design the model
meets the needs of the designers.

678 December 5-7, 1977

During its development, the médelwrrnlis‘t:“]i‘:uie'rfoﬂrrglfJ
the functions of the three or four models of the
typical unstructured simulation effort described
earlier. This can be accomplished by taking
"'snapshots' of the program as it passes through
the desired levels of modeling detail. A 'snap-
shot' of a simulation program is a partially
developed version which may be used as a model
for one of the three or four different levels. This
process is illustrated by Figures 1 through 3,
which show the progression of model development
as well as the information required as input to the
simulation.

FIGURE 1. LEVEL 1 PROBLEM-ORIENTED
SYSTEM MODEL

REAL-WORLD
EVENTS PERFORMANCE

v
MAPPING FROM

PROCESSES EVENTS TO DATA
PROCESSING TASKS
EXECUTIVE > MAPPING FROM

DATA PROCESSING
TASKS TO RESOURCES

:

SYSTEM SIMULATION |

SYSTEM PERFORMANCE

GO/NOGO

Figure 1, illustrating the level 1 problem-oriented
system model, indicates the response of the simu-
lated computer system to real-world inputs. At
this level, a workload stimulus triggers the proc-
essing of tasks according to the executive program
design and the available computer system
resources. The functional sequence in Figure 1
begins with a table which maps a real-world event
into one of a set of computer system processes. A
process is a flow chart of data processing tasks
which require resources such as CPUs, memories,
transmission paths, and other devices. In ECSS, a
process is defined by a JOB DESCRIPTION within
the LOAD DESCRIPTION. The next box of Figure
1 indicates that a process becomes executable when
the resources it requires become available and the
executive chooses to schedule it; at this point the
next pending task of this process is scheduled.
ECSS has built-in facilities which simplify the sim-
ulation of the interaction of system resources with
the tasks which utilize them. The lowest box of

Figure 1 stands for this process; the output of this
function is the passage of time and the state changes
of the system. If the system performance is within
limits, the level 1 model has served this stage of
the design.

A simple system illustrating a level 1 model might
involve a real-world input of a signal representing
an operator pushing a button at a particular time.
This requires execution of a process which consists
of a program to be runon a particular CPU, fol-
lowed by a message sent over a particular path to
an output device. The executive might simply give
each of the two tasks of this process highest priority
for the resources and the execution of each task on
the system might be described by an ECSS
EXECUTE statement and a SEND statement,
respectively. The performance requirement might
be a limit for the time delay between the pushing of
the button and the completion of the output.

In Figure 2, the refinement of the level 1 system
simulation model into an architecture-oriented com-
puter timing simulation is indicated. At this level,
the input data are data processing tasks mapped to
resources, either using the level 1 mapping of
real-world events or synthetic benchmark tasks.
The latter may be necessary if performance
requirements are stated in terms of instruction
throughput for a mix which is independent of any
particular system input. Because the level 2
expansion of the system simulation box of level 1
simulates only the timing of instructions, it must
be provided with a mapping from data processing
tasks to instruction streams. In the example used
for level 1 above, the EXECUTE and SEND state-
ments would be expanded to specify the sequence of
instructions necessary to do each task, as noted in
the top box of Figure 2, and each of these instruc-
tions would be expanded to specify the sequence of
computer events which executes the instruction, as
noted in the middle box of Figure 2. The first
expansion, referred to as a dynamic characteriza-
tion of applications programs, is a trace of an
executed program provided by some "oracle, " and
is usually an educated guess. The expansion of
each instruction type depends on the architecture of
the functional units of the computer system.
Because the basic executional entity of ECSS is the
instruction, SIMSCRIPT is used to process expan-
sions below the instruction level, A simple but
illustrative architecture might map each instruc-
tion type into the following sequence of computer
events: instruction fetch, instruction decoding,
operand fetch, execution, storage of result, and
calculation of next instruction location., The lowest
box of Figure 2 indicates that system performance
at this level is related to the time to schedule and
perform these functional computer events, rather
than to the computational results of these events.

