A.SPECTRAL BASED TECHNIQUE FOR GENERATING CONFIDENCE INTERVALS FROM SIMULATION OUTPUTS

ABSTRACT

A technique for generating confidence intervals on the
common expectation of a sequence of correlated random varia-
bles is developed. The sequence is modelled as a covariance
stationary process. In this situation the variance of the sample
mean is proportional to the variance spectrum at zero frequen-
cy. This value of the spectrum is estimated by fitting a low
order polynomial to the sample spectrum (periodogram) in the
fower frequency region. The technique is applicable to both

individual observations and batched data. Experimental results

comparing it with the method of batch means are given for the .

steady state waiting time of the M/M/1 quene. The proposed
technique gives valid confidence intervals of approximately the

same average width as the method of batch means when the

batch size is large enough for that method to be valid. It con-

tinues to give valid confidence intervais when the batch sizes

are such that the method of batch means breaks down.

1. INTRODUCTION

We are interested in the output analysis of simulations of
generalized queueing networks or job shop like systems. In
particular we are interested in the problem of placing valid
confidence intervals on the steady state parameters of such

.systems. In these situations the primary outputs are sequences
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of random variables. In developing procedures for generating
valid confidence intervals one has to deal with two complicat-
ing phenomena: '

1) there is a transient phase wherein the parameters of interest
do not approximate their values in the steady state;

2) within a sequence, the primary random variables are corre-
lated.

We will be proposing a method for dealing with the second of

these complications. We will not discuss the first.

A number of procedures have been proposed for dealing
with the correlated nature of the primary random variables.
These procedures fall into two general categories. In the first,
by some organization of the experimental protoogl, independ-
ent or approximately independent random variables are gener-
ated and standard statistical techniques applicable to independ-
ent observations.are applied. The methods of independent
trials, batch means and regeneration points fall in this category.
For discussions of these methods see [1] through [4]. The
methods of this category are those in most common use. In
the second category the methods attempt to estimate the effect
of the correlation by some direct meang, The most developed
of these methods fits an autoregressive model to the sample
sequence and generates confidence limits assuming the correla-
tion structure of the estimated model. For a discussion of this

see {1] and [5]. The application of spectral estimation techni-
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ques has been discussed’see [1] and [2] ‘but‘does not seem to
have been studied in any intensive way. The exploitation of

spectral techniques is the subject of this paper.

We will view the simulation as yielding a sequence of

random variables X, ,..., X, with a common expectation

E(X;) = ¢Y

which is unknown. We wish to generate a confidence interval
for p. We will assume that it is reasonable to model X; : j = 1
.-, N as a sample from a covariance stationary sequence with

covariance function
1(k) = E{(X; ~ W) Xjyi — 0} e
We let o2 be the common variance of the X;’s, Then
a2 = Var{X;} = v(0). 3)

Corresponding to y(k) we assume there is a spectral density
p(f). The sequence y(k), k=0, +1, +2 and the function p(f)

are a Fourier pair in the sense that

p(E) = E_ﬂg)e-z'ifk @
1/2
and . v = f p(f) e2xifk df )
-1/2 .

In practice the sequence X(j) could either be some prima-

ry sequence of random variables or a sequence derived from

some primary sequence. As examples consider the following.

Example 1: Suppose we have a queueing network and we are
interested in the steady state waiting time at the jth queue.
Let

.w.

in = waiting time of the nth customer departing

from the jth queue.
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And suppose our simulation had generated Wj , n=1 ,., M.
Then we could let
X;=W;;
and N=M
or we could batch the observations in batches of size ® and,

assuming M=KB, let

™Mo

1
Xi= 3 u;an+@4m

N=K.

Example 2: Consider the same queueing network and the same
simulation output sequence, W; n=1 ,..., N, discussed in
Example 1 and suppose we are interested in the steady state
probability that the waiting time at the jth qm.;ue is. greater
than C. Then we consider the sequence of random variables

§in=1 ifW;,>C

=0 otherwise.

Notice that

E{£; o} = Prob {W; , > C}.

Again we could let

or we could batch the observations and, assuming M=KB, let

lfj,n+<i_nn

W=
B MW

and N =K.

Example 3: Again consider the same queueing network of the
earlier examples and suppose we are interested in the utiliza-
tion of the jth queue. Then we consider the contihuous proc-

€ss




Vj(t) =\

if the jth server is busy at time t
vj(t) =0 otherwise.
Notice that
E{vj(t)} = Probf{ jth server is busy at time t }
= steady state utilization of the jth queue.
In this case if T were the overall simulated time in approximate

steady state we would choose a number of time intervals)K’

where KTg=T and let
Xi= [ e L ma
= Ja-n1p
and N=K.
2. THE METHOD

As discussed in Section 1 we assume we have a sample X;
: i=1,..., N from a covariance stationary process with covari-
ance function y(k) and spectral density p(f).

We let
p=E (X 6

be the unknown, common expectation of the X;. We wish to

generate a confidence interval for p from the X;:i=1,., N.

