-

__A SIMULATION STUDY OF ADAPTIVE SCHEDULING POLICIES

IN_INTERACTIVE "COMPUTER 'SYSTEMS

INTRODUCT I ON

Recently, some work has been done in the area of
dynamically adaptive scheduling In operating systems
(i.e., policies that will adjust to varying work-
foad! conditions so as to maximize performance) [4],
(51, Ctol, Ci1dJ. However, most studies deal with
bat¢h~oriented systems only. The University of Bri-
tish Columbia operates an I1BM 370/168 running under
MTS (Michigan Terminal System) which is principally
used interactively. [+ has been known for some time
that the system is Input/Output bound. The main
goal of this work is to determine to what extent a-
daptive control, particularly as related to proces-
sor scheduling, can improve performance in a system
simllar to U.B.C.'s. Simulation is used throughout
the study and because of this, the simulator and the
workload are described in some detail. The target
machine is a somewhat simplified version of the
U.B.C. System.

WORKLOAD MODEL

Since the performance of a computer system depends
not only on +he system but also on the workload that
drives it, part of the research is in the develop-
ment of a suitable workioad mode!. The basic re-
quirements of the mode! are:) 1+t should be real-
istic (i.e. closely represent the actual workioad
not only in total system resource demand but also in
the order of these demands), 2) i+ should be con-
venient to use (i.e., the real workioad can be easi-
ly expressed in terms of the model and the model Is
readily modifiable), 3) it should be compact and
concise (i.e., the execution of the workload does
not require excessive CPU time). The real workload
itself Is not a suitable mode! because it is not
concise, nor is it easily modlfied for experimenta-
tion. The traditional resource demand mode! [9],
where the workload is expressed in terms of gross
resource demands often drawn from distribution .
curves, is not acceptable because it is not realis-
tic. In an interactive multiprogramming environment,
where many processes are competing for limited re-
sources, the order in which the demands arrive sig~
nificantly influences the performance of the system
and. mosT resource demand models do not model this

(4 “Workitoad-is: defined as-the coltection of pro~

- grams, data @and commands users ‘input into the system

‘o satisfy their information processing needs.

Samuel T. Chanson and Craig D. Bishop

Department of Computer Science,
The University of British Columbia

well. The problem Is in the assumption of the in-
dependence of the statistical distributions used.
What is needed are joint distributions relating the
different variables, but these are not practically
constructable because of the complexities of inter~
actions amongst these variables.

Our workload is expressed in a language in between
a high ltevel language and the conventional resource
demand mode! and is based primarily on [6]. It al-
lows the specification of CPU and 1/0 device usage
through assembler style commands. Each 1/0 command
specifies a device class, type of operation, infor-
mation blocks to be transferred and the associated
CPU usage. Other instructions allow repetitive
constructs, user tefminal interaction and strict
CPU usage to be specified. A given real workload
can be translated into this workload specification
in a straightforward manner (see [6]). The mode!
preserves as much information as possible about the
complex interrelations befween various demand para-
meters, while allowing the workload to be expressed
in a more concise form than the real workioad i%-
self.

To reduce the overhead associated with the use of a
page reference string to determine page faults,
page fault behaviour is simulated by a distribution
which the user can specify (see below).

To construct the workload, the MTS users at U.B.C.
were monitored and classified info 6 categories
according to their resource demand characteristics:

(1) system programmers (fairly heavy CPU and 1/0
users)

(2) application programmers with heavy CPU demands

(3) beginning students (jobs are small and usually
tittle or no file activity is involved)

(4) wusers whose main activity is creating and
editing files

(5} the typical moderate users who wil! edit a
file, compile it, and execute it.

- (6) :users characterized—by-large dhink times and

small CPU and 170 demands

A number of jobs for each class of user are con-
structed based on their monitored request patterns.

Winter Simulation Conference 635

Adaptive Scheduling Policies (Continued)

Theraggregate -of these jobs forms the standard
-workload for subsequent experiments.

