...MONTE.CARLO AND STOPPING RULES. FOR SOME COMBINATORIAL PROBLEMS

ABSTRACT

One major problem in combinatorial theory
is to find a combination that will opti-
mize a given objective function. However,
for many real problems even with moderate
requirements, no algorithm exists which
can find an optimum in a livable span of
time. This paper proposes that if the N!
combinations are viewed as points in a
sample space, then a Monte Carlo sampling
procedure will provide a "good" solution.
Statistical stopping rules are used to
determine when the solution is "good
enough,” as well as provide an estimate
of the closeness of the solution to the
true optimum.

INTRODUCTION

Many problems of practical significance
can be cénsidered as problems of combina-
torial mathematics. In particular, the
problem of finding a combination that op-
timizes a given objective function is one
that has plagued many people. A classi-
cal example is that of job shop schedul-
ing. In essence, the problem is to
schedule J jobs on M machines in such a
way that the total make time is minimized
and also that a technological ordering of
the machine operations on each job is
maintained.

There are few formal algorithms for
finding optimal combinations for such
problems, except by complete enumeration,
and there are virtually none for, what
might be viewed as, the "general"” combina-
torial problem. Among the few exceptions
we might mention the solution to the two-
machine J-job problem given by Selmer
Johnson [7], and his solution to a special
case of the three-machine, J-job problem.
Also, Ford and Fulkerson [4] have a rather
slick way to f£ind the maximum flow in a
network.

Another classical example is known as the
traveling salesman problem in which it is
desired to find the shortest route by
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which a salesman can visit a given set of
cities. Some algorithms have been devel-
oped for solving this problem for a
fairly respectable number of cities [8].
However, if more "realism" is injected,
such as by restricting the visit time of
the cities to certain days and imposing
priorities, by considering transportation
facilities, etc., there is no general
answer for this problem either.

Although an optimal combination cannot be
found for many problems, such problems
still exist, they require solutions, and
various empirical methods are used to
find them. For example, in the job shop
scheduling problem, Gantt charts have
been used for years for finding schedules.
The Gantt chart aids the scheduler to
visualize a subset of all possible sched-
ules; he then chooses the best of these.
It is possible, of course, for this to be
an optimal schedule, but it is more
likely to be no more than a feasible
schedule; it could be far from optimal.

Since a computer can generate combina-
tions very rapidly, it seems reasonable
to extend this concept to computer tech-
nology. A computer generated set. would,
perforce, be far greater than any that
could be generated by hand methods. On
the other hand, even a computer will not
be able to examine more than a fraction
of the total number of possible combina-
tions for most combinatorial problems.
For example, in the traveling salesman
problem, the total number of possible
routes for an N city problem is N!. To
get a feel for the size of N!, consider
a 23-city tour. At one microsecond per
tour, the total time for a complete
enumeration would exceed the estimated
age of the universe! Even the fastest
computer cannot generate a miniscule
fraction of all the possible combinations.

In this paper, we will be concerned with
combinatorial problems, not amenable to
standard or extant algorithms, which
yvield large numbers of possible combina-
tions; the kind, incidentally, most often
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encountered in the real world. A Monte =
Carlo technique, combined with a set of
statistical stopping rules, is a major
contender (indeed, it may be the only
contender) for finding "good" solutions
to general combinatorial problems. Reiter
and Rice [13], for example, have suggest-
ed usihg Monte Carlo for linear and non-
linear programming problems. Randolph,
et al [12] and Swinson, et al [15] have
applied this technique to dynamic pro-
gramming problems. Monte Carlo is the
method of choice in this paper for finding
solutions to large scale recalcitrant
combinatorial problems.

In order to form a structure to take
advantage of the Monte Carlo technique,
each combination is defined as a sample
point, and the total number of possible
combinations defines a sample space. The
sample space may be enormous. Concomitant
with this is the necessity for describing
the elements of a sample as optimal or
near~-optimal, and the degree of confidence
of such a description. This is provided
by treating the sample space in a proba-
bilistic manner, and defining a super-
structure by which a sample point can be
given a numerical description. This may
then be compared with some sort of numer-
ical expression representing a goal or
ultimate optimum.