This situation suggests that in the last level of
refinement, illustrated in Figure 3, the simulation
program and the simulated computer become indis-
tinguishable. To bring this about, the mapping of
data processing tasks to instruction streams is
decomposed, instruction semantic information at
the instruction or microinstruction level is added
to the mapping from instruc¢tion streams to com-
puter events, and execution simulation capability is
added to the computer system timing simulation.

FIGURE 2. LEVEL 2 ARCHITECTURE-ORIENTED
REFINEMENT OF SYSTEM MODEL
DATA PROCESSING

TASKS MAPPED TO
‘RESOURCES

SYSTEM
SIMULATION

PERFORMANCE

A 4

MAPPING FROM DATA
PROCESSING TASKS TO
INSTRUCTION STREAMS

'

. MAPPING FROM
ARCHITECTURE #| INSTRUCTION STREAMS
TO COMPUTER EVENTS

|

COMPUTER SYSTEM
TIMING SIMULATION

APPLICATIONS
PROGRAMS »
{DYNAMIC -
CHARACTERIZATION)

SYSTEM PERFORMANCE

GO/NOGO

FIGURE 3. LEVEL 3 EXECUTION-QORIENTED
REFINEMENT OF SYSTEM MODEL

PERFORMANCE

DATA PROCESSING TASKS
MAPPED TO RESOURCES

SYSTEM
SIMULATION

—— s
l Y
I MAPPING FROM DATA
™ PROCESSING TASKS TO
INSTRUCTION LISTS

.
l

I

| l
|

l

.

ARCHITECTUR

APPLICATIONS PROGRAMS
(LISTINGS)

MAPPING FROM
INSTRUCTION LISTS TO
INSTRUCTIOWN STREAMS

SEQUENCE
CONTROL

FTyY

v

: MAPPING FROM
INSTRUCTION » INSTRUCTION STREAMS

[3

SEMANTICS TO COMPUTER EVENTS
COMPUTER
EXECUTION SYSTEM
SIMULATION TIMING
SIMULATION
I L4
SYSTEM
ANS}”ER PERFORMANCE
]
CORRECT ANSWER

The execution-oriented model performs the map-
ping from data processing tasks to instruction

Winter Simulation Conference 679

STRUCTURAL APPROACH TO SIMULATION ... Continued

streams in two steps, as denoted by the dashes in
Figure 3. The data processing tasks are presented
to the simulation program in the form of listings of
applications programs to be executed. These list-
-ings are converted to the dynamically characterized
instruction traces of the level 2 model via the map-
ping of the second box of Figure 3; this mapping
uses program sequence control information such
as results of tests of variables from the execution
sirhulation of the computer simulation. The map-
ping from instruction streams to computer events
of the level 3 model is a refinement of the mapping
of the level 2 model which introduces instruction
semantic information for the execution simulation
component of the computer simulation. For
instance, an ADD and a SUBTRACT instruction are
usually equivalentin a level 2 model, though they
may have very different effects on the sequence
control and 'answers of a program. Thus, Figure 3
indicates the provisions of the model for these new
inputs and outputs. The bottom box also emits a
new aspect of performance evaluation, the simu-
lated answer, for comparison with the correct
answer. This is the most we can expect a simula-
tion to do.

WORKLOAD MODELING

It is apparent in Figures 1 through 3 that a signifi-
cant effort is involved to refine the system work-
load in this structural approach as the computer
system design progresses. In reality, the refine-
ment of system workload specification parallels the
software design process. Thus, the aspects of
workload to be specified at each level of model
development correspond to the natural progression
of real-time software development. At levell, the
computational processes induced by real-world
events are defined and are coordinated by assign-
ing them to. available resources via the executive
program, At level 2, the system workload is
characterized by refinement of the applications
programs, which are elements of the level 1
processes, into sequences of instructions. These
sequences are based on estimates of instruction
mixes as represented by traces of programs; they
are rarely given explicitly, but are generated using
Monte Carlo methods. A level 2 simulation pro-
gram also requires sufficient information about
each instruction to be simulated in order to time it
properly. For instance, a floating point addition
execution often depends on the number of shifts
necessary to equalize exponents; workload genera-
tion would require the association of a shift count
with each floating point addition. Also, the level 2
model requires a refinement of the resource utili-~
zation of each workload component. While the
level 1 resources of processors, memories, etc.,
were utilized by the workload components of jobs,
messages, etc., the level 2 resources are com-
puter functional units, as defined by the architec-
ture, which are utilized by the level 2 workload
component of instruction entities. Processing the
workload is viewed as a series of computer events
whose time is measured.

