VARIANCE REDUCTION TECHNIQUES FOR SIMULATING MARKOV CHAINS

ABSTRACT

Simulators frequently wish to estimate param-
eters of the limiting distribution of stable sto-
chastic processes. Several new methods for reduc-
ing the variance of such estimates will be proposed
and discussed. The methods are applicable to re-
generative Markov processes in both discrete and
continuous time as well as to semi~Markov process-—
es. The methods are similar to the technique of

multiple control variables yet differ in the im-

portant respect that it is not necessary to calcu-

late the means of the controls. This is because
the controls a&e chosen in such a way that their
means actually equal the parameter of interest.

The methods do require a certain amount of com~
putation to be done before the simulation begins,
although their cost should be relatively minor com-
pared with that of the simulation. Numerical re-
sults demonstrating the effectiveness of the tech-

niques for a simple queueing model are presented.

1. INTRODUCTION

In recent years computer simulation has become
a very important tool for analyzing the behavior of
stochastic processes. As the structures of widely
used processes become increasingly complex analytic
results become more difficult to obtain so that
frequently simulation is the only computationally
feasible method to study a process. Unfortunately
simulation can be a very expemsive tool to use. It
is therefore desireable to develop methods that
can reduce the run lengths (and hence cost) of a
simulation yet still give accurate estimates. Such
methods are called variance reduction techniques.

This paper will propose several new variance reduc-—
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tion techniques in the special case when the sto-
chastic process being simulated is a Markov pro-

cess.

The methods are all control variable tech-
niques (see [5]), yet they differ from most other
control methods in the important respect that the
means of the controls need not be explicitly known.
This is because the controls are chosen in such a
way that their means actually equal the parameter
of interest. The methods require a certain amount
of computation to be done both before and during
the simulation but hopefully their cost will not be

so great as to prohibit the use of the methods.
II. MARKOV CHAINS

We begin by introducing notation and stating
some preliminary results for Markov chains. The
reader should consult [1], [2], or [3] for a more

detailed analysis of these stochastic processes.

Let {Xn,n > 0} be a Markov chain with count-
able state space E = {0,1,2,...} and n-step
transition matrix P". We assume the chain is
irreducible, aperiodic and positive recurrent.
Under these conditions the following Proposition

is true.

(1) PROPOSITION. There exists a probability dis-
tribution ™ on E and a random variable X with

distribution T such that

Pij“ >m >0 for all j EE 2
X =X . (3)
T =P, i.e. m= iZo TPy - (%)

The " = " in (3) denotes convergence in distribu-

tion, Now let fj be a real valued function on

Winter Simulation Conference 161



162 December 5-7, 1977

Variance Reduction (continued)

E and define

[-~]
Ty = wfy = iZO mif (1) = EL£,00] (3)
It is frequently of interest to know rj for a
variety of functions £,. If the state space is
very large (perhaps infinite) the set of stationary
equations (4) may be very difficult to solve so
that rj must be estimated via simulation. It is
the efficient estimation of such quantities that we
will concern ourselves with. We now develop an
alternate expression for rj which will be useful

in simulation.

Pick some sate in E (called the return

state) which will be designated by 0. Let XO =0

and let Tm be the mth time the process enters

state O (T0 = 0). Let T, = T - Tm—l' For
j=0,1,...,k define
-1
T, = 1 £ (6)
n=T
m-1

We say that the process is in the mth cycle be-

tween times T
m-1

length of the mth cycle. Because the process re-~

and T ~1 and that T_ is the
m m

(see [2]) we can
conclude that {Cgm(o),...,Ym(k), Tm), m > 1} are

i.i.d. (independent and identically distributed)

generates itself at the times Tm

random vectors. The importance of this in a simu-
lation context is that the simulation run can then
be broken up into randomly spaced i.i.d. blocks so
that the techniques of classical statistics can be

used to analyze the output (see [4]).

Suppose now that we simulate the process for

M cycles. For each j define ?j(M) by
RRSIR)
LB o= Y Gy )T . )
1 =1 " w1l "

Define r and f(M) to be the (k+l) dimensional
and fj(M)

column vectors with jth entries rj
respectively. Let Z be the symmetric matrix

whose (i,j)th entry is
0yy = ELOL() = 1) (@) - o)l (8)
We assume that each element of 2 is finite and

that X is positive definite. Let N(Q,Z/Ez(Tl))

denote a (k+l1) dimensional random vector having

the multivariate normal distribution with means 0
and a covariance matrix with elements 'Gij/Ez(xl)‘
The following proposition is the key result for

obtaining point estimates and éonfidence intervals

for the r,'s.

3

(9) PROPOSITION. If n;fjl < ® for all

j=0,1,...k and if ]oijl <o for all i and
j=0,1,...,k then
r; = E[Y, (1) 1/ElT ] @0
fj(M)'+ rj a.s. (almost surely) (1)
VHEGD - 1) = N(0,[/EX(1,)). 12

As a corollary to (12) if we let
B = (B(0),.../B(k)) and let
2 ' .
@ =818 13
then the following central limit theorem is true;

VM(BE (M) - Br)

e

— s = N(0,1) (14)
G (B/ECT)

where WN(0,1) denotes a normally distributed

random variable with mean 0 and variance 1.