THE SIMULATOR

The simulator [3] i written in GPSSV interfacing
with the user through a high level programming lan-
guage. It consists of three main modules:

(1} the system specifier, which accepts a descrip-
tion of the hardware configuration and charac-
teristics of the system In English-style
statements. Thus, one can specify the amount
of main memory, the number of processors, the
number and hardware characteristics of each
type of disk and drum, the number of device
controllers and channels and their intercon-
nections, the chosen algorithms under test,

" etc.,

(2) the workload definition assembler, which ac-
cepts a description of +he workload as out-
lined in the previous section,

(3) the main simulator, which simulates the execu-
tion of the workload on the hardware speclfied
and produces various statistics about selected
performance indices.

The major. global performance index chosen is the
distribution of response times? as this is the fac-
-tor which is of prime importance fo the interactive
user. Other statistics include the utilization
factors of the various systém resources such as
processor{s), channel(s), device controller(s), 1/0
device(s) and main memory as well as queue statis-
tics of the tasks awaiting these resources. Be-

cause our system is know to be 1/0 bound, the en- Lo

tire 1/0 system is simulated in detail. Thé loca-
fions of files on disk as well as the positions of
the read/write heads are maintained so that seek
and latency times can be accurately detérmined.

The sequence of requests for channels, controllers.
and devices are properly simulated and conflicts
are resolved in the manner described in[|]. Three
major simplifications are made:

(1) +the privileged task® is not simulated

(2) the only 1/0 devices simulated are disks,
drums, and terminals

(2) Response time is defined as the interval be-
tween the completion of a command input to the
computer system and the output of the first
meaningful response as a consequence of that
command.

(3) In MTS if the number of pages requested by a2
task exceeds a certain limit, and if -the num-
ber of privileged tasks has not exceeded a
maximum,; then the task becomes priviledged and
can-have' unlimited pages invmaln memorys [t
-also gets amuch larger—-time quantum-based on
‘the number of priviledged fasks in the system
at the time. .

December 5-7, 1977

(3) page faults are generated from a user specified
dTstribution -rather than'by page “reference
string simulation because of the costs involved.

A consequence of the last point Is that the page
fault behaviour of all processes is statistically
identical and 1s independent of other system re~
source demands. This can have an adverse effect on
the vallidity of simulated results in certain areas
of study (see Conclusion). Further work is being
done on the efficient and accurate simulation of

paging.

E05 details on the structure of the simulator see
3].

VALIDATION OF THE SIMULATOR

This is an extremely difficult problem. We have not
been able fo prove that the simulator functions cor-
rectly under all conditions, but we feel that it mo-
dels actual events reasonably closely.

Each section of the simulator Eas been individually
tested with input workloads whose characteristics

,produce predictable results so that simulated re-

sults can be compared with predicted performance.
The resul+ts of queueing theory were compared against
simulated results of some queueing systems in the
mode! and this led to the discovery of several er-
rors. After the initial debugging stage, a workload
was constructed consisting of 45 jobs (eguivalent to
a medium workload on the U.B.C. system) using the
method outlined earlier. This workload was then
used to drive a simulated U.B.C. MTS system. The
simulated results were then compared to the known
system behaviour under similar work{oad conditions.
The differences in performance characteristics were
always less than [5% which is quite acceptable.

The known system characteristics include various
resource utilization factors, mean queue lengths for
resources, and the rates of disk and drum usage;
however, the response time distribution is not kept
by the computing centre and is not available for
comparison. We feel though that the simulated re-
sponse time distribution is quite reasonable.

This process. was. then repeated with a workload com-

posed of 63 jobs (representing a heavy workload) and
the results obtained were equally encouraging. Then
experiments were performed with different scheduling
policies using the heavy workload since it Is under

this condition that performance is particularly im=-

portant..

THE INTERACTIVE ENVIRONMENT
We observe that in an interactive environment, since

a J'obl+ is broken into a sequence of small tasks
(requests), the requests from compute and 1/0 bound

(4)'4a job ¥n an interactive environment.is defined
in *this paper as the set of imteractions from
a terminal from sign-on +ill sign-off.

