FORMULAS_FOR THE VARTANCE OF THE SAMPLE MEAN

V_PROCESSES

ABSTRACT

Formulas are derived for the variance of sample
means associated with finite state Markov processes.
Results are presented to illustrate the use of the
formulas for example processes. The formulas can
be used to evaluate proposed statistical methods
for estimating the variance of a sample mean ob-
tained from simulation experiments.

INTRODUCTION

Simulation of real world systems on a digital com-
puter is now common place. When the system is a
queueing system, one of the most often derived sta-
tistics is the average or sample mean number-in-the-
system. The utility of this statistic obviously lies
in the fact that it is presumably an unbiased esti-
mator of the equilibrium mean number in system.
However, the simulator needs to know more than just
the value of such a statistic in order to make sta-
tistical statements concerning the true mean. Spe-
cifically, if the statistic is highly variable
across simulations, the result from a single simu-
lation may be misleading. The solution to this
problem is the standard statistical approach: use
simulation data to estimate the variance of the
average-number-in~system statistic and comstruct a
confidence interval. The approach in more detail is
as follows (see Fishman [3]).

Let N(t) be the number in system at time t and
assume the simulation starts at time zero. Then the
sample mean statistic at time t, Ny, is given by

t

e =% gN(u) du

If we assume the N(t) process is covariance sta-~
tionary, then the autocovariance of lag s, Rg, is
given by

Rg = cov[N(t),N(t+s)]

Let var N¢ denote the variance of Ne. It is well
known that the variance of a discrete average of n
independent observations approaches zero as n in-
creases. The analogous result

lim var ﬁ; =0

oo

holds, under reasonable conditions, for ﬁi (see
Appendix). More significantly, it can be shown that
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lim t var §£ =m
oo

where we define m by
L]
m = f Rg ds .

-0

Therefore, if the simulator has an estimate m of m,
he can estimate_var Nt by m/t. If it is reasonable
to assume that N is normally distributed, that m
has a chi-square distribution, and that Nt and ™ are
independent, then a confidence interval for the true

. mean may be derived (see Fishman [3]).

Procedures that have been proposed for estimating m
use: replication; subinterval sampling; spectral
methods; autoregressive techniques; and regenerative
methods [3,4). Analytic methods for evaluating
these estimators all rely on assumptions (large
sample size, independence) which may not strictly
hold in practice. Thus, an empirical evaluation of
the performance of an estimator m on systems for
which m is known is desirable. Such evaluations have
been carried out [2,3]; however, they have been re-
stricted to simple systems, such as the M/M/1 queue,
for which the true value of m can be calculated. It
15 not clear if the results of such evaluations can
be extended to more .complex systems.

With the intent of alleviating this situation, we
present in this paper formulas for the direct com-
putation of m and t var N¢ for any finite state
Markov process. Proofs of theorems are included in
an Appendix to the paper.

1. FINITE STATE MARKOV PROCESSES

In this section we summarize the results we will
need concerning finite state Markov processes. For
additional information, the reader is referred to
Cinlar [1] or Parzen [5].

We consider a finite state Markov process whose
state at time t > 0 is denoted by S(t). Let the
finite set of possible states be 50,81,...,5p and
define the transition probability

qu(t) = Pr(S(t)-erSCO)-sq) s

that is, Pqr(t) is the probability that the process
is in state sy at time t given that it is in state
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VARIANCE FORMULAS....continued

8q at time zero. Since
Pay(t) = 1,
] racte = 1
the row vector
Pq(t) = [qu(t),quﬁt),-;o.rqp(t)]

represents the conditional distribution of S(t)
given that S(0) = s,. As t becomes large, Pq(t)
tends to a limiting distribution which does not
depend on q. We write

* = 1im Pq(t) q=0,1,...,p0 ,

Lo

and call w the stationary or steady state distri-
bution, If the initial state S(0) of the process

is chosen according to the distribution 7 we say

we have steady state initial conditions. In this
case, the unconditional distribution of S(tr) for any
t > 0 is also x; in other words, a process beginning
in "steady state' remains in steady state.

We may form the matrix IP(t) whose rows are
Poft),...,Pp(t). TP(t) satisfies the Chapman-
Kolmogorov differential equations, which in matrix
form are

P'(r) = PP(L)A

where A = 1P'(0) is the matrix of so-called transi-
tion rates, which uniquely determine the probabilis-
tic structure of the process. If A = (ag,) then

for q ¥ r, agr > 0 is the transition rate from s

to 8y, The row sums of the matrix A are zero, so
that

P
aqq - - X aqr .
=)

riq

If the process is in state 8q at any time, it remains

there for a length of time T which has a negative
exponential distribution with mean --llaqq and then
moves to state s, with probability

agy / E agk -
T g
keq

The steady state distribution ¥ may be obtained
from A by solving the system of equations

wA = 0
E"i'l .
i=0
The matrix P(t) can be obtained by evaluating
P(t) = V_ldiag(eaot,eult,...,eaPt)V
provided A has linearly independent eigenvectors.
Here V is the matrix whose rows are the left

eigenvectors of A and BGs0ysseesy are the corres-

ponding eigenvalues. In the above and subsequently,
the expression
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diag(xo,xl,...,xp)

represents the matrix with diagonal entries
X(0sX]1 e es%p, and zeros elsewhere.

