An Improved Events List Algorithm

ABSTRACT

One of the basic overhead activities necessary to
carry out a discrete event simuiation is the in-
sertion and deletion of event notices (trans-
actions) in/from the event 1ist (future events
chain). The ‘insertion of event notices is of par-
ticular interest, because it requires a search of
the event 1ist to determine the point at which an
event notice should be inserted. If a linear
search is used, as is the case with most simula-
tion languages, the time consumed by the search
can grow as N2, where N is the average size of

the event 1ist. In a paper entitled "A Comparison
of Event List Algorithms," authors Jean G. Vaucher
and Pierre Duval (1) evaluated three algorithms as
alternatives to Tinear search. They concluded
that an ". . .indexed 1ist algorithm provides the
best overall performance."™ This paper describes

a new algorithm, based on the indexed list algo-
rithm of Vaucher and Duval. The algorithm is
adaptive to the distribution of event interarrival
times. Results are shown that indicate the algo-
rithm works well with a number of distributions
and that shortcomings of the indexed 1ist algo-
rithms are overcome.

INTRODUCTION

Among the basic overhead activities necessary to
carry out a discrete event simulation are the
functions performed by event scheduling routines.
Unfortunately, the terminology used to describe
event scheduling varies widely among simulation
languages. For example, the data structure which
represents an event is called an event notice in
Simscript 11.5 (2}, but is called & transaction
in GPSS (3). Similarly, the set of future events
has several different names: "events set"
(Simscript I1.5), “future events chain" (GPSS),
“time file" (GASP IV (4)), and "sequencing set"
(Simula 67 (5)). 1In this paper, the terms "event
notice" and "event 1ist" are used.

The operation of a "next event" simulator may be
characterized roughly as follows: ’

1. At model initialization time, one or
more events are scheduled by creating
event notices and merging them into the
event 1ist, in order of ascending time.

James 0. Henriksen

2. Overall control of the simulation is as-
sumed by an executive routine of the simu-
lator (the "timing routine® in Simscript).

3. The executive routine updates the simula-
tor clock to register the time of the
first (earliest) event notice in the event
Tist.

4, The first event notice is removed from the
event Tist, and user-provided code cor-
responding to the particular event is
invoked. This code makes appropriate
changes to the status of the model and may
cause new events to be scheduled. Fre-
quently an-event will schedule the next
occurrence of itself, reusing the event
notice identified in step 3.

5. The user-provided code returns to the
executive routine.

6. If the event list is not empty, execution
continues with step 3. Otherwise, the
simulation is terminated.

" This characterization is an oversimplification of

more elaborate algorithms actually used in some
languages. The Simscript programmer will, for.
example, note that no mention is made of strati-
fication of the event 1ist into event classes.
The GPSS programmer will note that the rather
complex current events chain scanning rules of
that language are completely glossed over. (For
an excellent treatment of this subject, see (6):)
Nevertheless, the characterization provides a sim-
ple framework for further discussion, with enough
generality to be applicable to all discrete event
simulation languages.

Of particular interest in the operation of a "qext
event” simulator is the insertion of event notices
into the event 1ist, because it requires a scan of
other event notices already in the event Tist, in

order to find the proper point of insertion. Most
simulation languages (GPSS,-Simscript, and RASP,

_for example) use a simple Tinear search algorithm,.

or some simple variation thereof, scanning the
event 1ist in order of decreasing event timg. For
many distributions of event times, the mach1qe
time consumed by carrying out such a search is
proportional to N, the average number of event

Winter Simulation Conference 547

An Improved Events List Algorithm (continued)

notices in the 1ist. If K * N events are sched-
uled during the course of a simulation, the
machine time spent scanning the event list can be
proportional to Nc. For models with large values
of N, this time can be significant, if not
dominant. Fortunately, in many cases the distri-
bution of event times is "well-behaved" with re-
spect to search. time, because of a natural tenden-
cy of new events to be scheduled for times very
near thé end (highest time) of the event 1ist.

