AN INTERACTIVE DEBUGGING FACILITY FOR GPSS

ABSTRACT

This paper describes the interactive debugging
feature of GPSS/H (1), a new implementation of
GPSS for IBM 360/370 computers. In GPSS/H, in-
teractive debugging of a simulation model is
carried out by means of a simple, but powerful
command language. Commands are provided to selec-
tively display model data on a terminal, to set
breakpoints at arbitrary points in a model, and to
step through a model one or more blocks at a time.
An overview of the command language and an illus-
trative example of its use are presented in this
paper. :

THE NEED FOR INTERACTIVE DEBUGGING FACILITIES

The debugging of GPSS models has traditionally
been a batch-oriented activity. In a batch en-
vironment, when an error is discovered in the exe-
cution of a model, the courses of action available
to the programmer are limited. If the programmer
is lucky, the cause of the problem may be obvious
enough to be inferred directly from "standard"
program output. If the problem cannot be located
by examining standard output and proofreading the
program, additional output must be obtained. The
first type of additional output requested is often
"spnap" output, providing snapshots of the state of
the model at a more frequent interval than stand-
ard output. Generally easily incorporated into a
model, snap output may help to narrow down the
time at which the error occurs and (possibly) the
location within the program. If snap output is
insufficient to solve the problem, more detailed
output may be required, to provide an audit trail
of actions taken by the model. This type of out-
put can be very difficult to properly target. If
the scope of the trace output is too large, in-
sufficient information will be produced to locate
the problem, necessitating preparation of another
run. If the scope of the trace output is too
small, much time will be spent examining the out-
put to find the critical pieces of evidence.
Finally, the Towest level of debugging technique
available to the batch-mode programmer is modifi-
cation of the model to trap highly specific con-
ditions and print appropriate information. A
well-designed model, if it is to be debugged in a
batch environment, should be programmed to contain
built-in debugging aids, to facilitate the pro-

James Q0. Henriksen

duction of trace output and to minimize the number
of changes that must be made purely for debugging
purposes.

There are two major difficulties associated with
batch-mode debugging as outlined in the preceding
paragraph. First, the selection of what output to
print must be completely specified prior to making
a run. Second, no matter how generalized the
built-in debugging aids are in a model, errors can
occur which necessitate modification of the model
to jsolate the problem. When the problem is

found and fixed, the changes must be removed.
Interactive debugging can do a great deal to al-
Teviate these two difficulties. First, because
the programmer can dynamically decide what output
to display as the program is being run, targetting
output is much easier. As model execution ap-
proaches the time and place of an error, the pro-
grammer can request increasingly detailed output.
If necessary, the model can be executed one block
at a time, with the programmer observing the ef-
fects of the execution of every block. Second,
when debugging is done by means of an interactive
command language, exogenous to the model, the num-
ber of changes that must be made purely for debug-
ging purposes is minimized. The DISPLAY command,
for example, may obviate the need for insertion of
PRINT blocks.

To be perfectly fair, it should be pointed out
that there are some advantages to batch-mode de-
bugging. The ability to produce bulk output and
the absence of connect-time charges come readily
to mind. The best approach to debugging simula-
tion models, then, may be a mixture of batch and
interactive techniques. In an ideal work environ-
ment, the programmer should have both techniques
at his disposal, choosing between them as he sees
fit. :

THE HISTORY OF GPSS INTERACTIVE DEBUGGING

Prior to the implementation of GPSS/H, interactive
debugging aids for GPSS models were relatively
Timited. Probably the most advanced of the pre-
GPSS/H packages is GPSS/Norden (2). GPSS/Norden
provides excellent tools for selective display of
model data, aids for maintaining external Tibrar-
jes of matrix SAVEVALUE data, HELP blocks for

Winter Simulation Conference 331

332

GPSS Interactive Debugging Facility (continued)

communicating with terminals, and a SIMSCRIPT-like
(3) report generator. However, GPSS/Norden has no
provision for setting breakpoints in a model, nor
does it allow execution of one or more blocks at

a time (step mode).