2. SUMMARY OF RESULTS

Consider the finite state Markov process on the
States $0,8y,..4,5p, having transition probability
matrix IP(tf; a matrix A of transition rates, and a

stationary distribution 7 = [ﬂo,ﬂl,...,ﬁp]. Fur-
thermore, let

I = lim IP(t)
s

be the matrix where p+l rows are all =,

Let n be a real valued function which assigns to
each state s a number n(s), and define the process
N(t) by

N(t) = n(S(t)) .
N(t) could, for example, represent number-in-system
at time t. It can be shown (see appendix) that
under steady state initial conditions for the S(t)
process, the N(t) process is covariance stationary,
which means that EN(t) and cov(N(t+s), N(t)) do not

depend on t. We therefore define under these
conditions

EN = EN(t)
Rg = cov(N(t+s),N(t))
It is easily seen that
EN = | nisgdng
q
As above we define
Ne= = [ N(uw)du
to

We are interested in var ﬁ;. The proof of the fol-
lowing theorem is given in the appendix,

Theorem 1: If the matrix A of transition rates has
p+l linearly independent eigenvectors then the in-
tegral

o
m= [ Rgds
-
exists and is finite. Moreover,
1) m = 20EN? - n'Ta+m thy
and under steady state initial conditions
)t var K = m+ 2 nrean A p(e)-nh

(1ii) limt var Ny = m
t-boo

where I is the identity matrix of order p+l and
h' = [n(sg),n(s1),...,n(sp)]
T = diag(!o,ﬂl,...,ﬁp) .



It should be noted that the matrix inversions indi-
cated are always possible, that is, the matrix
A+l is nonsingular.

A second important result can also be derived. We
may emphasize the dependence of m and t var N on
. the matrix A of tramnsition rates by writing

m = m(A)
t var ﬁg = vt(A)

If A] and Ap are two different tramsitlon matrices,
we may inquire as to the relationship between m(Aj)
and m(A2) and between vi (A1) and vi(A2). If Ap =iy
for some r > 0, the question can be answered as
follows.

Theorem 2:
forr >0

Under the conditions of theorem 1, and

(1) mea) = S mCa) .
Under steady. state initial conditions
1
(i1) v (ra) = ;‘Vrt(A)-

An easy convergence result follows from this theorem,
namely that v (rA) converges N times faster to

m(ra) = l.m(A) than v¢(A) does to m(A). More pre-
cisely, we have

vt(rA) - m{rA)

Lv® =in@ v, -nw
u(rh) -

= (A

%.— m(A)

where the ratios indicate it takes rt time units for
the system described by the matrix A to achieve the
same convergence ratio as the system described by
the matrix rA.

We may apply Theorem 2, for example, to the family
of M/M/s/n queueing systems with arrival rate X and
service rate p. The matrix A of transition rates is
entirely determined by A and p (if s and n are
fixed) and we obtain

n(rh,rn) = L m(h,)
Ve(rd,rn) = ;1_: vee o)
This is illustrated in section 3.
Theorem 2 may hold for countable state Markov

processes as well. For example, Fishman [3] gives
the following data for an M/M/1 system.

U T
1 4.5 5.0 6840
2 4 40/9 7695
For this data,
Ay Hy 8
1
and ml-;m‘Z

since 6840 = 5 (7695) .

3. COMPUTATIONAL RESULTS

The results of section 2 are amenable to computer
implementation. We give three examples.

Example 1. Using numerical integration techniques,
Duket and Pritsker [2] have computed the value of

o
m = z Re
sn—m . .
for the purpose of discrete data collection on an
M/M/1 queueing system, We wished to compare their
value of m = 361 with the results obtained by com-
puting m for an M/M/1/n queueing system for large
values of n, using the equations of theorem 1. The
results are displayed in table 1, and it in fact
does appear that m is approaching 361 as n increases.
The values of t var N; for several values of t are
also given, to illustrate the convergence to m.

Example 2. The results of theorem 2 are illustrated
in table 2 for an M/M/2/8 queueing system. All
values were calculated using the equations of
theorem 1. Note that the values of vt(Z,l) for

t = 5000,6000,7000,8000 can be deduced since the
values vt(4,2) are known for t = 2500,3000,3500,4000.