In a paper entitled "A Comparison of Simulation
Event List Algorithms" (1), authors Jean G.
Vaucher and Pierre Duval evaluated three algo-
rithms as alternatives to Tinear search: the
post-order tree, end-order tree, and indexed list
algorithms. They established two basic criteria
for performance: speed of operation and robust-
ness, i.e., insensitivity of the algorithm to

the statistical distribution of event times being
scheduled. To test the alternative algorithms,
six distributions of event times were used in ex-
periments with each algorithm, with the average
sizé of the event Tist varied from 1 to 200 event
notices. They concluded that the ". . .indexed
Tist algorithm provides the best overall perfor-
formance." Although the indexed list algorithm
provided the best overall performance of the algo-
rithms tested, it has a number of deficiencies.
In the sections which follow, a brief description
of the indexed T1ist algorithm is given, short-
comings of the algorithm are identified, and an
alternative algorithm, based on the indexed 1ist
technique, is presented. Results of timing com-
parisons between the indexed 1ist and new algo-
rithms are presented. Finally, a case study is
presented, wherein the new algorithm was incorpo-
rated into an implementation of GPSS and used to
run a model of a front-end communications
computer,

THE INDEXED LIST ALGORITHM

The indéxed 1ist algorithm has its roots in a
technique used in simulators of digital Togic
circuitry (7, 8). This type of simulation is
characterized by an integer-valued clock and by
clusters of many events occurring at precisely
spaced times. The indexed 1ist algorithm imple-
ments the event list as a circular list, with an
array of pointers to dummy event notices "sched-
uled" at fixed intervals. The following variables
are used in the operation of the algorithm:

CURRENT - A pointer to the "current" event
notice
" DELTAT - The size of the fixed time in-
terval between dummy event
notices
I - Work variable

ICURRENT "~ An index into PTRVEC, corre-
sponding to the first (earliest)
dummy event notice

December 5-7, 1977 i

LOWERBOUND - The base value to which multi-
ples of DELTAT are added

PTRVEC - A vector of pointers to dummy

- event notices

SEARCH - A work variable which points to
the current event notice being
examined

TIME - The simuTator clock

VECSIZE - -~ PTRVEC indices range from zero

to VECSIZE.

Figure 1 depicts the operation of the algorithm
for DELTAT = 1.0 and VECSIZE = 3. To insert an
event notice, the following steps are performed:

1. Compute I = (event time - LOWERBOUND) /
DELTAT.

2. If 1 <« VECSIZE, set I =.VECSIZE; other-
wise set I = (I + ICURRENT) MOD VECSIZE.

3. Set SEARCH = PTRVEC(I) and perform a
Tinear search, in descending time order,
down from the dummy event notice painted
to by SEARCH.

To execute the next event (and update the clock)
the following steps are performed:

1. Locate the event notice for the current
event by setting CURRENT to point to the
predecessor of the dummy event notice
corresponding to time "infinity."

2. If the current event notice is not a
dummy event notice, skip ahead to step 8.

3. Increment LOWERBOUND by DELTAT.

4, Set ICURRENT to (ICURRENT + 1) MOD
VECSIZE.

5. Add VECSIZE * DELTAT to the time of the
current dummy event notice.

6. Remove the dummy notice from the event
Tist and splice it back into the 1ist at
the point appropriate to its new time.

To do this, a search must be made down
from the dummy event notice corresponding
to time "infinity.”

7. Continue with step 2.

8. Update TIME to the time of the current
event notice.

9. Remove the current event notice from the
event list and process the event.

FIGURE 1
Operation of the Indexed List Algorithm

DELTAT = 1.0; <VECSIZE = 3

Dummy notices are-marked with-an "X."

(a) Hypothetical initial conditions
TIME=0.6; ICURRENT=0; LOWERBOUND=0.0

CURRENT 0 | 1 2 | 3
(\ ///f ? !\\ A
<0 U=Uxl U=
0.6{11.0[]1.5[12.0[}3.0[]9.5{1int
! 1