Jobs at any instant may be very similar in charac-
teristics. Furthermore, these characteristics may
change abruptly from request fo request even for the
same job. Page faults often reduce a single large
~CPU.:reques# into several smakler ones-inferieaved
~With paging drum 1/0. It'is “therefore much more
~difficult o predict the characteristics of indivi-

.dual requests whereas -it is relatively easy to pre- _

. dict the behaviour.of entire jobs .in batch-oriented
sysitems. Since almost all.adaptive algorithms are
based on the assumption that the request pattern of
the immediate future is similar to that of the re~
cent past, the performance improvement attained by
changing the software alone (e.g., using a differ-
ent resource management algorithm) as opposed to
that gained by hardware changes (e.g., the addition
of more memory) is relatively small (up to about
15%). The exception to this is when one uses an ex-
tremely inefficient algorithm such as round robin
with an infinite Time quantum as the basis for com-
parison. Table 5 exemplifies this. In an interac-
tive system, minimizing the mean response time
should not be the oniy concern. As the majority of
requests are small ard users with large requests are
more willing to wait, there should be some guarantee
that short requests will be satisfied within a rea-
sonably short time (0.5 sec., for example). Hence
an important index should be the mean of those re-~
sponse Times less than the X percentile for some X.
The average of the response times less than the fif-
tieth percentile [denoted by RES(50%)] is chosen as
another global performance index in this paper. A
good algorithm should not reduce the mean response
time at the expense of RES(50%).

ADAPTIVE SCHEDULING POLICIES

MTS uses basically a round robin (RR) scheduling al-
gorithm [2] with a fixed quantum (set to 10 msr at
U.B.C.). Tasks blocked for /0 (including page
faults) will rejoln the head of thé ready queue so
as to favour 1/0 bound interactive jobs and ensure
that tasks requiring less than one time quantum will
pass through the queue only once.

A. ROUND ROBIN WIiTH VARIABLE QUANTUM LENGTH (RRVQ)
I+ seems logical that when the number of tasks in
the RR queue is small, a larger quantum should be
assigned. This would reduce the number of process
switches and improve throughput, yet maintain the
response time of small tasks at an acceptable level,
On the other hand, if the number of ready tasks is
large, the quantum should be reduced to keep the re-
sponse time of short tasks low. Of course upper and
lower |imits on the quantum must be established.
Some work has been done in this area for batch-
oriented systems [5] and a considerable improvement
in throughput under certain conditions is reported.

The most obvious implementation of this concept in

an RR scheduling algorithm is to recompute the quan
tum after every interval T according to the expres-
sion:

-maxEQm?nmeax/L])

» .where L= number of:tasks in the ready:queue .
Omin = a constant = time quantum lower bound
Qmax = a constant = timg_guanium unper bound

TABLE I
Performance of RRVQ with different
values of Omin_and Qmax.

QMIN QMAX RES RES(50%) #PROCESS

POLICY (MS) (MS) (SEC) (SEC) SWITCHES
RR - - i.8l .31 227/SEC

RRVQ 10 60 1.83 .36 196/SEC
RRVQ 10 50 1.77 .32 209/SEC
RRVQ 10 40 1.75 .30 211/S€EC
RRVQ 10 30 .1.85 .33 219/SEC
RRVQ 8 .40 . ,1578 “530 - 229/SEC

This method is unable to adjust to the Instantaneous
workload change. For example, if at time Tl there
are only 3 tasks in the ready queue, thetime quantum
will be set to Qmax/3. If 20 short tasks then join
<thewready queue-immediately, -each widl s¥ill recelve
ra quantum of Qmax/3 instead of:the more appropriate
“Qmax/23 or-Qmin (whichever-is larger) until T runs.
out. Even so, all-=tasks executed before T runs out
will get ancinapprepriately large-quantum even
though the gueue length has-fncreasedat the time
the tasks are scheduled. The scheme described below
will overcome this deficiency and 1s easier to im-
plement because in the previous scheme the expira-
tion of T need not coincide with the termination of
a task.
. The basic RR scheduling algorithm is modified so
that when a fask is 1o be removed from the ready
queue and assigned the processor, it is given a time
quantum according to expression (A) where L, Qmin
and Qmax are as before. Thus the time quantum is
computed for each task based on the instantaneous
workload at the Time the task Is assigned to the
processor. |t can be shown that this scheme per-
forms at least as well as the previous one. Despite
this, however, the algorithm is unable to deal with
unusual circumstances such as when a large number of
short requests joins the ready queue right after the
single task in the queue is assigned Qmax. In this
case, the short tasks are delayed by Qmax instead of
Omin as they would have been if they had arrived
slightly earlier. Another example Is when there are
only relatively large jobs in the system and a large
quantum should be used for all of them [51. This
scheme, however, is unable to predict the size of
Jjobs. These are inherent weaknesses in algorithms
that do not discriminate befween different job types.
To overcome this a radically different approach must
be used. The performance improvement over the basic
MTS RR scheduling algorithm is small (Table). No-
tice that if the values of Qmin and Qmax are not set
properly, the mean response time will actually go up.
However, this sequence of simulation results does
show that varying the quantum length with respect to
the number of tasks awaiting the processor can reduce
the global mean response time as well as the response
time for smal! tasks.