Now in this situation a reasonable estimator to use is the

sample mean,

A. L Bx 7
It is an unbiased estimator of g whose variance is given by
1 N-1 (N-k)
gpA= — = g (k) )
[ N k=—(N-1) N
1 12 sin?Nnf
- — f ——— p(f) df ®

N N sin?xf
1/2

The results (8) and (9) follow from -standard theory on the

. . . A
variance and the spectral density of linear operators such as p

applied to covariance stationary sequences (see e.g. [6]). For

large N, (8) and (9) are given approximately by

1 -]
~ T Z v(k) (10)

=—cc

=5

] E(—O)— ) (11)

N

We will use these approximations from here on. -

To place a confidence interval on p we genérate an esti-

Az . A A, /A N

mate ¢z of the variance of y and assume that (u-)/6, is
& "

distributed as a normal random variable with zero mean and

unit variance. A confidence interval at confidence level a is

given as

(B - ®(1-a/2) G4 , i + ®(1-a/2)3,)  (12)
B ®

where ®(x) is the cumulative distribution function of the nor-

mal distribution with zero mean and unit variance,

As we remarked in the introduction we will proceed by a
quite direct application of the theory of spectral estimation.

Our estimate of 62 will be obtained as
B

A )
N

(13)

T>N

where 6(0) is generated by applying polynomial regression to

the logarithim of the periodogram. The main assumption be-
hind the method is that log(p(f)) be a smooth function in the
sense that it can be approximated by a low order polynomial

over a substantial frequency range which includes zero.

The periodogram of the sequence X(j), j=1 ,..., N is de-

fined as

| %IX(j) e2ni(j-n/N |2
2

/N =  — = 14
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n=20,1,..,[N/2]

where _
sEN/2].= largest-integer <N/2
andi= (-1)1/2,
For a wide class of covariance stationary processes (see e.g.

[7D) which include all Gaussian processes we have asymptoti-

cally (as N gets large) that for n, m=1 ,..., [N/2]

" E {im/N)} = pa/N) , (1s)
Var {I(n/N)} = p%(n/N) , (16)

and;Cov {I(n/N), I(m/N)} =0, n¥m. (17)

Further, againr asymptotically, the I(n/N) are distributed as a

constant times a x2 random variable with 2 degrees of free-

dom. If we assume that p(f) is smooth in the lower frequency
tegion then Equations (15) and (17) suggest that one could

apply polynomigl regression -to estimate p{f) and take f:(O) as

the y axis intercept of the estimated é(f). However as Equa-
tion ‘(16) indicates, if p(f) is varying, the variance is not con-
stant. Further the x: distribution is quite skewed. Because of
this ig is more common to consider log(I(n/N)) : n=1 ,...,

N/2].
If we let
C = Eflog (x3/2)} = .577 (18)
then

E {log(i(n/N)) =C} = log(p(n/N)) ,  (19)

% Var-flog(i(n/N)) ~C} = Var {3}, @0)

a=1,.,[N/?2],

December 5-7, 1977 -

... Continued

and we see that log(I(n/N))—~Chas log(p(n/N)) as expectation
and a ‘constint varianée. - Furthermore. the.sdistribution of log-

(x%) is*morcfﬁnea‘rl‘y normal than:the distribution-of Xz Hence" -

“: log(n/N)-C is=a ndfuralcandidatexfor /the .application of

regression techniques.

With ‘this background the proposed procedure is as fol-
lows:

1) calculate I(n/N) for n=1, 2 ,..., K where
K = minimum ([N/2] , 100);

2) calculate f(n) = log{I(n/N)-Q for n=1, 2 ,..., K ;

3) fil;’a second degree polynomial g(n) = a°+a1n+a2n2 to
f(n) using standard regression (least squares) techni-
ques;

4) let :the fitted polynomial be Ig\(n) = Qo + an+32n2; we

A
use as our estimate, p(0) = RO = o ;

5) finally 5, = (p(0)/N)\/2 and the confidence interval
: M ] .

is given by (12).

The major assumption of this approach is that log(p(f)) is
a smooth function which can be approximated by a second
degree pdlynomial over the range 0 to K/N. The value I(0) is

not used because it only reflects the unknown mean. Fast

Fourier algorithms can be used to calculate I(n/N). For a
the
discussion of the relationship between periodogram and the

N
FFT algorithm see [8].

3. EXPERIMENTAL RESULTS

As a test of the procedure we simulated the M/M/1
queue and estimated the steady state waiting time. The X
were averages over batches as discussed in Example 1 of Sec-

tion 1. Let
W= waiting time of the n’th departing customer . (22)

We are interested in




p = lim E{W_}. (23)
N«

We suppose we have W , n=1,..., M = NB and that

i1 B
Xi= 3 n2= lwn+(i—l)B . (24)
Hence the random sequence considered; X; : i=1 ey N3 is a

sequence of N batch means with batch size B and

E(X) ~ p. - (25)

We compare the proposed method with thé "method of
batch means". In the method of batch means one assumes the
batch size B to be large enough to make the means approxi-
mately uncorrelated. We first consider a sequence of experi-
ments where the method of batch means breaks down because
of correlation between the batches while the proposed method

continues to provide valid confidence intervals.