{b) Assume "0.6" rescheduled to "1.7",
TIME=1.5; ICURRENT=1; LOWERBOUND=1.0

0 1 2 3

CURRENT
W
x 1 x X X
1.5f12.7[12.0[13.0[14.0{19.5[]int
[i

(c) Assume "1.5" rescheduled to "3,5",
TIME = 1.7; ICURRENT=1; LOWERBOUND=1,0

0 1 2 3

CURRENT

1.7112.0|{3.0]|3.51 {4.0{19.5] [inf

SHORTCOMINGS OF THE INDEXED LIST ALGORITHM

The major shortcoming of the indexed list algo-
rithm is its lack of robustness. Test results
(presented below) indicate that the algorithm
performs poorly on the "BIMODAL" distribution.
Unfortunately, this distribution is representative
of a large class of systems. A second shortcoming
of the algorithm is that it requires, when imple-
mented as described above, an a priori estimate of
DELTAT. Vaucher and-Duval present a simple for-
mula for calculating a "good" value for DELTAT,
but the formula deperds on T, the average value of
"event time - current clock," taken over all event
types. This value may not be readily available to

the programmer. To avoid having to make an esti-
mate of DELTAT, Vaucher and Duval propose incor~
poration of an adaptive algorithm to dynamically
set DELTAT in accordance with "observed perform-
ance." -Such an algorithm should also determine
the value of VECSIZE. .Vaucher and Duval do not
specify such.an algorithm, -but suggest that

". .-.dummy notices can be repositioned for a new
value of’ DELTAT: with a single pass through the
notices, and-this reorganization would only be
contemplated occasionally, for example, after
scheduling 50 notices or passing 50 dummies."

THE BINARY SEARCH INDEXED LIST ALGORITHM

The binary search indexed 1ist algorithm is simi-
lar to the indexed 1ist algorithm, in that a vec-
tor of pointers to event notices is maintained,
providing an effective partitioning of the event
list., Rather than directly computing the index
into the pointer vector, however, a binary search
of the pointer vector is performed to find an
event notice with the smallest time greater than
the time of the event notice to be inserted in to
the 1ist. Since the vector is searched, the times
represented by the elements of the vector are free
to "float,” rather than being a fixed increment
apart. The pointer vector is dynamically updated,
continually adapting to the distribution of event
notices in the list. Furthermore, provision is
made for expansion of the pointer vector, should
overall search performance dictate this action.
The following variables are used in the operation
of the algorithm:

CURRENT - Pointer to the current event notice

I - Work variable

PTRVEC - A vector of pointers to event
notices .

TIME - The simulator clock

TIMEVEC - A vector of event times, in one-to-

one correspondence with PTRVEC

VECSIZE - The current size of the TIMEVEC and
: PTRVEC vectors

Figure 2 depicts the operation of the binary
search indexed 1ist algorithm. To insert an event
notice, the following steps are performed:

1. A binary search is made to find a value
of I for which TIMEVEC(I) is the smallest
value greater than the time of the event
notice being inserted. Injtially,
TIMEVEC(I) is set to zero for all I ex-
cept TIMEVEC(VECSIZE), which is set to
“infinity."

. 2. A Tinear search of the event list is
. initiated, looking "down" from the event
notice pointed to by PTRVEC(I). Ini-
tially PTRVEC(I) -is 'set to -point to a
dummy event notice corresponding to time
zero, for all I, except PTRVEC(VECSIZE),
which is set to point to a dummy event

Winter Simulation Conference 549

ia

An Improved Events List Algorithm (continued)

FIGURE 2
..Dperation of the Binary Search

Indexed List Algorithm
“Dummynotices are tarked -with.an "X."

550

(a) Hypothetical initial conditions as-
sume that no "pulls" have yet been done.
TIME=2,0; VECSIZE=0

0
CURRENT inf

L’ﬂ

X X

0.0] |2.0] |3.0f{&.0] |4.5] |5.0] linF

(b) Assume. that "2.0" has been resched-
uled to "2.9," requiring a “pull."

TIME=2,9; VECSIZE=1
0 1
CURRENT 3.0| inf
X) X

0.0} |2.9]|3.0} {4.0f |*.5} |5.0] |inf

notice for time "infinity." The event
1ist is always anchored by a dummy event
notice at each end. These two notices
are the only dummies employed.

3. If the linear search examines more than a
predetermined number of event notices
. without finding the insertion point for
the new 'notice, ‘the following steps are
taken:

a. Iissettol - 1.
b. If I-is less than zero, the value of
VECSIZE is doubled, PTRVEC and

December 5-7, 1877

TIMEVEC are reformatted to their ini-
tial states (as described in step 2,
above), and the entire search is re-
started at step 1. Note that dynamic
storage allocation may be required to
increase the size of the vectors.