Two questions remain:
1. How large should the sample be?

2. How should the combinations be
chosen?

Consideration of the first guestion forms
the major emphasis of this paper. Essen~
tially, we suggest that combinations be
generated randomly one-at-a-time and
evaluated-—that is, by Monte Carlo sam-~
pling. This random generation continues
until the "cost" of sampling exceeds the
expected improvement that can be antici-
pated from additional samples. At that
time, sampling is stopped. The place at
which sampling is stopped is determined
through statistical stopping rules.

As to the second gquestion, a number of
proposals have been advanced. We will
mention some of them later and indicate
our own answers.

STATISTICAL STOPPING RULES

Let X;, X,, ... denote the random vari-
ables of the payoffs associated with
generating successive combinations by
Monte Carlo sampling methods. For the
present, assume that each combination
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payoff is an integer and that the objec-
tive of the combinatorial problem is to
find a combination for which the payoff
is maximized. Furthermore, without loss
of generality, assume that all payoffs
are positive and bounded above by the.:» .
known integer 7. Also, let yp denote the
maximum of the observed payoffs x ,...,xn
obtained from the first n combinations
that is, Yp = max (X170¢%pn) .

The probability function for each combi-
nation payoff is the multinomial charac-
terized by P(X = k) = p(k), k=1,...,1L.
When the values of p(k) are known, then
from [2], it is evident that the stopping
rule is obtained by calculating the ex-
pected increase in gross payoff associated
with generating another combination,

k=1
T(y,) = 1 (k-yp)p k),
k=yn

and comparing this with the relative cost
c of generating a single combination on
the computer; that is, if T(y,) > c, con-
tinue to another combination; 1f T(yy) 2 ¢
stop and use the best combination already
generated. The function T(Yf) is some-

times called the stopping rule function.

For combinatorial problems, however, the
values of p(k), k-l,...,Z, are not known,
and thus this rule is not appropriate.
Instead, a Bayesian stopping rule- [10, 11]
can be used. To f£find such a rule, it is
necessary to define the vector 6 =

. 8 ,...,ez) such that, for the nth obser-

vatlon Xn. the probability function is
given by P(Xp=k|0) = 6y, k =1,...,7,
where ¢ is an element of the simplex

k=1
k=1

Since the conjugate prior density [10] for
the multinomial is the Dirichlet function,
the initial prior density of 0 can be
written as

: k=1 mp~1
fo0)= TmTT 18,
k=1

i=7
where my,...,m; and m = zi=l

/T (m) 1,

mj are

strictly positive parameters of the dis-
tribution. If n payoffs have been ob-
served and if n, is the number of the
payoffs having valu (i.e., nE#ix;=k,
i=1,...,n}, where Jy_] ny=n), then the
posterior density o% %, given the n pay-
off values, is

k=1 mptng-1
fn(e) = T'(m+n) T [ek

/T (m +n.) 1.
k=1 kK



This is the Bayesian prior density of 0
for observation Xp41. Furthermore, since
the joint density function for Xp41 and 6y
is 0xfp(6), then the marginal distribution
b (ky7S (me-+f)/(m + n),  (k=1,...,7)
is the probability that X,;j will take on
the value k. Thus, the conditional ex-
pected’ gross improvement in the payoff for

the (n+l)st combination is seen to be
k=1

) (k=yp) Py, (K)
k=yn

i

Tp+1 (¥n)

k=1
mk(k—yn)-

(mtn) "L ¥

This is the stopping-rule function for an
unknown multinomial distribution of combi-
nation payoffs. Comparing the value of
this function with the value of c will
determine the stopping point; that is, if
Tn+1{¥n) £ c, the sampling of combination
payoffs should be stopped. Since y, is a
monotonically nondecreasing function of n,
then Tp4+1(¥n) is a decreasing function of
n, which approaches zero as n increases.
Thus, sampling will always stop eventually.