Example 3. More complex systems can also be ex-
amined, although available computer storage tends
to limit the size of such systems, in terms of the
number of possible states.

Table 1

Values of m and t var Bt for M/M/1/n queueing system with A = Lhandu=s

t var H
=500 1000 1500 ° 2000 2500 3000 3500 k000

n n

10 51 34T 3u.B3 34,85 34.87 3u.66 34.83 34.88 3.9
20 182.7  180.5 181.6 182.0 182.2 182.3 182.3 182.% 182k

&0 345.3 338.1 3k1.7 32,9 3W3.5 3u3.9 3kh.a k3 3kkk

50 357.0

349.1 353.0 354.3 355.0 355.% 355.7 355.8 356.0

Table »

Values of n and t ver Ny for an M/M/2/8 queueing system

m

A=2
k.79
du=a

A=k ) M
%? 220 22.31 22,35 22,37 22.37 22.38 22,38 22.38 22.38
[ '

Consider a single server, capacity one system with
Poisson arrivals and Erlang-p service times
(M/E,/1/1) . Such a system is a Markov process with
transition diagram as shown in Figure 1. In other
words, the service times are represented as a sum
of p independent exponential service stages, each
with rate u, and the interarrival times are ex-
ponential with rate A. When the system state is
zero, the system is empty, and when it is k > 0, the
system is full with server in stage k. Thus, the n
function representing number-in-system is given by

t var i
¥ = 500 1000 1500 5000 2500 3000 3500 &UUOT

L4, k6 Lh.62 hk.68 MN.TL Ak.T2 LL.T3 ML.TH MLLTS
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VARTANCE FORMULAS....continued

0 g8 =0
n(s) =
1 0<s>p

The mean service time 1 is given by

= e

T = iil - %

and the service time variance, 02, is

Considering 1 and A as fixed values and p as a
variable, we can write

P
L
RN SN T
u pZ/Z p

Thus, as p becomes large, service time variance de-
creases, and in the limit as p+e, service times
approach a fixed length T,

The hehavior of m = m, as a function of p was in-
vestigated (see Table 3). When p = 1 it is not
difficult to prove that

m. = 2Xu
1 (X+u;3 .

and this result was used to verify the values for

p = 1. It was discovered empirically that for
each A and t in Table 3 we have
= BfL

although this result was not verified analytically.
If valid, this result would indicate that the value
m, for constant service times is given by

1
me = lim m, = 5 m;
P

regardless of the arrival rate A or mean service time
T.

The effect of "staging" service times on m was
briefly investigated for other systems (see Table 4).
For these, the limiting behavior of i, as p+» was
unclear. One problem is that the nu:get of states
in the process quickly becomes unmanageable as the
number of service stages increases.

4, CONCLUDING REMARKS

This paper has presented formulas for the calcula-
tion of m and t var N. under steady state initial
conditions for finite state Markov processes. The
formulas can be used to evaluate procedures for
estimating the variance of the sample mean from
simulation studies. The formula for m has been
used in a study of startup policies [6].
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Figure 1. Transition Diagram for an
M/E;/1/1 Queueing System

Table 3. Values for m in an M/Ep/1/1
queueing system as a function of p.

A=1; 1=1 A

2; v =1 A= 3; =2
P mp pom P omp
1 1/4 1 4/27 1 24/343
2 .1875 2 anu 5 .04198
3 .1667 3 .09877
4 .1563 4 .09259
5 .1500 5 .08889

K

Table 4. Valueé of m as 4 function of p
for two queueing systems

WE/U2Z (=1, T=1)  WE/28 (=2, T=1)

m m

2 ®

1 1.333 1 44.79
2 1.038 2 43.37
3 .9377 3. 43.18
4  .B868

3

.8560
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APPENDIX

In this appendix, we give the proofs of the results
presented in section 2. Throughout we presume a
real-valued stochastic process N(t) with integrable
saﬁgle paﬁhsé}or more precisely that the set of in-
tegrable sample paths of the N(t) process has
probability one. This is true in particular if
N(t) = n(S(t)) where S(t) is a finite state Markov
process, It follows that the expression

Ny =5 [ Nwdu
0

is well defined.
Lemma 1: Let N(t) be a covariance stationary
process with continuous autocovariance function
Rg, —» < », Then

— 2 t

var Ny = o7 g (t-u)R, du 1)

Proof:

. 1.t 1t
var N, = cov(‘—-f N(x) dx , -I N(y) dy )
to to

tt
=37 [ ] cov(NG0) N(y)) dxdy
00
1 ]t!t
= =y R - dxdy
00 X-y
Under the change of variable
u=x -y
ve=y
this becomes
T 1 0 v=t p b vet-u
var N = Ez—f f R, dvdu + Ez-f f R, dvdu
-t v=-u 0 v=0
1 PO 1 ¢t
= Ez;{ (t + u)Ru du + = £ (t - uwR, du .