¢. If I is greater.than or equal to
zero, PTRVEC(I) <is updated-to point
‘to ‘the event: notice most . recently
examined, and TIMEVEC(I) is set to
the time of this event notice. This
operation is called a "pull."

d. The Tinear search is continued at

" step 3, resetting the count of the

number of event notices unsuccess-
fully examined.

4. The new event notice is spliced into the
event 1ist at the point determined by the
Tinear search.

To execute the next event (and update the ciock),
the following steps are performed:

1. CURRENT is set to point to the successor
to the dummy notice at the low end of the
event Tist.

2. This event notice is removed from the
Tist.

3. TIME is updated to the time of the cur-
rent event notice.

4. The event js processed.

To clarify the operation of the binary search in-
dexed 1ist algorithm, some further explanation is
in order. First, the careful reader may question
the need for the use of the TIMEVEC vector. It
might appear that event times, already contained
in their respective event notices, could be ref-
erenced indirectly through PTRVEC. This is not
possible, because PTRVEC may contain (in its "Tow
time end®) pointers to event notices that have
been removed from the event Tist and possibly
destroyed. Note that since the binary search
always selects a time greater than the time of an
event notice being inserted, and since the time
of a new event is greater than or equal to the
current value of the simulator clock, “"stale"
pointers are never used, because their corre-
sponding times are always léss than or egual to
the current value of the simulator clock. A
serendipitous benefit of using the TIMEVEC vector
is that the binary search is faster, because
times are directly addressable, and memory ref-
erences during the binary search are confined to
two vectors, rather than referencing event no-
tices, which may be spread throughout the address
space of the computer. In a virtual memory ar-
cchitecture, localized memory.-references help to
cut down on the overhead associated with paging.

.Another ‘observation. that: the careful reader-might

make is that a more intelligent. means for setting

.up pointersacould be. used following: a doubling of .

the size of the vectors. This was not.done,

because (1) doubling the size of the vectors oc-
curs very infrequently, with respect to the time
required to carry out an entire simulation; and
(2) it is simpler to use a single routine both to
initialize PTRVEC and TIMEVEC and to reformat
them after a doubling operation.

In the description given above, the phrase "more
than a predetermined number of event notices" was
used. The exact value of this number is dependent
on the ratio of the execution time required to do
comparisons in the binary search Toop to the time
required to do comparisons in the linear search
Toop. Tests of the algorithm were vun on an IBM
370/168 computer to experiment with various values,
and the value of 4 was found to be optimal.

One basic operation not discussed above is the re-
moval from the event 1list of an arbitrary event
notice, i.e., a notice not necessarily at the be-
ginning of the 1ist. Such an operation is re-
quired to carry out a Simscript "CANCEL" state-
ment and may be required in the execution of a
GPSS "PREEMPT" or "FUNAVAIL" block. If the algo-
rithm is implemented as described above, removal
of an arbitrary event notice requires that a
(binary) search be made to see if any pointers
point to the event notice being removed. Any
pointers so found must be altered, along with
their associated times, to point to the predeces-
sor of the event notice being removed. The use of
a dummy notice to anchor the low time end of the
1ist assures that every notice has a predecessor,
Several alternative methods were considered., The
first alternative was to use dummy event notices
in a manner similar to the method employed in the
indexed 1ist algorithm of Vaucher and Duval.

This method was rejected because the overhead re-
quired for manipulation of the dummy notices
greatly increases the time required to do a "pull"
operation. A second alternative considered was
the incorporation of a back pointer in the event
notice, pointing from the event notice back to

the pointer vector entry associated with the event
notice. For event notices not referenced by the
pointer vector, the back pointer would be zero.
This method provides for rapid removal of an ar-
bitrary event notice, but requires additional
storage for the back pointer., Because of the
increased storage required and the relative in-
frequency of arbitrary removals, this method was
rejected.

