LITERATURE REVIEW AND BIBLJOGRAPHY OF SIMULATION OPTIMITATION

Management Scienfists and systems analysts often
wish to find the values of input variables which optimize
(maximize or minimize) some function of system per-
formance. If the system can be described analytically,
mathematical programming is used to find the optimum.
When systems are too complicated to be described
analytically, simulation is the appropriate too! for
modelling systems. Therefore, methods of optimization
through simulation are quite important to the manage-
ment scientist. This paper consists of a discussion and a
bibliography of the optimization of simulated systems.

. INTRODUCTION
The attempt to find a system optimum is of prime
importance to the management scientists or systems
analyst. The systems defined by management scientists
include a set of input variables, constraints on attainable
values of input variables, and an objective function of
the input variables. This objective function is to be
optimized (maximized or minimized) by finding (among
variable values which do not violate any constraints)
values which yield a best solution to the objective
function. The simplest such problems can be solved
analytically. Somewhat more complicated problems have
objective functions and constraints which can be defined
analytically and solved via one of the iterative tech-
niques of mathematical programming.
For the most compliccfed' problems, the objective
function can not be described analytically and the
analyst must resort to simulation to describe the system.
The simulation can be viewed as an objective function
whereby feasible input variable values are converted into
“an output value. It would be desirable to use mathe-
matical programming techniques to determine an opt-
imum of a system described in this manner; however,
very little is known about the mathematical form of this
objective function. There is no way of directly knowing
its shape. It is not possible to take directional
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derivatives, as is necessary for steepest ascent algor-
ithms.

In spite of this difficulty, several techniques have
been proposed for finding best, or at least improved,
solutions to optimization problems of this sort. Some of
these methods are naive, such as generating several input
values at random and running the simulation at each of
these inputs. Some are relatively sophisticated, such as
running the simulation at several points near some
intermediate solution, using those points to define a
hyperplane which approximates the shape of the objec-
tive function near the intermediate solution, and taking
directional derivates of the hyperplane to approximate a
steepest ascent direction. None of these techniques is
sure to work for all problems, but each has characteris-
tics which make it useful for certain types of problems.

In this paper, we divide the techniques into three

categories: mathematically naive techniques; methods

appropriate to unimodal objective functions, and techn-
iques useful for multimodal objective functions. Addi-
tionally, we discuss papers which compare some of these
techniques in test cases. Section 2 contains the
discussion and section 3 the bibliography. For more
complete discussions of each technique, the reader is
referred to Farrell, McCall and Russell [44]
2. DISCUSSIONS

This section consists of brief discussions of many

techniques which may be used to find improved solutions

‘to optimization problems. In section 2.I, we consider

najve techniques, which do not try to infer any mathe-
matical properties of the objective function.

Section 2.2 consists of techniques appropriate to
unimodal objective functions. Several nonlinear pro-
gramming techniques are found here. Section 2.2 is
divided into two parts. Section 2.2.A includes methods.
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of approximating the shape of the objective function.
The approximate objective function is differenﬁu't}ed to
provide an approximate steepest ascent direction.
Section 2.2.B contains those nonlinear programming
techniques which do not require a derivative of the
objective function. ’ ,

The techniques discussed in section 2.3 attempt to
find optima for problems with multimodal surfaces.
Finally, Setion 2.4 notes studies which have reviewed the
literature of this area or compared several techniques.

2.1 Naive Techniques

. i
The Characteristic which identifies the naive

techniques is that no mathematical knowledge of the
objective function is required. We discuss three such
methods of finding improved solutiohs, together with
variations on two of them. These are heuristic search,
complete enumeration, and random search, with vari-
ations on complete enumeration and random search.
Heuristic Search. Often the analyst will use his
knowledge about the system to repeatedly guess at input
values, run the simulation, and stop when he is satisfied
he has a very good solution. We refer to this approach as
heuristic search. It is impossible to evaluate the success
of such a method, since it depends entirely on the
knowledge, experience and insight of the analyst.
Complete enumeration is possible when each input
variable has only a finite numer of feasible values. In