*" RES =vmean global~response time
RES(50%)

mean of response times less than the
median

Winter Simulation Conference 637

638

Adaptive Scheduling Policies (Continued)

B. MULTIPLE FEEDBACK DISCIPLINE (MF)

The multipline feedback discipline is also known as

“the: shortest-attained-CPU~time first algorithm. In

this algorithm,..there is an ordered set of queues
used for CPU scheduling. When“the CPU- becomes free,
the task at-the“head of +he” fowest numbered nori-
empty queue is scheduled. I it does not complete
In one time quantum, it is placed at the end of the
next higher numbered queue unless the present queue
is the highest numbered one, in which case the task
s returned to the end of the same queue. After an
{0 operation, a task is placed at the head of the
queue it was last in, unless the 1/0 operation is a
terminal interaction, in which case the beginning of
8 new request Is signified and the task is placed at
the end of the first queue.

This scheme also favours interactive and 1/0 bound
tasks. In addition it has the effect of dynamically
classifying tasks according to the amount of CPU
time they have recesived and assigns lower priority
to those that have recesived a large amount of CPU
time. This is based oh the observation that tasks
receiving a large amount of CPU time have higher
probability of requesting even more CPU time. In
order that tasks jn the upper queues will not take
too long fo complete, a larger quantum is usually
assigned to them. A common method is to assign a
quantum of length QUI)*N**{ +o tasks in queue i
where Q(1) is the quantum associated with the lowest
numbered queue and is known as the basic time quan-
tum, and N is a constant greater than or.equal o
I known as the multiplicative factor. Thus when a
task in an upper queue gets-to run (i.e., when there
are no -tasks in the lower queues), it is given a
larger quantum. A multiplicative factor of 2 is
common in MF type algorithms. We have found that
the value of this factor will affect performance and
that the optimal value differs from workload to
workload. The optimum differs also if we refer to

RES or to RES(50%).

In general, increasing this factor will increase the
response times of short tasks because they may be
delayed by tasks just given a large quantum. The
response time of long tasks will drop so the vari-
ance of the response time of the job mix will de-
crease. When N is small, more medium=size tasks
migrate to the top queue and are thus classified
with the large tasks. Their response time will go
up whereas that of long and short tasks will de-
crease. A detailed study fo relate the optimal mui-
tiplicative factor to the workload is underway.

We belleve that the multiple feedback discipline is
basically a better scheduling policy than RR, and
in no case is performance worse than the MTS sche-
duling policy (Table 2).

C. 90% RULE (NPR)

In an-inferactive environment, a good ruie of +humb.
is that at least. 90%. of all .requests.should be com-
pleted within a singte time -quantum. 7). This en-
sures that the number of process switches will not
be unreasonably large. In reguiating so that 90%

December 5-7, 1977

18

TABLE 2
" Performance of the 5-Queue MF -with
.. different Multiplicative Factor,

RES RES(50%) #PROCESS
POLICY N (SEC) (SEC) SWITCHES
RR C - [.8} 3F 227/SEC
MF .8 1.76 .28 378/SEC
MF 1.0 1.72 .27 231/SEC
MF 1.5 1.75 .28 149/SEC
MF 2.0 1.76 .29 136/SEC
MF 2.5 171 .29 130/SEC
MF 3.0 1.73 .30 127/SEC