TESTING THE ALGORITHMS

In order to compare the efficiency of the indexed
1ist and binary search indexed Tist algorithms,
two FORTRAN test programs were written and exe-
cuted on an IBM 370/168 computer to obtain exe-
cution times. The six statistical distributions
of Vaucher and Duval were used for interarrival
times of event notices, and the size of the event
Tist was varied from 16 to 512 by powers of 2.
Results of the timing runs are depicted in
figures 3 and 4. The time represented by the
Y-axis of these graphs is the time to perform a
"hold" operation, i.e., to remove the current
event notice from the event 1ist, to reschedule
it, and to insert the same event notice back

into the event list. The time required to gener-
ate random samples and to perform loop counting

~“has been factored out, so the times shown accu- -

rately depict the timing of a "hold" operation.
Several experiments were conducted using anti-
thetic variates of the statistical distributions.
(This method replaces "X" by "1.0-X" in computing
interarrival times as a function of "X", where "X"
is uniformly distributed over the interval (0,1).)
The timing differences between the two forms of
calculation were very small. Accordingly, no fur-
ther attempts were made to incorporate the use of
antithetic variates and averaging of results.

Each test was run for 4000 repetitions of the
“"hold" operation.

The indexed 1ist algorithm was implemented, incor-

" porating a priori knowledge of the size of the

event 1ist to determine the value of DELTAT, per
the technique suggested by Vaucher and Duval. In
order to provide a fair comparison, the binary
search indexed 1ist algorithm was implemented to
incorporate the same information. In each case,
VECSIZE was fixed at a value of log2(list size/4).
The adaptive mechanism for doubling the size of
the vectors was deliberately suppressed so that
relatively short runs could be made and still get
meaningful comparisons. Thus, the results repre-~
sent steady state performance achjeved after
adaptation.

The distributions of interarrival times tested
were as follows:

EXPO - Negative exponential with a mean
of 1.0

U(0.0,2.0) - Continuous uniform distribution
over the interval (0.0,2.0)

U(0.9,1.1) - Continuous uniform distribution
over the interval (0.9,1.1)

BIMODAL - Uniform over the interval
(0.0,S) with 90% probability;
Uniform over the interval (100S,
101S) with 10% probability. S
is chosen so that the mean in-
terarrival time for the distri-
bution time is 1.0.

D(1) - Interarrival times are a con-
stant 1.0.
D(0,1,2) -~ Interarrival times are 0.0, 1.0,

or 2.0, with equal probability.

INTERPRETATION OF TEST RESULTS

The most obvious conclusion that can be made from
an examination of figures 3 and 4 is that the bi-
nary search indexed 1ist algorithm is far less
sensitive to the distribution of interarrival
times than is the indexed 1ist algorithm. For
the binary search algorithm, the curves are very
similarly shaped for all of the distributions
tested. The curves for the simple indexed Tist
algorithm, on the other hand, indicate that this
algorithm is quite sensitive to the distribution

Winter Simulation Conference 551

1500
1400
1300
. 1200
1100
1000
900 |
800
700
600
500
400

Microunits/
"Hold"

FIGURE 3
Performance of the Indexed List Algorithm

BIMODAL

U(0.9,1.1)

EXPO
U(0,0,2.0)

D(0,1,2)
D(1)

300
200 }
100 }

256 512

List Size

128

FIGURE &4

Performance of the Binary Search Indexed List Algorithm

1500
1400}
1300+
1200}
1100}
1000
900
800
700
600
500
Loo
300
200 }
100}

Microunits/
"Hold"

U(0.,0,2.0)
BIMODAL

EXPO
U(0.9,1.1)

D(0,1,2)
D(1)

1
512
List Size

552

December 5-7, 1977

of interarrival times, with performance being par-
ticularly poor for the BIMODAL distribution.

For the interested reader, detailed statistics of
the performance of the two algorithms are presented
in Appendix A. These statistics reveal that for
large event list sizes, the value of DELTAT, de-
termined by the heuristic formula of Vaucher and
Duval, is ill-suited for use with the BIMODAL dis-
tribution. For the event list of size 512, only

6 dummy notices were encountered during 4000
"hold" operations. This indicates that DELTAT is
far too large. In addition, the size of the over-
flow class must be quite large, because an average
of 283.17 comparisons are required to determine
the new placement of a dummy notice, when one is
encountered at the front of the 1ist and moved to
the back. Since it is apparent that (a) DELTAT is
too large and (b) too many event notices fall into
the overflow class, more effective performance
could be achieved only by decreasing DELTAT and
increasing VECSIZE, 1i.e., the number of dummy
notices.