III. MULTIPLE ESTIMATES

We now turn to the first of the variance
reduction techniques for Markov chains. Let us fix
a function f and let r = wf. We are interested

in ebtaining short confidence intervals for r.

To do this we form new functions fj 50 that
r, = nfj =1t for each j. As our first candidate
for £, Ilet
J
£, = P f for §=0,1,...,k. (15)
We then have
r. =, = @) = 2 p
J J
= Tr(P:l—lf) (since T = 7P)
= “fj—l = rj~l
so that r. = r for all j. Define fj(M) as in

(7). By (11) fj(M)‘*'r for each j. Now let

B be some vector so that




IB@ =1 (16)
andlet :fﬁﬂM) ‘be defined by

k
2,00 = ] BE M. an
20 3
J
Then fS(M) ~+r a.s. as M=o ., Now using the
central limit theorem in (14) and equation (16) we

have

\/ﬁ(fs ) ~1)

G ®/Emy oD 18

We pick E = §* to minimize the variance term in
(18) (this gives us the shortest confidence inter-
val possible). If we let e be a (k+l) dimen-
sional row vector with each entry equal to 1 we

then have;

g =l e e (19)

o 28" = 1/e T e (20)

2 — 2 * " A ry
Let Rk = Gk(§ )/000. Combing rO(M),...,rk(M) in

the above manner means that to obtain confidence
intervals of equal length we need simulate only
Ri as many cycles than we would need if we used no

variance reduction technique.

This method can be extended to continuous time
Markov chains and semi-Markov processes by trans-
forming them into discrete time Markov chains using
the techniques of [7]. Table 1 lists the variance
reductions for estimating the expected queue
length, E(X), in a finite capacity M/M/1 queue.
We let p = A/ where A is the arrival rate and
u is the service rate. For ease of computation
the capacity was chosen to be 14, It should be
emphasized that these figures are actual calcu-
lations of variance reductions (based on the

methods of [7]) and not simulation results.

TABLE 1

Variance Reductions for Finite Capacity
M/M/1 Queue Using Multiple Estimates
2 2 2
P Rl R2 R3
.25 .1168 .0292 .0073
.50 L2341 L1121 .0524
.90 .6050 .2659 L1148
.95 .6880 .3425 .1607
.99 . 7404 .4056 L2047

JIv. MATRIX TTERATIVE TECHNIQUES

We now examine several other methods in an
attempt to obtain greater variance reductions for
a fixed amount of computation done before the sim-~
ulation. The basic idea here is to partially solve
a system of linear equations (with some matrix
iterative technique) and then estimate the &iffer—
ence between the partial and true solutions via

simulation.

We now assume that E i1s finite. Let y be

a vector with components y(i) defined by

Tl—l
y() = E;[ ) £(X)] (21)
n=0
where Ei[ ] denotes the expectation when

XO = i. Let OP be a matrix defined by

Pij if j#0
P,. = (22)
0743 0 £ j=0.
It can then be shown (see [7]) that
o]
7= 1 J2f (23)
2 o
and that y satisfies
y=£f+ oP y - (24)

Recall that r = y(O)/E(Tl). Let yJ be our
approximation to y after j diterations of the

Matrix iterative method. We then seek to find a

function fj such that
. T -1
. m
v =y (0) +E[ ] £.()1 (25
n=T J
m-1
We can then set
T -1
- m
L@ =y O+ £ (26)
n—Tm_l
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Variance Reduction (continued)

and defining fj(M) as in (7) we have fj(M)'* T
a.s. We can then proceed exactly as before to
obtain variance reductions. Due to space limita-
tions the derivations of zj and fj for specific
matrix iterative techniques are omitted_here but
ma& be found in [6]. Table 2 lists the calculated
variance reductions for the finite capacity M/M/1

using the Gauss—Seidel iterative technique.

TABLE 2

Variance Reductions for Finite Capacity
M/M/1 Queue Using Gauss~Seidel
2 2 2
] Rl R2 R3
.25 .0099 .0015 . 0002
.50 .0720 .0408 . 0207
.90 .5939 ..3881 .1834
.95 .6789 4794 L2414
.99 L7321 .5446  .2963 !

v. CONCLUSIONS

By viewing Tables 1 and 2 it can be seen that
neither méthod dominates the other. The variance
reductions will, in general, depend on the transi-
tion matrix P and the function f. The first
method has the advantage that the variance re~
ductions are independent of the return state
whereas with the other methods care must be taken
to pick a return state that yields good variance
reductions. It is anticipated that frequently
occurring states will produce the best variance
reductions. Gauss-~Seidel has the advantage that
any yO
procedhre. Generally speaking the closer 20

may be used to initiate the iterative
is to y the better the variance reduction will
be. This suggests that one could simulate a small
number of cycles to obtain an initial yO and

. then commence the Gauss-Seidel iterationms.

In order for any of these methods to be
computationally efficient the simulator must be
able to compute (and store) the functions £,.

The amount of work involved in this could be con-
siderable unless the transition matrix is sparse.
It is for these types of processes that the methods
are recommended. Further details on the methods,
including more extensive numerical testing, may be
found in [6].
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