Level 3 requires no further workload refinement
except to initialize the variables to be processed

December 5-7, 1977

S L SR I R I A 1
by the simulated system. The generation of the
sequences of instructions which trace the execution
of the simulated program is accomplished by the
simulation program itself. Thus, the information
which is a part .of the workload specification of a
level 2 model is integrated into the computer sys-
tem simulation in a level 3 model. - Using the
floating point addition example, the shift delay to
equalize exponents is determined by processing the
actual operands and using the instruction semantic
characterization to determine the delay. Figure 4
helps to illustrate the relationships among work-
load specifications for the three model levels;
levels 2 and 3 are different refinements of level 1 _
workloads with approximately the same amount of
detail.

FIGURE 4. WORKILOAD SPECIFICATION FOR

MODEL LEVELS

REAL-WORLD
EVENTS

INPUT TO LEVEL 1

SPECIFICATION
FOR LEVEL 1

b 4

MAPPING TO DATA
PROCESSING TASKS/
RESOURCE PAIRS

INPUTS TO LEVELS 2,3 | PROGRAMS/

PROCESSORS
SPECIFICATION SPECIFICATION
FOR LEVEL 2 FOR LEVEL 3
\ 4 h 4
MAPPING TO 'MAPPING TO
INSTRUCTION EXECUTABLE
COUNTII%SI’;RUCTION PROGRAM

; !

INSTRUCTION INSTRUCTION LEVEL
STREAM PROGRAM LISTING

To avoid haphazard development of workload levels
it is necessary to structure the workload genera-
tion process along the lines of the mappings indi-
cated in Figures 1 through 3. In this way, the
same top-level workload used in the level | model
can also be fed into the lower level models, pro-
viding workload consistency as well as model con-
sistency from level to level. Another advantage of
this structure is that the workload refinement for
the simulation program can be implemented using
a table-driven, automatic system; Figure 5 of [2]
illustrates such a system for CSP II. Figure 4 is
an idea of how a workload refinement system might
go from level 1 to levels 2 and 3. At level d,
workload specification associates a process with a
real-world input; the process is characterized by
a flowchart of its tasks and the resources they
utilize. This characterization is suitable as input
to the levels 2 and 3 models, but it must be fur-
ther refined to the instruction level to drive the
computer simulation in both of these models. The
mapping to refine the workload of a level 2 model
might be a characterization of a task as a specific

number of in structions of a certain mix, as in
Figure 4. The workload of a level 3 model must
be an executable program which halts after exe-
cuting a certain number of instructions, given
legal input.

While workload refinement is an important aspect
of workload modeling, it is also necessary to
design the workload format so that it need not be
redesigned with changes in the computer system
design or even with new design efforts, and so that
it can be used at all levels, This problem was
solved during the design of CSP II; thus, [2] should
be consulted for further discussion,

ORGANIZING THE SIMULATION EFFORT

Though the importance of the proper structure for
the simulation programs and their workloads should
not be ignored, coordinating the generation of the
model phase-by-phase presents difficult problems
not solved by prior experience. The typical multi-
model generation effort has flowed as in Figure 5,

TYPICAL MODELING EFFORT

FLOWCHART
(GO >
vy

SYSTEM | SYSTEM
MODELERS DESIGNERS

®

FIGURE 5.