~N

t
=~z g (t - u)R, du
as was to be shown.

1f, in addition, it is assumed that Ry > 0 for all
t, then

lim t var Np = lim R,
Lo [ o]
k-]
lim t var N, = 2 [ R, dt
| Sl 0
can be derived using L'Hospital's rule. However,
neither of these results is needed for the sub-
sequent development.

Lemma 2: Let S(t) for t > 0 be a finite state
Markov process and let

N(t) = n(s(t))
for some real valued function n. If the S(t)

process possesses steady state initial conditions
then the N(t) process is covariance stationary and

R, = h'T(P(t) - Mh (2)
where
h' = [n(sg),n(sy),...,n(sp)]
T = diag(ﬂo,ﬂl,...,ﬂp).
-Proof: We first evaluate the noncentral moment

E N(t+u)N(u) = E n(S(t+u)In(5(u))

= J E(n(S(t+u)In(5(u)) | 5(u)=sq) Pr(s(u)=sy)
q

= § n(sq) E(n(S(t+u)) | S(u)=5q) Pr(S(u)=sq)

= g n(sq) z n(sp)Pqr(t) Pr(S(u)=sq)
Under steady state initial conditions, we have the
relations
Pr(S(u) = sq) =1y

E N(t) = E n(S(t)) = | mg n(sq) = EN(t+u)
q

From the above,it follows that
cov(N(t+u) ,N(u)) = EN(t+u)N(u) = EN(t+u)EN(u)

- g n(sg) g n(sy)Pgp(t)my ~ (é 1qn(sq))?

= g Z n(sq)mg (Pe,(t) = ¥p)n(sy)

= h'T(IP(t) ~ Mh

Since this expression is independent of u, the
lemma follows.

We now give the proofs of Theorems 1 and 2 after
making some additional remarks concerning Markov
processes., With terms defined as in section 1, it
can be shown [1] that

®(t) = et (3

is the unique solution to the Chapman~Kolmogorov
equations

d Ip(t

0) =1 .
e ®(0)

= IP(t)A ,

If A has linearly independent eigenvectors then it
can be diagonalized as

A=vl diag(og,ag,..q,0p)V (4)

where 0 0,0),...,0p are the eigenvalues of A, (3)
and (4) can be combined to give

- t t
P(t) = VL diag(e®0F,e%2F . 5y . (5)
Since the limit

I = 14im P(t)
tpa

exists for all finite state Markov processes [3],
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VARIANCE FORMULAS....continued

we conclude that Re(ay) < O for i=0,1,...,p. Since
A is deficient by one in rank, exactly one eigen~
value, say ag, is zero. Thus, Re(aj) < O for
i*1,...,p -and we have

T = v 2ldiag(1,0,...,00V (6)
B(t) - T = Vidiag(0,e®t, ... "%y 120

Proof of Theorem 1: We first show that the integral
o
[ R, dt
o t
is convergent. From (2), this will follow if the
matrix integral (formed by integrating each entry
of the matrix)

] -.! (P(t) - W) dt 8)
0

converges, in which case we will have
m = 2h'TQh. 9

From (7) it is easily seen that the integral Q does
converge and that

Q=v 1diag(0 e Ly . (10)

Gp

then from (4) and (6) we obtain
-q = Vv diag(1,0,...,0)V - v‘ldiagu,%-l—,.., Aav
=7 - T - (11)
Substituting (11) into (9) and noting that
. h'Thh = (EN)? (12)
we obtain the result (i).
The proof of (ii) is analogous. If we let

t .
v =Ll -w@Ew-na  an
0

then it follows from (1) and (2) that
t var N, = 2h'TU(t)h (14)
Using (7) and (13) one can obtain

t
TGRS DI S LR PP
1 [+
(15)

-1 -
u(e) tv atag(0, 55 +

=q+l @@ - n (16)

(i1) now follows by combining (9), (14) and (16).
(i11) follows directly from (ii).

Theorem 2 is a consequence of the fact that the
eigenvalues of rA are ra »¥0®Y 5. 00 ¥0y, While the
eigenvectors are the sameé as those og A.

Proof of Theorem 2: With the obvious extension in
notation, we have from (15) that

1877

1 (eralt

oy -1),

U(t,rA) = %V-ldiag(o,%l +

-t 1 ra,t ’
""rap + ZaZ (e P -1))V
-1 . 1 RN
;zz-v diag(0; —;;'+ ;;2( 1),

-rt 1 , royt
ceay op +-u;2'(e %p -1))v

1
-z U(rt,A)

(ii) is now an immediate consequence of this and
(14). Part (i) of Theorem 2 follows directly
from part (i1) and Theorem 1 by letting t-=.