The interactive debugging feature of GPSS/H was
originally impiemented as a tool for verifying
the correctness of the internal operation of the
compiler and simulator. The original debugging
feature was a small (about 600-700 Tines of PL/I)
appendage to the logic of the simulator. Con-
siderable effort was put into its design and im-
plementation, to insure that it provided an ac-
curate and independent view of actions taken by
the simulator. After initial use proved to be
very helpful, examples of use of the package were
shown to users of GPSS. At their encouragement,
the package was "cleaned up" and documented,
making it usable by GPSS programmers not neces-
sarily familiar with the internal implementation
of GPSS/H. As presently constituted, the package
provides the user with a collection of simple, but
very powerful commands for interactive debugging,
easily mastered in about one hour.

INITIATING INTERACTIVE DEBUGGING OF A MODEL

Interactive debugging of a GPSS model is requested
by use of the TEST keyword on the system command
which invokes GPSS/H. The exact format dépends,
of course, on the operating system being used.

For example, under the University of Michigan
Terminal System (4) the following command might be
used:

$RUN UNSP:GPSSH SCARDS=TESTPROG PAR=TEST

When such a request is made, compilation and load-
ing of the model proceed in the usual fashion;
however, at the point at which execution would nor-
_mally begin, control passes to a command inter-
preter, which prints a "READY" message on the
user's terminal. At this point, the user assumes

" (and. hopefully retains) control of model execution.

AN OVERVIEW OF THE GPSS/H INTERACTIVE
DEBUGGING COMMAND LANGUAGE

COMMAND SYNTAX

The command scanner is relatively tolerant of
minor errors. For example, extra blanks and miss-
ing ")" delimiters are generally accepted without
complaint. Commands may be abbreviated, with am-
biguities resolved in favor of the more frequently
used command. Thus "STEP" can be abbreviated
“STE", "ST", or "S", while the less frequently
used "STOP" command can be abbreviated only as
“ST0". Command lines which begin with a dollar
sign ("$") are passed to the command interpreter
of the host operating system (only in systems
which allow dynamic command interpretation). For
example, the Michigan Terminal System (MTS) user
could enter the following command to request that
MTS print the estimated cost of the current ter-

December 5-7, 1977

minal session:
$DISPLAY COST

Command lines which begin with an asterisk ("*")
are treated as comments, i.e., are ignored.

In the descriptions which follow, items which ap-
pear in upper case must be typed exactly as shown,
with the exception of commands, which may be ab-
breviated as described above. Items in lower case
represent symbols to be substituted by the user.
Ellipsis ("...") is used to denote optional repe-
tition of the proceeding item.

DISPLAYING PROGRAM DATA

Three commands are available for selective display
of program data. The DISPLAY and PRINT commands
display data by invoking the output module of
GPSS/H, 1in much the same manner as the PRINT block.
The DX command displays data in hexadecimal form
and may be useful in tracking down certain nasty
bugs. The DISPLAY and PRINT commands differ only
in the destination of their output: DISPLAY out-
put is always printed on the terminal, while PRINT
output goes to the file/printer used for all "nor-
mal" program output. The syntax of the DISPLAY,
PRINT, and DX commands is as follows:

DISPLAY entity ...
info

PRINT entity ...
info

DX entity ...
regs
entity2

The allowable values for "entity", “entity2",
"info", and "regs" are as follows:

"entity" Interpretation

BLO Blocks

FAC Facilities

STO Storages

QUE Queues

CHA User Chain Summary Statistics

UCH User Chain Dump (all xacts on

the chain)

GRP . Groups

LOG Logic Switches

TAB Tables

FSV Fuliword Savevalues

HSV Halfword Savevalues

BSV Byte Savevalues

LSV Float Savevalues

FMS Fullword Msavevalues

HMS Halfword Matrix Savevalues

BMS Byte Msavevalues

LMS Float Msavevalues
"entity2" Interpretation

FUN Functions

VAR Variables

BVR Bvariables -

RNO Random Number Stream

"info" Interpretation

QUTPUT Standard OQutput (everything)
STATUS Current transaction, clock values,
termination counter

CLOCKS Absolute and Relative Clocks

CEC Current Events Chain

FEC Future Events Chain

INT Interrupt Chains

MAT Matching Chains

"regs" Interpretation

GRS General Registers of the computer

FRS Floating Point Registers of the
computer

The use of the mnemonics shown.above allows print-
ing entire classes of output. OQutput can be re-

* quested for a single entity or a range of entities
by using subscript notation. Here are some
examples:

DISPLAY FAC STO (Displays all Facilities
and Storages)

PRINT QUE(SAM) (Prints Queue statistics

for SAM)
DX GRS FRS (Displays the General and
Floating Point Registers)
P TAB(1...7) (Prints Tables 1 thru 7)

Finally, note that any output can be terminated by
pressin% the attention interrupt button on the
terminal.

