KALMAN FILTERING IN WATER QUALITY MODELING:

THEQRY VS. PRACTICE

ABSTRACT

Kalman filtering is a statistical technique for
computing minimum-uncertainty estimates of the
states in linear uncertain dynamic systems. Fil-
tering theory is qualitatively described. Poten-
tial applications to water quality modeling are
discussed for state and parameter estimation, and
model identification. Literature is reviewed on
filtering applications to modeling receiving water
quality. Several characteristics of environmental
modeling problems are identified which may limit
the filter's applicability. A case study is pre-.
sented of optimal filtering applied to hydrothermal
model development for a coastal power plant dis-
charge. A simple model structure is proposed, for
which 33 parameters are estimated using full-
information maximum~likelihood methods with filter-
ing. Discrepancies in model performance are high-
lighted, which typify the difficulties of a filter-
ing approach to water quality model development.
The theoretical advantages of filtering, and its
practical limitations, are summarized for water
quality applications, It is concluded that filter-
ing techniques offer valuable organizing concepts,
and are themselves a valuable tool when dynamic
quantification of the variance in state estimates
is required, Filtering is most applicable when
dealing with a low-dimensional system with a. well-
known model and dense data base, for which highly
accurate short-term forecasts are required. How-
ever, less accurate models and estimation tech-
niques may provide more cost-effective solutions to
many water quality problems.

INTRODUCTION

Concern over the potential water quality effects
of man's activities motivates increasingly rigorous
management of water uses.” As a result, demands are
escalating for increasingly accurate water quality
models, as management tools, The available data
bases are becoming large, but are typically incom-
plete and contain measurement uncertainties. Use
of this data fer verification of dynamic, multi-
variable models is. difficult using the more tradi-
tional qualitative and least-squares methods.

Estimation techniques using Kalman filtering and
its extensions offer a potential solution to the
proeblem of model development with noisy, incomplete
data., In the past, these statistical methods have
been refined and successfully applied to analogous
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problems in navigation and guidance, and industrial
process control. These techniques have recently
begun to be applied in water quality modeling. The
purpose of this paper is to review the theoretical
promise of these estimation techniques, tempered
with a review and case study of practical experience
gained in recent applications to water quality mod-
eling.

THEORETICAL APPLICATIONS. OF FILTERING

The Kalman filter is a statistical method for com-
puting the best (i.e., minimum-uncertainty) state
estimates for an uncertain linear system (17), In-
formation about a system is acknowledged to exist
both in a model of the system and in measurements of
the system, It is also acknowledged that there are
imperfections and/or stochastic effects in both the
model and the data, Under these conditions, a best
estimate of the system states, parameters, or other
attributes is obtained by combining the information
from the model and data, By formulating the system
model in a stochastic form, model uncertainties can
be quantified., Likewise, uncertainties due to
noisy measurements can be quantified. When com-
bined, the information from each of these sources is
weighted according to its uncertainty; the filtered
state estimate is the minimum-uncertainty "weighted-
average' of model and measufement data. The filter
also quantifies the variance in this state estimate.

Kalman filtering, with extensions, can be used for
several estimation tasks: state estimation, para-
meter estimation, and model identification. (Here-
after, the group of filtering algorithms including
the Kalman filter and extensions to non-linear sys-
tems will loosely be referred to as '"filtering.")
By analogy to earlier aerospace problems, several
water quality applications are possible:

STATE ESTIMATION

Filtering offers very promising application to
water quality monitoring. Utilizing any available-
measurements (no matter how scattered or asynchron-
ous), the filter can optimally.estimate water quality
conditions throughout the modelled region. By
“interpolating'" between monitoring stations in this
way, and by admitting irregular sampling, much more
cost-effective monitoring may be possible. In addi-
tion, the filter can operate on~line, to process
incoming measurements and update its water quality
estimates in real time. This feature opens possi-
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Filtering in Water Quality Modeling (continued)

bilities for real-time enforcement of quality stan-
dards and/or real-time control of water consumption
and treatment,