The stopping-rule function depends on
specifying a set of parameters associated
with the prior Dirichlet density function.
If these parameters my,...,m; are examined,
it will be noted that they can be written
in terms of the initial probabilities as
me = mpo(k), k=1,...,7. Since the pg (k)
are essentially normalized values of the
m., it may be preferable to specify the
1-1 independent initial probabilities and
the parameter m, rather than to estimate
the my directly.

The parameter m has some interesting char-
acteristics. A lower bound for m is zero,
and this can be a greatest lower bound
only when pg(k) = 1/7, k=1,...,7. 'As

m+0, then Tz(y1)+0, and the Monte Carlo
process stops with the first observation,
implying no confidence in the initial
probabilities and complete confidence in
any data value. On the other hand, as
m+», then -

- k=1
Tn+]_(Yn) = m{m+n) 1 Zk" (k—Yn)Po (k) =+
=Yn
zk=Z
(k=y)po (k) = T(y, ),
K=y, niee oo

which is the expected improvement for a
known multinomial distribution, indicating
a complete confidence in the initial pro-
babilities and no amount of data will
shake the experimenter's confidence in
this initial probabilities. Thus, the
parameter m can be interpreted as a

coefficient of confidence in the initial
probabilities. In fact, it can be con-
sidered as being analogous to the sample
size that would be needed to obtain through
a random sample the same quality of esti-
mate of po(k) as those given by the speci-
fied prior probabilities.

In order to determine the prior distribu-
tion of 8 for discrete payoffs, values of
m may be obtained through specifying the
initial probabilities po(k). To f£ind
pp (k) for continuous payoffs, suppose that
the sequence payoffs can assume arbitrary
values in the interval [0,7], and let
Aj,...,Ay be any partition of this inter-
val, where Ap is defined as Ay = [xp_q.,x:1,
k=2,3,...,v;A; = [0,x;]. Suppose H(X) is
a distribution function of [0,1] such that
for a continuous probability func-
tion for a sample space having arbitrary
maxima in the interval (0,7) could be
achieved by a limiting process of a parti-
tion Ag{Al,...,A } of this interval. If
AyeA is defined gy two points: (Apd(x. .,
Xx2) , and if H(x) is the distribution
function over (0,1), then
Po(ay) = fAk dH(x) = H(x,,)-H(x},)
is the prior intuition of the initial pro-
babilities regardless of the method of
partitioning (0,%1). If x; is any point in
2y, then Tylyy) is the integral:

4
-1 s -1
x (x+n) IYn (x-y,)dH(x) = lim m(m+n)

v
Ly (Fac¥n) [ Gegea) =B Gy 1T Ge2y) -

A number of possible prior distributions
have been examined. The uniform seemed
likely because it exemplified our ignor-
ance. Since our ignorance was not absymal,
we tested this hypothesis; several thousand
combinations were generated randomly. Like
Heller {121, we found that the distribu-
tion of the combinations tended to be
clustered about that distribution of im-
peccable breeding, the normal.

Assume that a normal distribution reflects
the experimentor's faith in the initial
probabilities. Then if & is the stan-
dardized normal distribution function and
¢ is the corresponding density function,
we have

To41 (¥p) = mmin) ™1 {006 (2y) =6 (2]
+ (u=yp) [6(27) =0 (2,) 1}

where y and ¢ are the mean and variancée of
the prior distribution, z, is (y,~u)/o¢,
and z, is (IL-u)/o. In any problem, initial
observations can be used to estimate these
variables: as the problem continues they
are continuously updated.

Winter Simulation Conference 147




148

MONTE CARLO/STOPPING RULES.,, Continued

AV G

SALESMAN PROBLEM ANA A DISCUSSION
QF SOME EXPERIMENTAL RESULTS

In this paper, emphasis has been to find
"good" solutions, or combinations, for
problems unsolvable by any. extant methods.
In particular, the authors have had ex-
perience with a type of problem which
might be designated as a Generalized
Traveling Salesman Problem. Various
methods have been devised for finding
solutions to the classic form of this
problem. Bell [1], for example, review-
ing many procedures and presenting some
accelerated algorithms, ekamines it in
some depth. However, the classic form
rarely reflects the anticipated acti-
vity of a real salesman, nor the antici-
pated activity of cognate problems. In
fact, when it is generalized, it scarcely
resembles its classic prototype. On the
other hand, it seems to epitomize a far
broader class of problems which might be
referred to as scheduling problems.

