CONSERVATION EQUATIONS AND VARIANCE REDUCTION IN QUEUEING SIMULATIONS

ABSTRACT

We consider the efficient estimation of mean delay in
queue, d, mean wait in system, w, time average num-
ber in queue, @, and time average number in system,
L, for simulated queueing systems. We prove for the
GI/G/s queue that it is more efficient to estimate
w, @, and Z from an estimate of d than it is to
estimate them directly. This generalizes previous
results for the M/G/1 queue and also confirms empir-
ical studies on other GI/G/s gueues.

I. INTRODUCTION

We are concerned with the efficient estimation of
the parameters d, @, w, and L when the data are col-
lected from a computer simulation of a queueing sys-
tem, where:

d = Tona-run average delay in queue per cus-
tomer,

@ = Tong-run time average number in queue,

w = long-run average wait in system per cus-
tomer,

L = Tong-run time average number in system.

("When we say “"delay," we mean wait in queue only,
not including the wait in service. The "system"
consists of one or more queues (waiting Tines) plus
a service mechanism.)

More specifically, we consider how conservation equa~
tions and other structural relations between param-
eters can be used to achieve a variance reduction.
The parameters d, §, w, and L are related by the
equations:

Q = Ad, (1)
L =\, (2)
w = d+E(S)s (3)

where ) is the arrival rate of customers to the sys-
tem, and E{S) is the expected total time in service
of a typical customer. The relations (1)-(3) hold
for a great variety of queueing systems without any
distributional assumptions and in particuiar when
the system has the regenerative property (which we
assume throughout). A proof of (1) and (2) may be
found in Stidham [5]; equation (3) is obvious.
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We consider a brief example. Let § be the stand-
ard regenerative estimator of @ in a regenerative
queueing process. Relation (1) suggests an alter-
native estimator, Ad, d being the standard regenera-
tive estimator of d. We have shown that for the
GI/G/s queue the estimator A is more efficient than
g as an estimator of @, i.e., Var(Ad) < Var(Q) at
least for large enough sample sizes. This result,
and the others discussed later, generalize previous
results for the M/G/1 queue (see Law [4]). More-
over, the methods used to prove our results are
quite general in scope and potentially can be
applied to other queueing processes.

For the remaining sections, we discuss the regenera-
tive method of estimation as applied to the GI/G/s
queue (see Crane and Iglehart [2]). Our main results
are listed in Section 5. A1l proofs may be found in-
Carson [1]. The last section briefly discusses fur-
ther work along the same lines.

II. THE ¢I/¢/s QUEUE

In the standard GI/G/s queue, we have a single wait-
ing line and s parallel servers, interarrival times
distributed as a random variable (r.v.)4, and serv-
ice times distributed as a r.v. 5, with all of these
r.v's being mutually independent. Let A = 1/E(4) be
the arrival rate, and assume 0 < E(4) < » and

0 < E(S) < ». It is known that the queue is stable
if and only if p = AE(S)/s < 1. 1If, in addition,
P(4 > 8) > 0, then the queue is regenerative (see
Whitt [6]), and the regenerative method of estima-
tion can be applied (see Crane and Iglehart [2]).

To say that the queue is regenerative means that it
becomes completely empty of customers infinitely
often with probability one (w.p.1). If we assume,
for simplicity, that the first customer finds all
servers free, then he begins the first busy cycle.
Suppose customer number N, + 1 arrives at time B,
and is the next customer fo find all servers free.
Then a second busy cycle begins at time B,. If
p<1andP(4>8)>0 (as we shall henceforth
assume), then E(N,) < = and E(Bg) < » (see [6]) and
there will be an infinite sequence of independent
and identically distributed (i.i.d.) busy cycles.

We shall need the following notation:

¥ = the number of customers served in a
¢ busy cycle;
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Variance Reduction (continued)

B, = the length of a busy cycle;

Dg = the total delay of all customers served
in .a busy cycle;

We = the total waiting time of a1l customers

served in a busy cycle.

We shall assume that N, B,, D, and W, have finite
second moments. Note that, under our assumptions,
the steady-state parameters d, @, w, and L exist and
are finite and constant w.p.1.

ITT. THE REGENERATIVE METHOD OF ESTIMATION

Suppose we simulate a GI/G/s queue for m busy cycles
and we are interested in the estimation of @ and 4.
The relevant data to collect are

3D sevasD
DC-I 02’ k] cm.,
¥ N ,...,8 ,
and 4y % Cm
B ,B ,...,B ,
C’l Cz C‘m

where the subscript indicates the busy cycle. Let
Dgs N, and B, be the sample means of the three
sequences. It follows fromthe regenerative nature

of the queue that the random vectors (Dc ,Nc ,Bc )s

1<% <m are i.i.d. and that T i i
d= E’(Dc)/E(IVc) (3a)
and
@ = £(p)/E(B,). (3b)

The direct regenerative estimators of d and @ are,
respectively,

a = 50/17c (4)

and
(5)

Using the strong law of large numbers, the central
Timit_theorem, and (3a,b), it is easily seen

that 4 and @ are strongly consistent for 4 and @,
respectively, and, in addition, are asymptotically
normally distributed. (See Carson [1] or [2] for
a proof.)