this caose the simulation can be run for all possible
combinations of input variable values. If there are no
. uncontrollable components in the model, this technique
will assure the analyst of an optimal solution. When
uncontrollable components are present, the analyst
normally will attempt to optimize some expected return
(e.g. minimize expected cost). Random variables are
included in ‘the model and a random number generator is
used to determine values for these random variables.
For problems of this nature, each set of input values can
be run several fimes with different values from the
random number generator. By choosing the numEer of
replications at each input point, (set of controllable
variable values) the analyst can approximafé the
expected value of the output at that point with any
desired accuracy. The largest or smallest expected value

is a good approximation to the optimum. Hence, if the
|
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set of feasible input values is finite, complete enumer-
ation will yield at least a nedf opfitaltsolutionivcOfs
course, if any input variable has infinitely many feasible
values, complete enumeration is impossible.

Complete enumeration works best when the number
of feasible values for each variable are both small. An
example of the type of problem which may readlistically
be solved by complete enumeration is described in
Schmidt, Taylor, and Bennet Bl. In their problem there
is one controllable variable which has five possible
values. Additionally, there are several random variables
and a complicated objective function (expected cost)
which must be minimized. Each of the five values of the
input may be repeated several tfimes in order to
approximate the expected cost at that input value.

Random Search. Instead of running the program at
every possible set of input values, as in complete
enumeration, input values of the controllable variables
are chosen at random and the simulation program is run
at several of these values. It is obvious that such a
technique will not guarantee an optimum, but as the
number of computer runs is increased, a better approx-
imation for the optimum is found.

When there are uncontrollable input variables, it is
desirable to run severat replications of the simulation at
each set of controllable input values in order to get a
good estimate of the mean output for a given set of
controllable inputs. However, since with random search
the analyst will not run the program for every possible
set of controllable input values, he must decide whether
it is better to get an accurate estimate on a few sets of
controllable values or a less accuraté estimate at more
values. ’

Variations on complete enumeration. The tech-

niques described here apply to problems with only a few
feasible values of the controllable variables, but with
uncontrollable variables as well. These techniques aid
the analyst in determining when to stop replicating at a
given set of input values.

All of these techniques utilize complete enumer-
ation of the controtlable variables, and they determine
optimal expected value of the output through replication.
Kleijnen, Naylor and Seaks [3] describe multiple ranking
procedures, and Schmidt, Taylor, and Bennett [5 Mdiscuss

an heuristic elimination procedure. The techniques



described by Kleijnen, et al., allow the analyst to do a
small sample at each input point, calculate a mean
output value for each input point, and rank the mean
outputs...;+ With . their, procedure, the.analyst can be
asssured that the largest sample mean is the true largest
output with some predetermined probability.

Schmidt, et al., have-a less rigorous technique for
determining the optimum. They run several replications
of the simulation for each vector of input variables,
compute confidence limits on the mean value of each
The point with the highest
lower limit is the sample maximum. If the intent is to

output and compare them.

maximize, the points whose confidence limits do not
.OVCI’ICIP with thoseé of the sample maximum are elim-
inated from further consideration.

For those sefs of inputs which remain, more sample
values are determined and confidence limits are recom-
puted. This procedure is continued until only one set of
input values remains or unti! the remaining vectors of
alternative inputs have output values so close that the
cost of future simulations is greater than the gain
asssociate with the difference between the output
valves.

The usefulness of these techniques is limited by the
fact that they are only practical on a certain class of
problems. On this class of problems the techniques
described are not only useful, but seem fo be the only
types of techniques with any chance of success.

' Variation on Random search. This tfechnique is

reported by Luus and Jaakola [4]. The approach taken is
to perform a sequence of random searches. After each
search, the point with the highest values (assuming
maximization) is retained. Then a further randém search
is run over a diminished range of input variables centered
The
highest point is updated, the variable range is diminished

at the highest point from the previous search.

and the process is continued. The greatest advantage of
this technique is the combination of its simplicity and its
apparent success on several problems {Luus and Jaakola
describe six problems on which it is quite successful).