PARAMETER ESTIMATION

Extensions of filtering theory offer powerful tech-
niques for estimation of model parameters (8, 17).
Methods are available to estimate model coeffi.
cients, initial conditions, boundary conditions,
inputs, and the statistics of inherent model or
measurement neise, Parameter estimation can be
used for accurately quantifying one aspect of a
modeled process (e.g., a nutrient uptake rate).
Conversely, parameter estimation can "tune" an
entire medel for maximum accuracy in a specific
application. Two parameter estimation techniques
have developed from Kalman filtering: the Extended
Kalman Filter and maximum-likelihood estimation
(17).

MODEL IDENTIFICATION

Further extensions of filtering theory offer tech-
niques for evaluating the underlying model struc-
ture for a system (8, 17)}. Both quantitative and
qualitative measures of model performance are
generated. These measures allow explicit, itera-

. tive identification of improved model structures,
in an integrated model development process, These
measures also provide useful a priori indications
of a model's predictive capability.

EXPERIENCE WITH FILTERING IN WATER QUALITY MODELING

The preceding section shows that many water quality
modeling problems may be posed as estimation prob-
lems which are theoretically solvable via filter-
ing. This section discusses the practical limita-
tions of filtering in water quality applications.
Generic problems common to many environmental ap-
plications of filtering are discussed, along with
potential remedies. Following this review, a re-
cent application of filtering to hydrothermal model
development is presented, as a case study in the
advantages and disadvantages of these techniques.

GENERIC PROBLEMS

There is only limited experience with filtering in
water quality applications, Most such references
deal with proposed pollutant discharge control
schemes involving filtered state estimates (1, 2,
4, 18). A few studies use filtering in parameter
estimation and/or model identification (3, 5, 15,
18)." There have also been similar applications in
such related areas as groundwater flow (11), hydro-
logy (6), and air quality (7). In a slightly dif-
ferent vein, several investigators have also used
filtering in the design of monitoring programs
(10). Based on these studies, environmental model-
ing problems appear to share several character-
istics which typically limit the filter's useful-
ness:

- High dimensionality results from the
spatially-distributed nature of environmental sys-
tems, and rapidly leads to uneconomic computational
burdens in the filter's mdtrix operations.

- Uncertain noise statistics increase the
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uncertainty in filter results, perhaps to the point
where less accurate (and less costly) estimation
methods are equally useful, Parameter estimation
techniques may improve our noise estimates but
these methods aggravate the filter's already large
computational burden.

- Limited measurements constrain the filter's
estimation capabilities, because isolated or infre-
quent measurements produce only local or temporary
reductions in uncertainty.

- Large model-structure uncertainties often
exist, even after parameter estimation is completed
(15), and are typically much greater than measure=
ment errors. Thus, estimation accuracy is often
severely limited by model accuracy, despite use of
the most rigorous filtering algorithms,

- Inconvenient model transformation is often
required, to convert common models into filter-
compatible form,

These difficulties suggest that a complex model and
statistically rigorous filtering algorithm may be
warranted only where the most accurate state and
covariance estimates are required. Where maximum
accuracy is not required, simpler models and/or
approximate estimation methods may prove to be much
more cost-effective. For example, a simpler, lower-
dimensional model offers greater economy and conven-
ience. Model identification methods based on filter-
ing now offer greater flexibility in the use of
these models., In a review of water quality model
development methods, Beck urges consideration of
"black-box'" model structures for many applications
where the more intuitive "internally-descriptive"
structures are commonly used. "The use of the
black-box model is particularly advantageous when

a priori information on the physical phenomena gov-
erning the system dynamics is minimal; in this case
the black box is literally a fair reflection of our
knowledge of the system and the model is a first
attempt at elucidating any observed dynamical rela-
tionships. Alternatively, where a mechanistic, or
internally descriptive, model is available, but its
form is so complex that it requires the character-
isation of too many parameters from an insufficient
number of data, an input/output model can yield
equally useful results in forecasting or control -
system synthesis applications (3)". '