Fifty independent simulations of the M/M/1 queue were
run for the eight different conditions given in Table 1. The
quantity p is the utilization. The number of service comple-
tions, M, was adjusted so that, for each p, it would be equal to

1000 x Efnumber of customers served in a busy period}. For

each of the 50 indépendent simulations 90% confidence inter-

vals were calculated using both the spectral method and the
method of batch means. In Figure 1 the observed coverages
are plotted. It can be seen that the method of batch means
breaks down as p increases, As would be expectpd’it breaks
) down more drastically for the batch size of 20 than for the

batch size of 100. The spectral method provides approximately

90% coverage in every instance.

Experimental Values for the Results

of Figure 1

L B N M
.6 20 375 7500
6 100 75 7500
N 20 500 10000
N 100 100 10000
.8 20 750 15000
8 100 150 15000
9 20 1500 30000
9 100 300 30000
Table 1

I T T T ]
.o - —
Q - ‘&:‘*-0
0.8" \x \‘sn -
+
o6 \+ Ny -
04 —
02f + -
0 11— i | | |
06 o7 08 09
P
4 batch means: 20 events/batch
® batch méans: 100 events/batch,
© spectral method: 20 events/batch
@ spectral method: 100 events/batch

‘Figure 1:

Coverage for Spectral
Methed and "Batch Means" method

for Batch Sizes of 20 and 100

as a function of p.
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As an illustration of the basic function underlying the N 45 T T | T T Y T . T —
spectral method we have in Figure 2 plotted a particular in- N
stance of I(n/N), log(I(n/N))‘and the quadratic fit. This is - 4or | -
for the case p=.9, B=20, N=1500, and M=30,000. Notice 351
the x;ariance stabilizing effect of the logarithmic transformation - 30 )
and the uhcorrelated appearance of the periodogram fluctua- g 25+ ;’l;
tions. H 20+ 'gl

’ - 15+ J

As a second comparison of the two methods a sequence of - ] -
conditions were considered with batch size large enough so 0} X ‘ vi
that the method of batch means provided valid confidence ) ) 5+ ‘ -"\ A A ll J ‘d,’ ' L N
intervals over the full range of p. We wish to show that the ’ o VI\/ R L}‘ , | VL { \ ' My
spectral method also provides proper coverage under these ~ - 0~ 20 40 n 60 80 100
conditions and compare the average widths of the confidence - - = - A -
intervals generated by the two methods. :I‘he conditions are T T T T ¥ T Y T T Y Y
tabulated in Table 2. The batch sizes are 50 and 100 ti;nes the ' 41 -

expected number of service completions in a busy period. In I

Figure 3 we compare the coverage of 90% confidence intervals o}

generated by the two methods. This coverage is based on 50

independent simulations under each set of conditions. Notice

that both methods provide proper coverage. In Figure 4 we

qu(I(n/N)i '
o

plot R(p) defined as

2k
L s
R() average confidence interval width (spectral method) ~-3F
p average confidence interval width (batch means)

-4}

Notice that R(p) fluctuates in the region 1.8 to 1.4. Hence | P S Y N DR SRS WY SO S PR W

L o 20 40 60 80 100
there is a slight increase in the average width of the confidence n

intervals generated by the spectral method compared to those
- B .. .- Figure 2: An Exatiple of I(n/N),
generated by the method ‘of batch means when the method of log(I (n/N) ) and Quadratic Fit
for p = .9, B = 20, N = 1500.
batch means works properly.
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p B N M
.6 125 60 7500
6 250 60 15000
N 167 60 10020
a0 334 60 20040
.8 250 60 15000
.8 500 60 30000
9 500 60 30000
9 1000 60 60000
Table 2
Experimental Values for the Results
of Figures 3 and 4
WL T T T -
1.0 9 .
o8- ge=fmesmggrnas i
o.er- ' 7
04+ . =
0.2~ 7
O g e—57 o8 09
P

- -

4 batch means: 50 E{busy p.}l/batch
X batch means: 100 E{busy p.l/batch
o spectral method: 50 E{busy p.}/batch
p spectral method:

Figure 3: Coverage for Spectral
Method and "Batch Means" method
for Batch Sizes of 50 and 100
times E{number of service com-
pletions in a busy period} as
a Punction of p.

100 E{busy p.}/batch

041+

06 or. 08 09

© 50 E{busy period}/batch
& 100 E{busy period}/batch

Figure 4: R(p) vs. p.

4. SUMMARY

We have outlined a method for placing confidence inter-
vals on the common expectation of a sequence of observations
which can be reasonably modelled as a sample sequence from a
covariance stationary process. The mah_l assumption underly-
ing the method is that log(p(f)),where p(f) is the spectral
density,be a smooth function v‘.rh‘ich can be approximated by a
low order polynomial. We have shown the method to work
properly on simulations of the M/M/1 queue. Evidence so far
indicates that it provides a method of generating confidence
intervals from batched data w.hose validity does not. depend
upon the batch size. Experimentation is continuing on more
complex systems and alternative methods of fitting smooth

curves to the logarithm of the periodogram and to the periodo-

gram itself.
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