In the previous section, it was indicated that the
adaptive mechanism of the binary search algorithm,
for doubling the sizes of the vectors, was sup-
pressed for testing purposes. The detailed sta-
tistics of Appendix A reveal that, in certain
cases, this puts the binary search algorithm at a
disadvantage, when compared to the simple indexed
Tist algorithm. For example, the number of com-
parisons performed to schedule an event notice
for the D(1) distribution is log2 (1ist size) -1.
If the adaptive mechanism had been incorporated,
the number of comparisons would have been a con-
stant value of 2 (1 comparison in a single-level
binary search and 1 comparison in the linear
search). This would compare more favorably with
the simple jndexed T1ist algorithm, which achieves
an average number of comparisons of 1,

One final note should be made in comparing the
two algorithms. The test programs for the two
algorithms were written in FORTRAN, for the sake
of expediency. Since FORTRAN has no pointer var-
iables nor data structuring facilities, the algo-
rithms were implemented by means of vectors. and
integer subscripts. This has a more adverse ef-
fect on the performance of the binary search algo-
rithm than on the simple indexed 1ist algorithm.
The major difference between the algorithms is,
of course, in the determination of the point at
which the Tinear search of the events Tist should
start. In the simple indexed T1ist algorithm,
this is accomplished as a direct computation
comprised of a floating point subtraction, a
floating point division, and a conversion from
floating point to integer. In the binary search
algorithm, the determination of the starting
point of the Tinear search is carried out as a
binary search of the vector. The FORTRAN imple-
mentation of the search manipulates integer sub-
scripts used to access vectors. The code gener-
ated by the IBM FORTRAN/H compiler (9) is much
better for the simple indexed 1ist computations
than for the binary search. If the test programs
had been written in assembly language, the rela-
tive performance of the binary search algorithm
would have been somewhat better. An examination

of instruction times for the IBM 360/65 computer
(10) indicates that, for that machine, approxi-

mately three binary search comparisons could be

made in the time required to perform the initial
index calculation of the indexed 1ist algorithm.
The binary search can be coded very efficiently,
using only additive indexing, i.e., no shift or

divide instructions. A technique for doing this
is given in Appendix B. ’

APPLICATION OF THE BIMARY SEARCH ALGORITHM -
A CASE_STUDY

The binary search indexed 1ist algorithm, in its
fully adaptive form, has been incorporated into
GPSS/H (11), a new implementation of GPSS. In-
terest in improved events Tist algorithms was
prompted by surprisingly poor performance of
GPSS/H on a user's model of a "front-end" commu-
nications computer. The program models the per-
formance of a PDP/11 communications computer con-
nected to an Amdahl 470/V6 mainframe. - The model
incorporates actual historical data for distribu-
tions of user “thinking" time, average input mes-
sage length and typing rate, average response time
of the Amdahl 470/V6 to an input request, and the
average number and length of output Tines result-
ing from an input line. The range of times that
must be represented in the model is quite large.
The time that it takes the PDP/11 to respond to
an input/output interrupt is roughly on the order
of one millisecond, while user "thinking” times
are about three orders of magnitude larger, i.e.,
on the order of several seconds. The distribu-
tions of these times are such that very poor per-
formance is achieved with a simple linear search
events list algorithm. Consider, for example,
the number of users in the model receiving out-
put at any given time. This number is consider-
ably less than half of the total number of users
connected to the.simulated system. To simulate
the behavior of the PDP/11, an input/output inter-
rupt must be scheduled for each character of an
output message. Since the interarrival time
between such interrupts (for a single user) is
quite small, a large number of event notices must
be examined in order to determine the insertion
point of an event in the "near future."

The results obtained by incorporation of the bi-
nary search indexed list algorithm into GPSS/H
are quite dramatic. Timing runs were conducted
for a configuration of the model which simulated
the interactions of 50 terminal users for a period
of 60 seconds of simulated time. Prior to the
incorporation of the new algorithm, the execution
rate of the model was 235 microunits per GPSS
block. (The term "microunits" is used because
the system on which the tests were run provides
"fudged" figures, rather than true CPU times.)
After the incorporation of the binary search in-
dexed 1ist algorithm, the execution rate was 158
microunits per GPSS block, a savings of about
30%. This was accomplished, of course, with ab-
solutely no change to the model itself.