SETTING BREAKPOINTS

Local or global breakpoints can be established at
any block in a program, with no limit on the num-
ber in effect at any time. Global breakpoints re-
main in effect until they are explicitly removed.
Local breakpoints remain in effect only for the
duration of a single command. Global breakpoints
can be established on the BREAK or RUN commands.
Local breakpoints can currently only be specified
on the CONTINUE command.

When a transaction attempts to enter a block at
which a breakpoint is set, a message is printed,
identifying the transaction and block, and control
returns to the command interpreter. Note that if
a breakpoint is established at a GENERATE block,
it will be recognized twice per transaction: when
the transaction "arrives" at the GENERATE block,
and when the successor arrival (if any) is
scheduled.

Associated with each global breakpoint is an "ig-
nore" count, which defaults to "infinity" and may
be set by the IGNORE command, allowing the break-
point to be ignored a specified number of times.

In addition to block-oriented breakpoints, two
special pseudo-breakpoints are provided, in order:
to give the user greater control. The "NEXT"
breakpoint is recognized by the simulator when it
"picks up" an active transaction in its scan of

the current events chain. The "SYSTEM" breakpoint
is recognized whenever the transaction currently
moving through the program relinquishes control
(e.g., is denjed entry into a block). The SYSTEM
breakpoint is particularly useful as a "fence,"
when a transaction is being tracked through a pro-
gram in highly detailed fashion. If the trans-
action being tracked unexpectedly loses control of
the simulation (i.e., is "dropped"), control is re-
tained by the programmer, because (s)he is in-
formed how and why the transaction was dropped, if
the SYSTEM breakpoint is set. The NEXT breakpoint
can provide great insight into the current events
chain scan by identifying transactions as they are
"picked up" during CEC scan. Both the SYSTEM and
the NEXT breakpoint may be used in local and glo-
bal fashion, but do not have associated "ignore"
counts,

The RUN and CONTINUE commands, which can set
breakpoints, are described below. The syntax of
the BREAK, UNBREAK, and IGNORE commands is as
follows:

BREAK block-number ...
NEXT
SYSTEM

UNBREAK block-number ...
NEXT
SYSTEM

IGNORE block-number optional-count
OVERALL RUN CONTROL

A program can run either in normal mode or in step
mode. In normal mode, execution proceeds at "full
speed," stopping only when breakpoints are encoun-
tered, errors are discovered, etc. In step mode
control returns to the command interpreter after a
specified number of blocks have been executed.

Normal execution is initiated by the RUN command.
In addition to initiating execution, the RUN com-
mand can also establish one or more global break-
points. Normally, one or more global breakpoints
are established with the RUN or BREAK commands, in
order to provide for interaction. Normal execu-
tion of a program is resumed by use of the CON-
TINUE command. The CONTINUE command accepts an
optional 1ist of local breakpoints, which remain
in effect only for the duration of the command.
This provides a convenient way to continue execu-
tion to one of a number of potential blocks.

Step mode is entered by use of the STEP command,
which accepts an optional count of the number of
blocks to be executed. If no count is given, a
count of one is assumed. Note that the count is
interpreted in terms of total block executions,
not in terms of attempted block executions. The .
step count is decremented each time the total
count for some block in the program is incre-
mented. Control returns to the command inter-
preter when the count goes to zero; however, oc-
currence of some other event may cause control to
return to command mode before the count has gone
to zero. For example, a breakpoint may be en-
countered. Whenever such a premature return is

Winter Simulation Conference 333

GPSS Interactive Debugging Facility {continued)

made, the remaining step count is printed as a
warning. Note that step mode cannot be resumed
with a CONTINUE command, which is only for resump-
tion of normal mode. Instead, a new STEP command
must be issued, specifying the desired count.