N =Multiplicative Factor
RES and RES(50%) have same meaning as in Table |

of the tasks do not recycle into the second queue,
queue waits will be decreased for small requests.
This also ensures that large non-trivial tasks will
get a reasonably-sized quantum and hence a tolera-
ble response time. A new adaptive scheduling algor-
ithm has been derived for use in conjunction with
the M F discipline based on the above observation.
The basic time quantum Q(1). is increased by a fixed
amount delta Q if in the previous T units of time
the proportion of tasks to leave the first queue
without joining the second queue is less than L, a
fixed lower bound. This proportion includes those
leaving queue } for 1/0 as well as +hose +that have
finished their first quantum. If that proportion
exceeds U, a fixed upper bound, then Q(1) is de-
Creased by delta Q. If no task leaves the first
queue or [f the proportion lies between L and U
then Q(I) is unchanged. Q(I) is not allowed to
fall below Qmin or rise above Qmax. A sequence of
simulations was performed with different values of
L and U and the results are shown In Table 3. No-
Tice that both global mean response time and the
mean response time of small tasks decrease.

The adaptive scheduling algorithm has several de-
sirable characteristics. Firstly, since the. propor-
tion of tasks in the higher numbered queues is more
or less constant, the value of the nultipiicative
factor N has much less effect on mean response
time. That is, it is harder to choose a bad value
of N. ~The 90% rule is more robust (i.e., less
likely to break down) than the RRVQ because it is
more conservative for one thing. At each decision
point, a small but fixed quantity Is added or sub-
“tracted from the quantum size. Therefore a single

-wrong decision cannot have-a great impact on .system
-:performance.

‘Its effect can be corrected =t the
next decisdon point. More consideration is paid to

~the global .workload 'condition because the schedul-

ing decision is based on the activities within an
interval of time and on global CPU demand rather

TABLE 3

Performance of 90% Rule(NPR) with different
values for the upper(U) and lower(L) bounds.

L U MPQ RES RES(50%) #PROCESS
POLICY (%) (%) (%) (SEC) (SEC) SWITCHES
RR - - - 1.8l .31 227/sEC
NPR 87 93 90 1.70 .27 130/SEC
NPR 88 96 91.3 |.67 .28 128/SEC
NPR 92 95 9l.4 1.68 .28 129/SEC
NPR 95 95 9I.5 [.76 .29 129/SEC
NPR 92 98 94.1 1.65 .29 128/SEC|

No. of Queues = 5
Mult. Factor = 2 .
MPQ = percentage of tasks that completed in |

quantum
delta Q = 2ms
Qmin = 4 ms
Qmax = 25 ms

RES,RES(50%) have same meaning as in Table I,

than on the number of tasks in the ready queue at
any instant. Thus it is able to handle the situa-
tion when a large number of small tasks follows a
large task. The single large task will not be giv-
en a large time quantum as it would be under RRVQ
and it will quickly leave the first queue, out of
competition with the small tasks. The situation of
large jobs only in the system can be handled as the
quantum will increase in this case. Workloads for
the two situations discussed above were constructed
and run under the NPR and the RRVQ. Simulation re-
sul+s showed that the mean response time under such
situations could improve drastically (up to several
hundred percents in some cases) with the NPR. The
initial value of Q(I) is not important and need not
be set accurately because it will be dynamically
adjusted to suit the workload. In RRVQ however,
since Qmax is a constant, it is important that it
be set correctly. The choice of T though, re-

quires some thought: too large a value will render
the scheme insensitive to workload variation, too
small a value will make the scheme unstable and in-

crease the number of process switches. We have
chosen T +to be 0.5 second. An exponentially=-
weighted average of several time periods in the
past may make the scheme even more robust. If L
and U are chosen too high, the scheme becomes in-
sensitive to variation in request pattern; 1f cho-
sen too low, short tasks will suffer. For most
workloads, the CPU demand can be approximated by an
exponential distribution [12]. In this case, L
should be about 90%, hence the name for this sche-
duling policy.