Winter Simulation Conference 553

An Impfoved Events List Algorithm (continued)

CONCLUSIONS

A new algorithm has been described for the effi-
cient manipulation of events 1lists in a discrete
event simulator. The algorithm has been shown to
adapt itself very well to a variety of distribu-
tions of event interarrival times. The algorithm
has been incorporated into a new implementation of
GPSS and has resulted in greatly enhanced perform-
ance for classes of models which require a more
sophisticated event scheduling algorithm.

BIBLTOGRAPHY

1. Vaucher, Jean G. and Duval, Pierre, "A
Comparison of Event List Algorithms," Communica-
tions of the ACM, April, 1975, Volume 18, Number 4.

2. Kiviat, P. J., Villanueva, R., and Markowitz,
H. M., Simscript II.5 Programming Language, CACI,
Inc., Los Angeles, Cal.

3. GPSS/V User's Manual, IBM Publication Number
SH20-085T1.

4. Pritsker, A. Alan B., The GASP IV Simulation
Language, John Wiley and Sons, 1974,

5. Dahl, 0-J, Myhrbaug, B., and. Nygaard, K.,
SIMULA 67 Common Base Language, Publication S22,
Norwegian Computing Center, Forskningsveien 1B,
Oslo 3, Norway.

' 6. Schriber, Thomas J., Simulation Using GPSS,
John Wiley and Sons, New York, 1974,

7. Szygenda, S., Hemming, S. W., and Hemphill,
J. M., "Time Flow Mechanisms for Use in Digital
Logic Simulation," Proceedings of the 1971 Winter
Simulation Conference, New York.

8. Ulrich, E. G., "Exclusive Simulation Activity
in Digital Networks," Communications of the ACM,
February, 1969, Volume 12, Number 2.

9. IBM System/360 and System/370 FORTRAN IV
Language, IBM Publication Number GC28-6515.

10. IBM System/360 Model 65 Functional Character-
istics, IBM Publication Number GAZ2-6884.

11. Henriksen, James 0., "Building a Better GPSS:
A 3:1 Performance Enhancement,” Proceedings of the
1975 Winter Simulation Conference.

554 pecember 5-7, 1977

APPENDIX A

List Average Average Max Dummy Avg. Dummy

Distribution Size Time Séarch Search Moves Search -~
EXPO 16 - 401.87 2.86 1n 414 1.00
. 32 401.87 3.30 15 378 - 1.00
64 426,99 3.82 18 312. 1.15
128 496.48 5.02 33 228 3.26
256 627.93 7.51 .M 145- 12.29
512 778.63 12.52 70) 79 37.73
U(0.0,2.0) 16 389.90 2.84 12 410 1.00
32 416.57 3.24 16 375 1.00
64 452.11 3.94 19 3107 1.00
128 452,11 5.03 27 227 1.00
256 539,22 7.06 37 145 1.00
512 686.43 11.02 52 81 1.00
u(0.0,1.1) 16 376.76 1.47 1 412 1.00
32 376.76 2.00 17 378 1.00
64 405,93 3.02 37 313 1.00
128 480.45 5.19 79 230 1.00
256 728.40 10.56 125 147 1.00
512 1130.27 22.35 192 82 1.00
BIMODAL 16 373.39 2.41 13 383 1.00
32 425.23 3.95 28 340 1.00
64 627.93 7.24 58 263 25.48
128 979.57 14.39 116 163 74.91
256 1728.44 33.28 224 100 169.10
512 3435.85 82.13 459 6- 283.17
D(1) 16 326.52 1.00 1 411 1.00
32 326.52 1.00 1 376 1.00
64 325.87 1.00 T 313 1.00
128 325.09 1.00 1 232 1.00
256 © 326.52 1.00 1 146 1.00
512 326.52 1.00 1 80- 1.00
D(0,1,2) 16 352,92 1.28 96 418 1.00
32 366.46 1.43 96. 383 1.00
64 401.87 1.97 96 318 1.00
128 T 401.87 2.78 96 232 1.00
256 427,06 3.94 96 146 1.00
512 . 346.44 1.00 1 80. 1.00

Detailed Statistics for Performance of the Indexed List Algorithm

Winter Simulation Conference 555-

Distributiom

EXPO

U(0.0,2.0)

u(0.9,1.1)