The syntax of the RUN, CONTINUE, and STEP commands
is as follows:

RUN block-number ...
NEXT
SYSTEM
CONTINUE block-number ...
NEXT
SYSTEM

STEP optional-count

The following sequence of commands establishes
global breakpoints at blocks 36 and SAM, runs the
program until execution (presumably) reaches one
of these blocks, executes five more blocks {unless
a breakpoint js encountered), clears the break-
point at block 36, and resumes execution until
block 42 or SAM is reached:

BREAK 36
RUN SAM
ST 5
UNBR 36
c 42

When debugging a program in step mode, it is fre-
quently very useful to establish a SYSTEM break-
point, to determine how and why transactions are
"dropped" by the simulator. It is also convenient
to "skip ahead" to the next transaction to be moved
through the program. The following Sequence of
commands turns off the global SYSTEM breakpoint,
skips ahead to the next "pick up" of a CEC trans-
action, and reestablishes the SYSTEM breakpoint.

UNB SYSTEM
C NEXT
BR SYSTEM

The following sequence accomplishes the same thing,
but causes a message to be printed when the cur-
rent transaction is "dropped," assuming that the
SYSTEM breakpoint is currently in effect.

c
C NEXT

Because it is so frequently. desired to skip ahead
to the next CEC scan pickup, without the nuisance
of an intervening message, the NEXT command is
provided, It is equivalent to a "CONTINUE NEXT"
command, except that the SYSTEM breakpoint is tem-
porarily inhibited. The NEXT command is specified
as follows:

NEXT
Finally, the execution of a program is terminated

by a STOP command. If a STOP command is issued,
execution is immediately terminated. Thus if a

December 5-7, 1977

program returns to command mode with a message of
the form "XACT XXX REQUESTING OUTPUT AT BLOCK
NNN", possibly meaningful output will be lost if
a STOP command is issued. The STOP command
should, therefore, be used with caution. The syn-
tax of the STOP command is as follows:

STOP

AN EXAMPLE USING THE GPSS/H INTERACTIVE
DEBUGGING FEATURES

Appendix A contains an example of the use of
GPSS/H interactive debugging commands. While the
example is essentially self-documenting, the fol-
Towing observations are offered:

1. Source and cross-reference Tistings for
the program are shown so the reader can
see the model being tested. Ordinarily
these 1istings would not be typed on the
terminal.

2. Input 1ines are typed in lower case and
are preceded by a ">", the input prompt-
ing character.

3. Command abbreviations become shorter as
the example progresses. Thus “continue"
becomes "con" and "c".

4, The abbreviations CEC and FEC stand for
"Current Events Chain" and "Future Events
Chain," respectively.

5. The number of microseconds per block exe-
cution is inordinately high because of
the CPU time required to do the jnter-
active debugging. If the model were run
in non-interactive fashion, the execution
rate would be much higher.

BIBLIOGRAPHY
1. Henriksen, James. 0. "Building a Better GPSS:
A 3:1 Performance Enhancement," Proceedings of the

1977 Winter Simulation Conference.

2. GPSS/Norden Simulation Language, National CSS,
Inc., Norwalk, Connecticut.

3. Kiviat, P. J., Villanueva, R., and Markowitz,
H. M., Simseript I1.5 Programming Language, CACI,
Inc., Los Angeles, California.

4, MTS Users Manual, University of Michigan Com-
puting Center, Ann Arbor, Michigan.

APPENDIX A

6PSS/H FPRELIMINARY RELEASE 0.7B8A (UL187)

ALINE$ STMT# .BLOCK#.