DYNAMIC CPU VS. 1/0 BALANCING (DCIOB)

It is observed that whenever there is a congestion
in some queues in the system, there is a corres-
ponding slack in other queues. The explanation of
this -phenomenon is simply that +he number of pro-
cesses competing for resources In a short period of
time is more or less constant. Thus we observe that
when an algorithm reduces the mean CPU queueing timg
the mean 1/0 queueing time is usually increased, and
vice versa. More work will be accomplished if the
utilization of the CPU and |/0 systems are balanced
[8]. Thus if requests for 1/0 begin to build up,
1/0 bound tasks should not be scheduled for the CPU.
‘Instead, tasks with large CPU demand should be sche-
duled reducing the probability of sending more re-
quests for 1/0 to the already congested 1/0 system
(i.e., if we cannot help the response time of /0
bound tasks, maybe we can improve it for CPU bound
ones).

"‘To test out this idea, we have To answer two ques-
tions: (1) when is the 1/0 system congested? and
(2) which are the tasks with large CPU demand? We
assume that the /0 system is congested if the num-
ber of 1/0 requests at any instant exceeds a certain
fixed upper bound. We also assume that tasks at the
higher level queues in a multiple feedback schedul-
ing policy have higher probability of being CPU
bound. Thus the multiple feedback discipline is
modified to schedule the first task in the highest
numbered non-empty queue if the number of 1/0 re-
quests exceeds an upper bound (U). The standard MF
scheduling policy is used if this number falls below
a lower bound (L). The results are shown in Table
4.

TABLE 4

Performance of Dynamic CPU vs. 1/0 Balancing
with different values of upper(U) and lower
(L) bounds on number of tasks waiting for 1/0.

RES RES(50%) #PROCESS

POLICY U L. (SEC} (SEC) SWITCHES

RR - - .81 .31 227/SEC
DCcl10B 15 I3 1.76 .28 139/SEC
DCIOB 16 15 1.75 .27 141/SEC

N pcios 17 16 1.70 .28 140/SEC
DCiOB 18 17 1.72 .29 138/SEC
DCIOB 19 18 1.77 «29 137/SEC

(5 level MF with multiplicative factor=2)
RES,RES(50%) have the same meaning as in Table I.
I+ is found that the optimal upper and lower bounds
are very dependent on the characteristics of the

—-workload -and are pertaps notsa good .indication of
1/0 congestion. The U.B.C. system has {2 user

‘Winter Simulation Conference 639

640

-existing non-trivial schemes. -

Adaptive Scheduling Policies (Continued)

accessible disks attached to 2 block-mui+tiplexor
channels; hence the '[/0 wait time depends less on
the total. number of |/0 requests than on the number
of requests for the same disk (MTS uses a FCFS disk
scheduling policy). The 1/0 wait timé has dropped
using DCIOB as expegted, but CPU wait time is in-
creased as the large tasks, when scheduled, may
hold up the execution of short tasks. This scheme
will probably work better for systems with a smali
number of disk drives. ‘Nevertheless, the simula-
tion has shown that this attempt to balance system
utilization can reduce the mean response time.
These results are at least as good as those in
Table 2.

CONCLUSION

Several adaptive prlocessor-scheduling policies have
been presented. The muitiple feedback discipline
is shown to be inherently suparior fo the round-
robin algorithm and with the addition of quantum
variation using the 90% rule shows a 12% Improve-
ment over the existing MTS scheduling algorithm
which is felt to be reasonably efficient already.
This scheme is shown to be more robust than RRVQ
and the overhead induced is comparable to that of
In some cases the
overheads are more than compensated for by the re-
duced overheads of process switching. The data
presented in this paper do not include overhead
tTimes. Overall CPU overhead induced by the differ-
ent algorithms was estimated from the number of in-
structions necessary to collect and analyse the data
to simulate the algorithms and from the actual CPU
time spent in doing so. They are found to differ
only slightly (the maximum difference was under 2%
of the mean response fime) for al!l schemes des-
cribed in this paper., Furthermore, since for most
schemes, data are collected and analysed each time
a process switch occurs, the number of process
switches per uniif time is related to the amount of
overhead induced, Since a process switch in a time-
shared environment is always associated with paging
activities, it is our opinion that a scheme which
minimizes process switches is likely to induce low
CPU and 1/0 overheads.