In general, simpler low-dimensional models appear to
be most useful where concern focuses on conditions
at only a few points, where a dense data base is
available for iterative model development, and
where short-term predictions are desired. Simple
models are easily adapted to the state-space formu-
lation required for optimal parameter estimation,
and are easily modified. Internally-descriptive
models require a difficult and non-intuitive trans-
formation to state-space form, in order to undergo
filtering. Consequently, any model changes must
also undergo this laborious transformation. The
internally-descriptive structure thus appears
better suited for description of wide spatial varia-
tions in water quality, where an appropriate black-
box model is difficult to deduce. Discriminating
between model structures is ultimately a problem of
finding the minimal realization to adequately re-
present a system. No solutions to this problem are
yet available for environmental models.



Less rigorous estimation algorithms are an alternate data from Salem Harbor.

response to filtering difficulties in water quality To meet the model simplicity requirement, Salem
problems. McLaughlin suggests several possibili- Harbor is descretized as a two-basin, two-layer
ties: new formulations of the recursive filter system (Figure 2). Heat and mass transfer models

equations, multi-level decomposition of the filter-
ing problem, "sub-optimal' (approximate) filter
formulation, and stochastic approximation (11).
Each of these techniques is applicable only to
certain types of problems; neither a general solu-

tion, nor general criteria for applicability, are ST " oo rarion)
available yet, Horbor Statlon

HYDROTHERMAL MODEL DEVELOPMENT USING FILTERING: i GoTon  f2  JeTwr
A CASE STUDY . . v L Voo v
/’[' '
Background ,/ . i
(This work is summarized from earlier reports by /’ h
Schrader and Moore (15, 16).) Salem Harbor Station fj < : oy . - .J_%a

is a 750 megawatt steam-electric generating station
located in Salem, Massachusetts, on the Atlantic
Coast 40 miles north of Boston. The plant employs
a once-through condenser-cooling system, withdraw-
ing seawater from Salem Harbor, and discharging the B &1 Basin s 2 Selem Sound
heated water back into the Harbor (see Figure 1). )

,
2
gt
:
#
L]
1
£
N
O
&
g
]

-

{Note: All Fluxes Positlve. as Drawn) .

FIGLRE <2 SCHEMATIZATION OF SALEM HAREOR FOR TWO —-BASIN, TWO LAYER MODEL

SALEM
HARBOR
STATION

S ALEM
SOUND

are developed for this simplified representation,
This "internally-descriptive' model (to use Beck's
(3) terminology) is chosen in order to incorporate
extensive previous hydrothermal modeling exper-
ience (9). (In retrospect, this formulation would
not be chosen again for this type of problem, for
reasons discussed in the following section.)

Gischarge
\

SALEM

HARBOR Limited data are available to develop and verify

the model, Two years of nearly continuous hourly
plant intake and discharge temperatures form the
MARBLEHEAD data core, with supporting hourly hydrological and
meteorological data where available. Only limited
temperature records exist for other points in the
harbor; these are not included in this model devel-
opment effort. Based on early estimates'of com-
putational cost, the data base for parameter esti-
mation is confined to a 96-hour time series of
intake temperature measurements. Four separate
periods, comprising 106 days of additional data,