Q= Da/Bc’

In a similar manner, we obtain the direct estimators
of w and L:

2) WE/NG, (6)
L=7/3, (7
IV. INDIRECT ESTIMATION
In a simulation X and E(S) would be known. From the

relations (1)-(3), we see that an estimate of any
one of the four parameters of interest could be
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used to obtain an estimate of any other parameter.
For comparison purposes, we concentrate on estima-
tion of d.

Let 3, = d be the direct estimator of d, and consider
the f&]]owing indirect estimators:

a, = a/x, (8)
223 =% - E(S), (9)
224 = L/\ - E(S). {(10)

Using (1)-(3) and the asymptotic normality of the

estimators (4)-(7), it is easily seen that each of
the estimators (8)-(10) is strongly consistent and
asymptotically normally distributed.

The variance of the asymptotic normal distribution
provides a basis for the comparison of the estima-
tors d;, 7 = 1,2,3,4. This variance can be expres-
sed in the following way. Suppose that © is some
steady-state parameter of a regenerative process
(such as d, @, w, or L) and that

8 = (11)
where X and ¥ are r.v.'s defined over a busy cycle
(such as W, and D_), and o and B are constants. A
regenerative estimator of 6 is

8 =

where X and Y are sample means taken over m cycles
(such as v, and De). The estimator 8 satisfies:

oE(X)/E(Y) + B,

oX/Y + 8, (12)

80 w.p.1
and
A6 - 01/ R R0,1) as mo e, (13)
where
v = Var(ax - (8 - B)¥)/E2(Y)
= {8 - B)*Var(x/EX - Y/EY). (4)
(Here, !Z denotes convergence in distribution and

n(0,1) is a mean zero, variance one normal r.v.

That the two expressions in (14) are equal follows
trivially from (11). The expression for » given in
[4, eq. (1.27)] should have 62 replaced by (6 - g)2.)

The quantity v given by {14) will be denoted by
VAD(8) and called the variance of the asymptotic
distribution. Our basis of comparison for two dis-
tinct ratio estimators 67 and 65 of 8 (both of the
form (12)) will be their VADs, since it follows from
(13) and (14) that Var(g) is approximately VAD(8)/m
(for large m). If VAD(8y) < VAD(8,) and equality
holds only in a degenerate case (i.e., when either
the interarrival or service times are constant),
then we shall say that 8y is more efficient than

B2 as an estimate of 6. In the next section, we
discuss the efficiency of the estimators s

i =1,2,3,4.




V. MAIN RESULTS: GI/G/s QUEUE

We now come to our main results. The first theorem
shows that A& is a more eff1c1ent estimator of @
than its d1rect estimator g = Ady.

Theorem 1 VAD(31) < VAD(dz), with equality holding
if and only if Var(4) = 0, i.e., the interarrival
times are constant {w.p.1).

The next theorem combined with the previous one
shows that the indirect estimator Ady + AE(S) of L
is more efficient than its direct estimator Z.

Theorem 2. VAD(d,) < VAD( d ), with equa11ty hold-
ing if and only 1% Var(4) = 0 and Var (8) =

The third theorem shows that the indirect estima-
tor 81 + E(S) of W is more efficient than its
direct estimator .

Theorem 3. VAD( }) < VAD 33 ), with equality hold-
ing if and only if Var(s) =

For completeness, we also state:

Theorem 4. VAD(d3) < VAD(d ), with equality hold~
ing if and only if Var(4) =

VI. CONCLUSIONS AND ADDITIONAL WORK

Theorems 1 through 4 tell us that for the estima-
tion of d jt is more efficient to use the direct
éstimator 4 given by (4) than any of the indirect
estimators (8)-(10). On the other hand, for the
estimation of @, w, or L, it is more efficient to
use the appropriate linear function of d suggested
-by (1 )'(3) » namely,

A

Q= M,
w=a+ESs),
I = Ad + AR(S).

Empirica] evidence given in [3] and [4] indicates
that variance reductions from 0% to at least 76%
can ‘be obtained by using the appropr1ate indirect
estimator based on d. Thus, at least in the

GI/G/s queue, it is only necessary to estimate 4.

In additional work, we have investigated using
Tinear combinations of estimators. For example,
Tet

(o) = @ + ayid,

where a = (a1,a )} and ap tap, = 1. HNote that

2((1 0)) = § and 5((0 ,1)) = Ad, and thus

VAD(Q a)) < VAD(A ) < VAD(3) for some choice of a.
Thus, by proper choice of a = (07,02), a greater
variance reduction can be achieved than by using
the single alternative, Ad. It is important to
note that this method will work for any regenera-
tive queueing process, provided alternative esti-
mates are available. For the details, see [1].
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