SYSTEM
~ MODEL [T

vy

COMPUTER
DESIGNERS

| | ARCHITECTURE ARCHITECTURE
MODEL *1 MopeLers ¢

Y

‘v

[~ IMPLEMENTERS

"Horizontal” information flow in this diagram is
quite efficient, while ''vertical' information flow is
inefficient and unreliable when the model is in the
loop. The structured simulation effort lends

itself to a more effective organization, represented
in Figure 6.

|__|IMPLEMENTATION
MODEL

IMPLEMENTATION
MODELERS

Horizontal and vertical information transfers are
both facilitated using this structure. Flow among
designer groups is as before. Flow among models
can occur in two modes:

1. In the generation mode, the system model
is first developed and saved (level 1).
Next, it is refined into the architectural

- model and saved (level 2). Finally, the
architectural model is refined into the
implementation model and saved (level 3).

FIGURE 6. STRUCTURED MODELING EFFORT

FLOWCHART
(GO)
I 1 v

SYSTEM
MODEL

!

ARCHITECTURE

—1
|

SYSTEM
DESIGNERS

y 1

COMPUTER »

wImMrmoo=

MODEL DESIGNERS
{MPLEMENTATION IMPLEMENTERS

MODEL

T

|
do_1 1

I

|)

Y

(sTOP }

2. In the revision mode, the flow depends on
which level requires revision. Revision
at the system level requires the altered
component to be modeled at all three
levels using the structured approach as in
the generation mode. An architectural
revision not affecting the system model is
implemented at levels 2 and 3 in a struc-
tured manner. Finally, implementation
changes need only affect the implementa-
tion model, level 3.

Flow among modeling groups, in the structured
effort, is implicit. The diagram pictures the
modelers as a cohesive group, a departure from
past, unstructured efforts. In the past, simula-
tion was performed by system designers, compu-
ter architects, and hardware/software designers
assigned to a modeling task. In a structured
effort, all levels are implemented by a single
modeling group able to converse with those three
groups; this group need only be able to program in
ECSS/SIMSCRIPT. The modeling group should be
attached to the project organization — not divided
among the three design suborganizations ~ and
headed by a 'chief modeler,' analogous to the
!'chief programmer" of structured programming.
The modeling group is allocated in the natural way
during the two modes of model development (see
above). Such an organization of the modeling
effort will facilitate the blossoming of simulation
as a key to a computer system design effort,

COST FACTORS

While there is little doubt that the nonrecurring
programming cost of a structured simulation effort
is less than for the traditional approach, it has
been found that the level 3 simulation program of a
high-speed computer system may possess run~
time inefficiencies which limit its utility. Even a
partially structured model development which
refined .a simulation from level 2 to level 3
incurred computer charges of approximately $.01
per instruction and was thus used only for

Winter Simulation Conference 681

STRUCTURAL APPROACH TO SIMULATION ... Continued

time-critical benchmark routines. One might modeling of workload, model levels and their
therefore expect that a microinstruction level ver- development, and life cycle cost — and improve the
sion of the model might be used even more spar- baseline disclosed above. Through experience in
ingly. Of course, such experiences with simula- observing the traditional approach, we are con-
tions of computers with complex, highly parallel vinced the top-down method must eventually
architectures can hardly be extrapolated to the cur- succeed.

rent microcomputer generation. - A microcomputer
or a network of microcomputers, limited by

advancing technology to a cost-effective life of only REFERENCES

a few years, will likely present a positive case for

the economical use of a three or four level struc- [1] Kosy, D. W., "The ECSS II Language for
tured model design. For other computer systems, Simulating Computer Systems, " RAND Corp.
the level 1 to level 2 refinement will be justifiable, Report R1895-GSA, December 1975,

while the lower level or levels may depend on the
expected use of the models of that detail.
[2] Iwata, H. Y., and Cutler, M. M., "CSP II -
A Universal Computer Architecture Simulation

CONCLUSIONS System for Performance Evaluation, " 1975
Symposium on the Simulation of Computer
A new approach to supporting an entire computer Systems, pp. 196-206.

system design effort by top-down development of a
single simulation program has been described.

Through experience in applying this approach, we [3] Willis, R. R., "Structured Model Develop-
will be able to evaluate its various components — ment Techniques, ' 1974 Symposium on the
project organization, simulation language, the Simulation of Computer Systems, pp. 133-144,

682 Dpecember 5-7, 1977