e are set aside for evaluation of the final model's

. performance.
FIGURE |  SALEM HARBOR STATION AND ADJACENT Having selected a model structure and a data base,
WATER BCDIES the model development problem posed above is re-
- - - duced to a parameter estimation problem. Estimation
A discharge temperature limit established by pollu- is done using full-information maximum likelihood
tion control authorities periodically forces uneco- methods (14). This technique is chosen bﬁcauze it
nomic operation of the power plant. Consequently, is theoretically ?ptlma} (given the "true" model
a hydrothermal model of Salem Harbor is desired, to structure), and Iikely to be less expensive than-
allow improved prediction and control of plant in- the extended Kalman filter for estimating the large
take and discharge temperatures. The model develop- number of unknovn parameters involved in this prob-
‘ment problem is posed as follows: lem. The technique is also very convenient to
Develep a simple and-accurate model of intake implement, using the GPSIE computer package 1z, 13).
temperatures at Sdlem Harbor Station. The .
model must predict up to 24 hours in the Within the chosen model structure, twenty-eight
future. It must predict the daily peak physical parameters are either. unknown, poorly
intake temperature within +1°F, 90% of the known, or intuitively assumed. This number of
‘time. It must be developed using existing parameters arises because of the physical realism
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Filtering in Water Quality Modeling (continued)

attached to individual coefficients, some of which © EIGIREQ .
could otherwise have been combined. In addition,
five statistical parameters (describing model and
measurement noise) are also unknown. Because of

the stringent accuracy objective specified in the ’ ‘
original model development problem, the global
optimal estimate for all thirty-three parameters
is sought.

PREDICTED. INTAKE TEMPERATURES FROM FINAL MODEL 6/30 - 6/31/74
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>~ Confidence Bounds
The estimation process is divided into "prelimin- on Prodiction (f 20)
ary" and "final" phases. In the preliminary phase, .
parameters are constrained to physically realistic
limits, and subjectively varied to obtain the .
maximum-likelihood set of estimates, This manual
search established initial estimates for the

global optimization which are "near' the optimum,
In the final phase, all twenty-eight physical
parameters are estimated simultaneously, in two
global estimations. A non-linear optimization
routine (19) is used to iteratively converge on the
maximum-likelihood parameter estimates. To com-
plete the estimation, the five statistical para-
meters are subjectively re-estimated between the
two estimations of physical parameters,

80.0

>

>
>
>
>
>
>
>
.« 2>

Ty

e A

>

H .

#
> .
> .
>.
" .
>
> -

-
H
1
H
q
B R R L L R I I
.
. H
>

Intake Temperature (°F)
0
L ]
"
"
Tl mmm oot ommdommmonen~a
#

<
« < o
8
H
.
.<
<
<. o
H
ol

19,0 =~ = € - e Hln m e > e mm e me e e e

Results and Discussion

The estimation results are not what is expected.
The model does perform qualitatively well, How-
ever, the model fails to meet the original accuracy
criterion, and fails other statistical tests for
acceptability. In addition, severdl parameters
exhibit extreme and unrealistic estimates. These
results, and their implications for future filter-
ing applications, are discussed below,
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Figure 3 presents an example of a 24-hour intake Hour (0 = Midnight)
temperature forecast made with the final model. 85 .
The cyclic rise and fall of predicted temperatures
(due to the tidal cycle) agrees qualitatively with
the amplitude and frequency of the observed temper-

1

ature cycle, However, in this figure (and others)
the model exhibits a chronic bias towards errone-
ously high temperatures, even after maximum-

likelihood parameter estimation,
TABLE | - SLIECTED PARA'ITIR USTIMMES AT

. S SRS O oIS TSy
The complete sequence of all parameter estimates is

too large to present here, Instead, Table 1 pre-
sents selected parameters, and their estimated val-

ues at various steps in the estimation process.