»% Execute 25 blocks.
>step 25

XLOC. OPERATION . A»BsCsDyEsErG . COMMENTS

1,000 1 X
2,000 2 X -BARB1
3.000 3 X
- 4,000 A - X
" 5.000 5 - ¢ g ot CEASSIC ONE-LINE“SINGLUE-SERVER WUEUEING MODEL
6,000 6 *
7,000 7 SINULATE
8.000 8 X
9,000 9 x BARBERSHOP SEGMENT
10.000 - 10 X ‘
11,000 11 1 GENERATE 18+6 ARRIVALS EVERY 18 +- & MIN
12,000 12 2 QUEUE BARB({ JOIN WAITING LINE
13,000 13 3 SEIZE BARBR ENGAGE- THE BARBER
14,000 14 4 DEPART BARBQ EXIT THE WAITING LINE
15,000 15 5 ADVANCE 15,3 HAIRCUT TAKES 15 +- 3 MIN
16,000 16 é RELEASE BARBR ALL DONE WITH BARBER
17,000 17 7 TERMINATE EXIT THE SHOP
18,000 18 *
19.000 19 x TIMER SEGMENT
20,000 20 X :
21,000 21 8 GENERATE »74B0 SHUT DOWN AFTER 8 HOURS
22,000 22 9 TERMINATE 1 THAT’S ALL» FOLKS
23,000 23 START 1rer1 RUN FOR ONE. DAY
24,000 24 END
SYMBOL VALUE EQU DEFNS CONTEXT REFERENCES BY STATEMENT NUMBER
BARBQ | QUEUE 12 14 . X .
BARBR 1 FACILITY 13 16
READY !

XACT 1 (0444E8) POISED AT BLOCK S5

>disrlaw clocks

RELATIVE CLOCK: 80

ABSOLUTE CLOCK?: 80

>dis fac(barbr) aue(barba)

~=AVG-UTIL-DURING-~

FACILITY TOTAL AVAIL UNAVL ENTRIES AVERAGE CURRENT PERCENT SEIZING PREEMPT
TIME TIME TIME TIME/XACT STATUS AVAIL XACT XACT
BARBR 575 4 11,500 AVAIL 100.0 1
QUEUE MAXIMUM AVERAGE . TOTAL ZERD PERCENT AVERAGE s
CONTENTS CONTENTS ENTRIES ENTRIES ZEROS TIME/UNIT TI
BAREBQ 1 0.037 4 3 75.0 0.750
»dis bloClees?)
BLOCK CURRENT TOTAL
1 4
2 A
3 4
A 4
5 3
6 3
7 3

Winter Simulation Conference 335

336

Appendix A (continued)

>X Set ur some breskroints. '

>bre 2 7

>econtinue)

XACT 1 (0444E8) HAS REACHED BREAKPOINT AT BLOCK 7
>ster

XACT 1 (0A444E8) DESTROYED AT BLOCK 7

>con

XACT 2 (044658) HAS REACHED BREAKPOINT AT BLOCK 2
>unbreask 2 7

>k Illustrate the SYSTEM rseudo-breakroint.

>br system

e : ”
XACT 2 (044658) PLACED ON FEC AT BLOCK 5

>e
XACT 2 (0444%8) DESTROYED AT BLOCK 7

SX Pick u» next CEC transaction.-
>next
XACT 3 (0444E8) POISED AT BLOCK 1
>c
XACT 3 (0444E8) PLACED ON FEC AT BLOCK 5
%X Turn on NEXT sseudo-breakroint to trar CEC scan rpickuss,
>br next.
% Note! both the SYSTEM and NEXT rseudo-breakeoints are now ensbled.
e
XACT 3 (0444E8) POISED AT BLOCK &
e
;ACT 3 (0444E8) DESTROYED AT BLOCK 7
c
XACT 4 {044658) POISED AT BLOCK 1

e

XACT 4 (0444658) PLACED ON FEC AT BLOCK 5

>e

XACT 5 (0444E8) POISED AT BLOCK 1

>k This is interestins, The facilitw is in user so we’ll set blockade.

>dis fac

~=AVG-UTIL-DURING~-— '
FACILITY TOTAL AVAIL UNAUL ENTRIES AVERAGE CURRENT PERCENT SEIZING

TIME TIMNE TIMNE TIME/XACT STATUS AVAIL XACT
BARBR +&%50 7 14.857 AVAIL 100.0 4
>e
XACT 5 (0444E8) UNIOUELY BLOCKED AT BLOCK 3
>e
XACT 4 (044458) POISED AT BLOCK 6
>dis cec

CURRENT EVENTS CHAIN
XACT ADDR CURBLK NXTBLK ASMSET CHAIN(S) SDPGCFXx PC HARK~-TIME MOVE-TIME
S 0444E8 2 3 CEC sD 160 ——

PH . 1-12 <(ZERO)