BIMODAL

D(1)

D(0,1,2)

556 pecember 5-7, 1977

256
512

16
32
64
128
256
512

16
32
64
128
256
512

Detailed Statistics for Performance

Average Average
Time Search
441,97 5.40
552.58 6.82
577.70 8.25
692. 31 9.73
753.52 11.21
828.87 12.77
452.1 5.17
497 .58 6.68
572.43 8.26
703.28 9.88
778,63 11.63
884.49 13.54
321.60 3.51
452.17 5.05
477.23 6.68
550.87 8.23
643.91 9.88
753.52 11.76
401.87 4.61
456.00 5.98
530.79 7.41
627.93 8.98
728.40 10.72
858.98 12.67
282.45 3.00
351.64 4,00
401.87 5.00
430.82 6.00
473.85 7.00
552.58 8.00
351.64 4.10
400.23 5.29
449,95 6.15
502. 34 7.10
552.53 7.94
607.81 9.03

Max
Search

14

118

130
175

o~NNOYTOITRB W

30
44
8]

147

278

of the Binary Search Indéxed List Algorithm

1098
1487
1917
2354
2842
3390

1079
1493
2003
2559
3283
4174

22
259

706
1133

1696 .

2490

383
677
1112
1611
2315
3249

OO0

565
457
386
346
246

Notices/

Pull

.64
.69
.09
.70
.41
.18

e
.68
.00
.56
.22
.96

el) (N N

Ot = NP W

181.82

—
~Nwor,;m
o e o v

lei)
~

—
— = NWNO
e a4 e e
[+
o

— —t
- 00 WO [wo N Neo oo e N]
RN NI
~
—_

Appendix B

This appendix describes a means of constructing
TIMEVEC in such a fashion that a binary search of

the vector can be performed entirely with additive

indexing, i.e., no shifts or divisions. To con-
struct @ vector of :2N entries, do the following:

1. : Assume: the entries ane indexed 0.

A search
follows:

1.

3.

..

- .

The offset within the vector correspond-
ing te entry number I is determined by
reversing and inverting the rightmost N
bits in the binary representation of I.
For example, in an eight entry table
(N=3), entry number 4 is stored at off-
set 6 of the vector. (479 = 1002. In-
verting and reversing the bits yields a
value of 1102 = 6]0.) Note that as a
consequence of this scheme, the "top"
logical entry of the vector, which has
an index of the form 2N-1, will always
be Tocated at offset zero of the vector.
Reversing and inverting a number whose
binary representation is all 1's yields
a zero result.

If FORTRAN array indexing is used, add 1
to all indices, so that offset zero maps
into index 1. ’

It is highly convenient to construct a
vector of predecessor pointers, such
that pointerj points to entryj_1 of the
table. (Because of the strange way in
which the vector is ordered, this facil-
itates an easy determination of the loca-
tion of a predecessor during a "pull"
operation.g

of the vector can be conducted as
Start with I=1 and J=1 and assume
FORTRAN array indexing.

For each compare:

a. If TIMEVEC(I+J) > Time to be
inserted

SetI=1+4

b.. Set d =J + J, i.e., double the ’
increment

¢. The loop is completed when J=2N,

At loop completion, I is the index of
the "right" entry.

Finally, note that on a machine which has an "add-
compare-conditional branch" instruction, such as
the BXLE instruction of the IBM 360/370 architec-
ture, the doubling of the increment and closing of
the Toop can be accomplished in a single machine
instruction.

To convince -yourself that this algorithm really
works, consider the following hypothetical
example:

i time; i(binary) offset(binary)
0 100 000 m
1 200 001 011
2 300 010 101
3 400 011 ’ 001
4 500 100 110
5 600 101 010
6 700 110 100
7 inf. 111 000
1 TIMEVEC(I)

1 inf,

2 400

3 600

4 200

5 700

6 300

7 500

8 100

Verify that for insertion of an event notice with
time = 250, the binary search will converge to
1=6.

Note that if the search "falls through,”
with no times > the time being inserted,
I =1, corresponding to a logical index of
2N-1, the "top" entry of the table. By
~.definition of ‘the:algorithm, this -entry
. always points at a dummy notice with in-
finite event time.

Winter Simulation Conference 557