PARA- BEST FIRST clepL REVISED l FINAL CLOBAL
METER INTVIAL PIYSICALLY ESTINNLS STATISTICAL 5 ESTIWAILS

ey . . (see ESTIMALL REALISTIC trmsIcaL PARAMETERS (PiVsicat
Parameters Al, A2 and hs exhibit physically unreal- cext) LSTHILS PARVETLES) PARUR TLRS)
istic final estimates. Al and A2 are the basin
surface areas in the model (refer to Figure 3). A |20x20% | 20 5 208 19 x 10 £x 208
Since the total Salem Harbor surface area is known a2 112220° | asxa0® 15.9 x 106 ’ s x10°
to be 32-35 million square feet, {(depending on hs 2, o 682 9.83
tidal level), the final estimate of 12 million @ . 1L 164 Lo
square feet is clearly unrealistic. Likewise, a
surface layer thickness (hs) as large as 9 feet is o 2. 183, 155, -166.
not observed in Salem Harbor. Parameters g6 and 4
F4 are other examples of extreme parameter estimates. o2
In contrast, a few parameters (e.g. C2 and g3) do s

undergo the expected small perturbatign from initial 2 . 2. Ls
to final value. The mode% noise @@1 and 0322) R

and measurement noise (o,“) statistics in Table 1 !

characterize the noise levels existing during each
reestimation of physical parameters.

PRELIMINARY PINSL M FINAL TUASE 1
i
H
i

f2] +O15 «015 0157 «B1d48

6,64 6.64 6.10 Tis0.

Measures of model performance are computed for

several test periods, using both the preliminary
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and final parameter values. Similar statistics
are also computed for the base period over which
the estimation was done. Selected results are
presented in Table 2, for the follewing statistics:
- The log-likelihood is the statistic
around which the parameter estimation is done, and
thus should show the best improvement between pre-
liminary and final models, A perfect model yields
= 0; progressively lower values reflect progres-
sively worse models, Comparison is only valid be-
tween models run for the same time period. )

T(n) - The percentage of daily peak intake
temperature predictions within n°F of the measured
peak., By definition of the model development pro-
blem, an acceptable model must yield T(1) 90%.

M - The mean-square error in 24-hour (un-
filtered) temperature predictions,

P(a) ~.The auto-correlation (“'whiteness") of
measurement residuals, for lag a. A perfect model
yields all P(a)=0; an acceptable model yields
P(a)€ 5 (14), -

TABLE 2 - SELECTED MEASURES OF MODEL PERFORMANCE

TLST PERIOD

BASE PERIQD

6/25 - 7/22 7/2% - 8/21 8/23 - 9/20 7/29 - 8/2

FINAL PRELIM,| FINAL PRELIM.} FINAL PRELIM, | FINAL PRELIM,

Log~

1ikelihood

|3 -662,3 691,91 -514.8 -563.4 | -609.9 -650.31 -87.0 -105.9
T .

) 16% % 5% 5% % 2 - -

2° 248 8% 28% 5% 543 35%

3° 363 20% s 198 73% 54%
M 19.4 38,6 | 16.4 26,9 | 10,1 7.7 | 107 27.3
()] 4.40) (6.21) | (4.05) (5.19) {(3.18) (.7 | 3.21) (5.22)
Whiteness '

P(0) -39 8.2 f-6.8 -89 |-87 -12.7 - -

P(1) 123 8.9 7.1 54 |1 2.8

P(2) 5.8 5.5 2,8 37 128 0.9

2(3) 0.6 3.7 0.3 2.4 |02 0.4

Based on Table 2, the model fails to solve the
original model development problem, since T(i) is
always less than 90%., The model also fails statis-
tical tests on P(a), many of which are greater than
five. Comparisons of preliminary and final model
performance should show a consistent improvement in
the final model, but do not. For example, the M
statistic is better for the preliminary model dur-
ing the last test period, and many of the P(a)
statistics are better for the preliminary model.
Furthermore, even where the final model performs
better, the incremental improvement is small,

These results typify several generic difficulties
with environmental applications of filtering: un-
certain model structure and noise statistics, in
construction with limited data; high cost; and in-
- convenience. Several results point to inaccurate
model structure., The chronic bias towards erron-

eously high temperatures is visual evidence of struc-
tural flaws. Physically unrealistic values of cer-
tain parameters reflect the extremes to which the
estimator must go, to compensate for structural