4044558 S b CEC 146 -
PH "1-12 (ZERQ)

>% Note-that the *scan skir® 1nd1cator is on for -transaction number S.
>unbreask swstem next

December 5-7, 1977

PREENPT
XACT

PRIORIT

>% Illustrate tolerance of minor errors,
»d fac "(barbr

~=~AVG~-UTIL-DURING—-
W FﬁCILITY TOTAL -AVAIL -UNAVL

STIME . TIME TIME = TIMEZXACT
. BARBR 654 7 D15.142
>3 blo (1 s 4 40 5
. BLOCK" CURRENT TOTAL
1 8
2 1 8
3 7
4 7
5 1 7
>% Illustrate error handling,
>dis cha
NO *CHA" TO DISFLAY
»br 25 :

25 IS OUT-OF-RANGE.

*dis blo(3.+2)

*Z.+42" IS AN INVALID RANGE

by 2

unbr 2 3 4

"3* IS NOT SET AS A BREAKPOINT

4 IS NOT SET AS A BREAKPOINT

>X Comrlete the run,

re

XACT 6 (0445D0) REQUESTING OUTPUT AT BLOCK ¢
5% Note: block 9 is s TERMINATE block. °©
>% *Continue® to dget outslt.

g

RELATIVE CLOCK?! 480 ABSOLUTE CLOCK: 480

BLOCK CURRENT TOTAL
1 26

. 2
END

SIMULATION TERMINATER AT BLOCK 9

—~ ENTRIES -+ AVERAGE

CURRENT- PERCENT- SEIZING * PREEHPT
~8TATUS .AVAIL - XACT - XACT
L AVAIL 100.0 4

¥ Note! the above outrut was dolibiratela terminated by attention interrust.

>% The outrut can still be diselaved as follows!
»d outrut

'RELATIVE CLOCK: 480 ABSOLUTE CLOCK: 480

BLOCK CURRENT TOTAL

26
26

26
26
26
25
25

i

1

VONOUHD O NM
[y

Winter Simulation Conference

337

Appendix A (continued)

‘CURRENT EVENTS CHAIN

s

XACT ADDR CURBLK NXTBLK ASMSET"

7 044580 BIRTH 8

PH 1-12 (ZERO)
FUTURE EVENTS CHAIN

XACT ADDR CURBLK NXTBLK ASMSET

8 044458 BRIRTH 1
PH 1-12 (ZERD)
¢ 0444E8 5 b
FH 1-12 (ZERO)
~-=AVG~-UTIL-DURING--
FACILITY TOTAL AVAIL UNAVL
TIME TIMNE TIME
BARBR e 777
QUEUE HAXTHUN AVERAGE
CONTENTS CONTENTS
BARBQ 1 0.033
>c
SIMULATION TERMINATED AT BLOCK ¢
e
SIMULATION TERMINATED AT BLOCK 9
>ster

SIMULATION TERMINATED AT BLOCK @
REMAINING STEP COUNT = 1

CHAINCS) SDPGCPX% PC MARK=TIME ~MOVE-TIME PRIORIT
CEC G 0 ——
CHAINCS) SDPGCPXX PC MARK~TIME MOVE-TIME PRIORIT
FEC 6 0 " age
FEC 476 491
ENTRIES AVERABE CURRENT PERCENT . SEIZING PREENPTI
TIME/XACT STATUS AVAIL XACT XACT
26 14.346 AVAIL 10040 9
TOTAL ZERO PERCENT AVERAGE 4
ENTRIES ENTRIES ZEROS TIME/UNIT TIM
26 19 73.0 0,615

=% Note! the above commands illustrate that there’s no continuation once
>X the SIMULATION TERMINATED messase is siven.

>stor

TOTAL BLOCK EXECUTIONS?

182

MICROSEC/BLOCK AVG CPU TIME: 5157.3

CPU TIME USED (SEC)

PASS1$ 0.288
SYM/XREF ¢ 0.034
PASS2: 0.079
LOAD/CTRL S 1.740
EXECUTIONS 4,578
OUTPUT? 0.548

338 pecember 5-7, 1977