Assume we begin with the classic problem:
a salesman is to visit N cities in the
most facile manner possible. Now the
first hooker: this is'to be accomplished
over a time—span; T. In fact, it may not
even be possible to visit all N cities
during T. Furthermore, to each city Cyir
is assigned a priority, Pj. Such an
assignment is reasonable and, in fact, is
likely for any real situation. Clearly,
for sufficiently large T, if all the P,
are equal, the classic problem emerges.
Although, in-the classic prototype, con-
sideration of problems of transportation
are ignored; a generalization would con-
sider them. Thus for each pair of cities,
C¢; and Cj., let

w2 }

- 1
T,3s = {T xijrec.

X1] xij’
be a set of "time windows" which describe
the times (in T) in which transportation
is available from C; to Cy. .Note that in
general, Txij # Tx3i for 1#j. It is
immediately Obvious that each city may
also be tagged with respect to T. That
is, let

192 .

Tei = {Tg;. ci

be the time windows in T in which city,
C;, may be visited. For example, it may
be that our salesman can visit city, Cj,
only on Tuesday or Friday and, perhaps,
be restricted as to the time-of-day in
which the visit can be made. This, of
course, suggests that the priorities

may also be tagged relative to T. Thus,
let

.
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= 1 2
Tpi = {Tpir Tpire-o}

be the relative priorities assigned to
different time windows for city, C;j. The
reasoning behind. this might be that.on ;.
Tuesday an excellent contact can be made,
but on Friday the contact would be less
advantageous.

At this point, the problem is formidable,
but it may be necessary to include a fur-
ther restriction which might be charac-
terized as a "dynamic" priority. It
could be positive or negative. Suppose
we obtained a schedule with the sequence:
ci*c-+c§+cm, in which the salesman is to
visit the indicated city during the day
and travel at night. At cities Cj and Cq,
presumably, he would be fresh and could -
do his best. But at city Cy he may be
tired so that his performance suffers, a
condition intensified at Cp. A kind of
negative dynamic priority could be as-
signed here, negligible at C., signifi-
cant at.Cy, and large at Cp.~ This
"fatigue factor" can, obviously, refer to
men or machines. (Another common form of
negative dynamic priority is that of )
overtime. That is, a balance between the
urgency for extra production versus the
increased attendant cost.) Any number of
contingencies can be imagined which could
induce a positive dynamic priority. That
is to say that the priority of a visit to
one city is enhanced by a visit to anoth-
er. All the priorities listed are in
addition to the common ones of least time,
least cost, or least distance.

This, then, is the kind of problem to
which the technique of Monte Carlo and
stopping rules is addressed. Even with-
out dynamic priority, it is clear that
this generalization is not amenable to
any extant algorithm. Moreover, dynamic
priority can rarely be evaluated before a
schedule has been formed.

We should mention one further type of
restriction which is common to many prob-
lems of this kind. Let C be the set of
cities, J be a set of salesmen, and for
J;eJd associate a subset of C, T'jeC. For
any J3, JseJ, i#j it may be that ;A Ts =
Aij#¢. If Tpj, Tpy are sets of the tifes
of visits by Jj, Jj, to T'j, I's, respec-
tively, then we have an exclusion (or
conflict-free) requirement that TpjM Tp4=
¢. In any real problem, it may be that
this exclusion requirement is necessary
in some cases but not in others.

It is obvious that the above generaliza-
tion will apply to a broad class of
problems. (We called the parameter, T,
time, but it needn't be.) For example,
the transportation problem, for real



trucks on réal roads, will be hedged in by
restrictions. If it is generalized, its
appearance will be similar to the above.
The scheduling of ships for duty or dry-
dock or deployment of material are other
examplesiy w7 InT

A problem,.similar .to that discussed
above, without dynamic priority,.was in—
vestigated. by the. authors.: In our <en-
text, "cities" were machines and "sales-
men" were jobs. We called it, with com-
mendable originality, the "scheduling
algorithm."