Incorporating information about 1/0 utilization in-
to the processor scheduling policy appears 1o be a
sound concept except that a concise and workload
invariant formula for computing the expected 1/0
wait should be used. Table 5 compares thé perfor-
mance of the various algorithms discussed in the
previous sections. The data represent the best si-
mulation results of each scheme and some data have
not been -listed In previous tables. Since the rate
of page faults is kept unchanged for different
scheduling policies because the same distribution
curve is used, it is felt that the actual improve-
ment of the adaptive policies would be higher than
reported here. This is because the page fault rate
should decrease when the rate of process switches
drops, thereby reducing response times. This study
shows that adaptvie scheduling algorithms need not
involve excessive overhead and can improve perfor-
mance in interactive as well as batch-oriented sys-
tems.

December 5-7, 1977

TABLE 5
Comparison of different scheduling algorithms.
RES RES(50%) #PROCESS
PoLICY (SEC) (SEC) SWITCHES
RR,Q=INFINITY 3.80 .60 101/SEC
MTS RR, Q=FOMS }.81 31 227/SEC
RRVQ, QMIN=]0OMS 1.75 .30 21 1/SEC.
QMAX=40MS
MF, MULT.FACTOR=2.5 1.71 29 130/SEC
pDeloB, U=17 L=16 1.65 .28 140/SEC
MULT.FACTOR=2.5
NPR,MULT.FACTOR=2.5 1,59 .29 125/SEC

RES,RES(50%) have the same meaning as in TABLE |I.
No. of Queues=5 for MF, DCIOB, and NPR.

ACKNOWLEDGMENT

The authors would like to thank John Hogg of the
UBC Computing Centre. systems group for information
about the MTS system and D. Ferrari and the refer-
ees for their valuable comments. This work is sup-
ported by the Canadian National Research Council
under -contract A3554.

REFERENCE

. 1BM System/370 Principles of Operation, GA22~
70000-4 File No. S/370-01, September 1974.

2. Alexander, M. T., "Organization and Features of
the Michigan Termina! System," AFIPS Conference
Proceedings, Vol. 40, SJCC, 1972.

3. Bishop, C., SIMCOM User's Manual, Technical

- Manual 76-14, October 1976. Department of Com~
puter Science, The University of British Colum=
bia. .

4. Blevins, P. R. and Ramamoorthy, C. V., "Aspects
of a Dynamically Adaptive Operating System,"
|EEE Transactions on Computers, Vol. C-25,

No. 7, July 1976.

5. Bunt, R. B., Self-Regulating Schedulers for
Operating Systems, Technical Report No. 76,
January 1975, Department of Computer Science,
University of Toronto.

6. Chanson, S. T., Workload Characterization of
MulfTiprogrammed Computer Systems, Ph.D. Thesis,
University of California, Berkeley, 1974.

7. Chanson, S. T. and Ferrari, D., "A Determinis-
tic Analytic Model of a Multiprogrammed [nter-
active System," AFIPS Conference Proceedings,
Vol. 43, NCC, 1975.

12,

Denning, P. J., "Equipment Configuration in
Balanced Computer Systems," I|EEE Transactions
on Computers, Vol. C-18, No. I, 1969.

Kernighan, B. W. and Hamilton, P. A., "Synthet-
ically generated performance Test lLoads for Op-
erating Systems," Proceedings, First SIGME Sym-
posium on Measurement and Evaluation, February
1973,

Marshali, B. S., "Dynamic Calculation of Dis-
patching Priorities under 05360 MTV," Datama-
Tion, August 1969,

Ryder, K. D., YA Heuristic Approach to Task Dis-
patching," IBM System Journa!l, Vol. 9, No. 3,
1970.

Scherr, A. L., An_Analysis of Time-shared Com-
puter Systems, Ph.D. Thesis, Department of Elec-
trical Engineering, M.1.T., Cambridge, Massachu-
settes, June 1965,

Winter Simulation Conference

641