.. flaws.. Unacceptably high autocorrelation of resi-

duals (P(a)) is another strong indicator of inade-
quate model structure. The small improvement be-
tween preliminary and final models also emphasizes
that inadequacies in the final model are due to
structural flaws, which parameter estimation cannot
correct,

In this case, large uncertainties in the underlying
model structure constrain the parameter estimation
to a mediocre result. In retrospect, the modeling
strategy may have focused too much on rigorous
estimation of many parameters, and too little on
iterative development of a simple but sufficient
model structure, A lower-dimensional model would
be consistent with the limited data base (one loca-
tion) available for model development, A simpler,
black-box model structure would also allow a

‘more convenient model identification process; even

the low-order internally-descriptive model used
herein requires one week to effect minor changes.
Because the covariances of model and measurement
noise are not known, they must be estimated along
with other parameters, However, maximum likelihood
parameter estimation is sensitive to noise statis-
tics (14); hence, the variation in parameter esti-
mates shown in Table 1, During the second global
estimation, noise covariances are much lower than
during the first. In essence, this reduces the
amount of model-data error. which can be attributed
to random variability, thus forcing the estimator
to achieve a better '"fit" of the data. It does this
by forcing parameters to values more extreme than
in earlier estimations, (It is likely that a broad-
er or longer data base would reduce this effect;
however, no test results are available.)

In addition to the statistical difficulties dis-
cussed above, full-information maximum likelihood
parameter estimation is expensive for the moderate-
sized internally-descriptive model used in this
study, For example, one global estimation of
twenty-eight parameters, over 96 data points, costs
$300 to $500 on the MIT Information Processing
Center's IBM 360/70. The filtering and maximum
likelihood algorithms also have large core réquire-
ments, on the order of 300 k bytes;

SUMMARY AND .CONCLUSION

Filtering techniques are theoretically applicable to
several estimation problems in water quality model-
ing: state estimation (of water quality conditions);
parameter estimation and model identification (for
model development and verification). Experience
with water quality applications is limited in both
the number and size of problems studied. This
experience indicates several difficulties common .
among environmental applications of filtering.

High costs stem from the intricacies of filtering
algorithms, the high dimensionality of spatially-
distributed water quality systems, and the number of
uncertain parameters requiring estimation. Uncer-
tain noise statistics strongly influence parameter
estimation and model identification. Scarce mea-
surement data limits the filter's ability to improve
parameter estimates and model structure, Large
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Filtering in Water Quality Modeling (continued)

uncertainties in model structure may severely lim-
it estimation accuracy,

In the future, the advantages and limitations of
filtering should be evaluated on a project-by-
project basis. However, the experience reported
in this paper suggests the following guidelines:

1. Filtering techniques offer organizing
concepts of major value for approaching
the development and testing of water
quality models in the presence of noisy,
incomplete data,

2. Filtering techniques are necessary in
applications” requiring dynamic quantifi-
cation of the variance in a system; the
filter is the only available method for
computing these values,

3. Filtering is best-suited to water quality
modeling problems having low dimension-
ality, a dense data base, a well-known
model structure, and for which highly-
accurate short-term predictions are ex-
pected,

4. Approximate (and less accurate) estima-
tion algorithms are available, which
may provide a more cost-effective solu-
tion to many modeling problems, where:
statistical rigor is not mandatory; the
model or- data is too weak to justify
statistical rigor; or a high~dimensional
system precludes statistical rigor for
economic reasons.

ACKNOWLEDGEMENT

This research was supported by the New England
Power Company, Westborough, Massachusetts,

BIBLIOGRAPHY

1, Beck, M, Dynamic Aspects of Water Quality Mod-
eling and Conf%%i?fﬂﬁﬁﬁg7ﬁtﬁiﬁ§7fk 130, Dept, of
Engineering, University of Cambridge, England.
(1976).

2, Beck, M. "Dynamic Modelling and Control Appli-
cations in Water Quality Maintenance!, Water Re-
search, Vol., 10, (1976).