Each possible schedule was considered as
a sample point and our sample space was
defined for problems, typically, involving
20 to 40 jobs, each job requiring 5 to 20
machines. Considerable conflict was
built into the testing programs and the
machines were hedged in by restrictions.
Samples were produced from random permu-
tations of the jobs to be scheduled. We
evaluated problems for which the optimum
schedules were known, others for which it
could be estimated, and some in which no
a priori information was available. We
were able to produce optimal or near op-
timal schedules, and a numerical wvalue,
the variance, which could be flourished
as a measure of our confidence in the
degree of optimality.

The question remains as to how the com-
binations should be chosen. Early ver-
sions of the scheduling algorithm spent
an inordinate amount of time slogging
through the lowlands rather than scaling
the peaks. Neighborhood search techniques
discussed by Peterson [9] and Reiter and
Sherman [14] increase the efficiency of
the Monte Carlo procedure by exhaustively
searching all combinations in a "neighbor-
hood" of a given solution. Green and
Randolph [5] describe such a neighborhood
search technique wherein, for each random
permutation of N jobs, a total cycle of
them is examined. That is, the first job
to be scheduled in a particular permuta-
tion is moved to the bottom and the
resultant schedule is again evaluated.
This cyclic shift is continued for all N
jobs, and the neighborhood maximum is
chosen as the sample point. This search
was applied to the scheduling algorithm,
and a number of savings resulted:

(1) Evaluating a succeeding schedule in a
cycle requires considerably less effort
than evaluating a schedule from a new
random permutation; (2) The average of
local maxima is significantly greater; and
especially important; (3) The value of the
variance shrinks to a fraction of the
values of individnal :schedules with the
result that far fewer schedules are re-
quired ‘for a given estimate. of the level
of optimality. Typically, in our inves-
kigations, about 15 local.maxima were
needed before the variance had shrunk

one-hundredth to one-thousandth of its
initial value.

Several authors have proposed a variety of
more .complex neighborhood search tech-
nigques [9, 14}, but our. experience showed
that -computer time soared and :the mean and
variance were mnot-improved significantly.

. Similarly, dispatch rules [9] 'gave poorer
;, results than random sampling with a

cyclic neighborhood research. Reiter and
Sherman [14] suggested that perhaps future
search should be near a "good" result, if
found, but this seemed to prevent the
finding of better schedules as well as
debasing the values of the mean and vari-
ance.

It appears that if search rules are
imposed on the algorithm, a concomitant
structure is imposed on the sample space.
Reiter and Sherman's suggestion, in par-
ticular, would indicate that good combi-
nations or schedules would be found
clustered together; that some sort of
functional relationship, a kind of local
modality, exists on the sample space.

This was found to be not true. A mediocre
or poor schedule was as likely to be found
near a good one as another good schedule.
Indeed, if the majority of the combina-
tions were mediocre (as was true in our
experiments) a "good" schedule was more
likely to be surrounded by mediocre ones
than otherwise. Thus, using.a cyclic
neighborhood search method, provided the
best solutions with the least amount of
computer time in scheduling problems.

CONCLUSTIONS

Monte Carlo sampling offers a method for
finding combinations for the generalized
combinatorial problem, and stopping rules
provide a logical procedure for terminat-
ing the sampling process. The combina-
tion selected will not necessarily be the
best combination, and, in fact, for large-
size problems, the best solution will
almost never be obtained. However, the
marriage of Monte Carlo sampling and Bayes
stopping rules in general selects a

"good" solution and also provides a sta-
tistical measure of how close to the op-
timum the selected solution might be
through the expected improvement value.

Finally, the ease of applying Monte Carlo
sampling with stopping rules in sequenc-
ing indicates that this process could
probably be applied to a wide variety of
problems in combinatories.
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