3. Beck, M. Identification and Parameter Estima-
tion of Biological Process Models, CUED/F-Control/
TR 116, Department of Engineering, University of
Cambridge, England. (1975). .

4, Beck, M. "Problems of River Water Quality
Modelling and Control: A Review", to appear in
Proceedings, IFAC Symposium on Environmental Sys-
tems, Kyoto, Japan, August, 1977, (Pre-print -
1977).

5. Beck, B, and P. Young.

"Systematic Identifi-

cation of a DO/BOD Model Structure", Journal of the

Environmental Engineering Division, ASCE, Vol. 102,
No. EE5. (October, 1976).

6., Bras, R, L. and I. Rodriguez-Iturbe, Rainfall -

Runoff as Spatial Stochastic Processes: Data
Collection and Synthesis. Ralph M. Parsons Labor-
atory for Water Resources and Hydrodynamics, TR
No. 196, MIT, Cambridge, Mass., (1975).

7. Desalu, A, A, Dynamic Air Quality Estimation
in a Stochastic Dispersive Atmosphere, Electronic
Systems Laboratory, Report No, ESL-R-542, MIT,

December 5-7, 1977

Cambridge, Mass. (1974).

8. . Eykhoff, P.. (ed.), System Identification: Para-
meter and State EstimatIon, John Wiley and Sons,

New York (1974).

9. Harleman, D. R. F, and K, D, Stolzenbach, En-
gineering and Environmental Aspects of Heat Disposal
from Power Generation. Dept, of Civil Engineering,
MIT, Cambridge, Mass. (June, 1975).

10. Lettenmaier, D. P, Design of Monitoring Systems
for Detection of Trends in Stream Quality. Techmical
Report No, 39, Charles W, Harris Hydraulics Labora-
tory, Univ. of Washington, Seattle (August, 1975).
11, McLaughlin, D, B, "Application of Kalman Filter-
ing to Groundwater Basin Modeling and Prediction."
In Proceedings of the IIASA Workshop on Recent Devel-

opments in Real-Time Forecasting/Control of Water
Resource Systems, International Institute for
Applied Systems Analysis, Laxenburg, Austria (1977).
12, Peterson, D. W. and F. C. Schweppe, "Code for

a General Purpose System Identifier and Evaluator
(GPSIE)", IEEE Transactions on Automatic Control,
Vol, AC-19, #6: 852-4 (Dec., 1974),

13, Peterson, D. W, GPSIE (General Purpose System
Identifier and Evaluator) User's Manual, Pugh-
Roberts Associates, Cambridge, Mass. (1976),

14, Petersom, D. W,, Hypothesis, Estimation and Val-
idation of Dynamic Social Models - Energy Demand
Modeling, Ph.” D. Thesis, Dept, of Electrical Engin-
eering, MIT, Cambridge, Mass., (June, 1975),

15. Schrader, B. and S. Moore. Hydrothermal Model-
ing for Optimum Temperature Control: An Estimation-
Theoretic Approach, Ralph M, Parsons Laboratory for
Water Resources and Hydrodynamics, TR No. 214, MIT,
Cambridge, Mass, (July, 1976).

16. Schrader, B, P,, Once-Through Cooling at Salem
Harbor Electric Generating otation: OhOTt-term
Temperature Forecasting, and Policy Aspects of a
Teiperatirs SEandard, Bavirommentor Enginoorve—
Thesls, Departmeht of Civil Engineering, MIT, Cam-
bridge, Mass., (1976).

17. Schweppe, F, C., Uncertain Dynamic Systems,
Prentice-Hall, Inc. Englewood Cliffs, N. J, (1973).
18. Young, P, and B, Beck., "The Modelling and
Control of Water Quality in a River Systenm",
Automatica, (Sept., 1974},

15 Z2angwill, W, I. "Minimizing a Function Without

Calculating Derivatives', The Computer Journal,
Vol. 10, No, 293, (1967).