2.2 Techniqgues for Unimodal Objective Functions

For the techniques discussed below we must know

(or assume) that the objective function is unimodal. We
-then apply nonlinear programming techniques to optimize
this objective function. This section is divided into two.
“parts. In part A we consider approaches to steepest
ascent algorithms, and in part B techniques which do not

-common designs are full factorial

require derivatives.
2.2.A Steepest Ascent
For steepest ascent, the function to be optimized is

viewed as a surface in a Euclidean space of n+!
dimensions, where n is the number of controllable
factors. If there are two controllable inputs, (xl and xz),

- we. can: easily visualize the maximization problem as an

attempt to find the highest point f(x*l, x*z) on the
surface and the vector (x*l, x*z) which yields that point.

The steepest ascent {(descent in the minimization
problem) algorithm has the following general sequence
steps:

I. Begin at some point 50 = (xlo, xzo,...,xmo).

2. Estimate the shape of the function near the
point (xo).

3. Determine the direction which would increase
the value of the function, f(x), the fastest near xo, if the
approximation were the actual function (the steepest
ascent direction.

4. Determine x|, where (x! - x0) is a vector in the
steepest ascent direction and compute f(#‘).

5. Compute f(x) at points along the steepest ascent
vector until the maximum (or an approximation to it) in
that direction has been reached.

6. Return to step (2) using the maximum point in
the previous steepest ascent direction as its starting
point.  The algorithm terminates when no further
improvement can be made.

We now focus on steps two and three of the above
algorithm. One must compute the value of the objective
function at points near an intermediate solution point
and use those points to fit a hyperplane which approx-
imates the objective function at that intermediate
solution point. The steepest ascent vector is the vector
whose components are the derivatives of the hyperplane
function with respect to the input variables. This is an
approximation fo the steepest ascent direction for the
objective function.

We must consider methods of determining the
"nearby points" at which to compute the objective
function value (i.e. run the simulation). The literature of
experimental design represents several methods for
determining these points [8], [12], [I13]. The four most
[16], fractional
factoriat [ 161, [131,[21], [22], simplex [ 7], [ 8], [27], and
central composite[16 J[17].

2.2.B Techniques Without Derivatives
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In this part, we discuss five nonlinear program'm'ing

- % techniques for which no derivative need be approx-

imafed.

Coordinate search, the simplest of these, changes

one variable at a time. Given some initial point
(XI""’Xn)’ the first coordinate is changed a little to (X' -
G,XZ..., Xn) and (Xl + 8, XZ”“’Xn) and the simulation is
run. If the objective function improves, the increment is
icreased and the simulation run again, until @ maximum
in the Xl coordinate is reached. Then the second xinput‘
variable is considered, and so on. If any improvement
has been found after considering all the variables, the
new point becomes the starting point, and the proéess is
repeated again. When a pass through all variables &ields
no improvement, the algorithm terminates. Le‘fk‘owh‘z
and Schriber [33] describe a problem for which this
technique is successful. However, it is easy to develop
examples for which this algorithm would terminate at

solutions which are nowhere near optimum.

Pattern Search [Hooke and Jeeves, 3l starts at an
initial point and uses coordinate search for one pass
through all the variables. The starting point (bo) is
subtracted from the final point (bl) of the coordinate
search to yield a "pattern" direction. A jump is made in
the pattern direction and the new point (p) is tested for
improvement. If there is improvement at p, a new
coordinate search is conducted yielding b3 (which may
equal p), and b3 - b2 is the new pattern direction. If p
was not an improvement the pattern is destroyed and a
coordinate search is conducted at bZ' If szis not
improved a coordinate search is tried with smaller
increments. This action is repeated until improvement is
achieved and a new pattern is developed or until the
increments reach some prescribed minimum.  If the
.minimum is reached, the algorithm terminates. The
difficulty found with coordinate search can occur here if
the pattern is destroyed at a termination pbin'r of
coordinate search.

Rotating Coordinates [40]. As the name implies,

Rosenbrock's procedure changes coordinate systems so
that the pattern direction becomes a coordinate direc-
tion and all other coordinate directions are orthogonal to

the pattern directLpn. Then, during the cobrdinofe

A
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search step, directional changes of a ridge can be readily
determined. The algebra required to change coordinates
is relatively simple, is called the Gram=5chmidt Ortho-
gonolization, and can be found in many linear algebra
books, as well as in Rosenbrock's paper {401 Rosenbrock
reported good success with this method on a difficult
example problem.

Mugele's Ridge Follow [B71. This technique moves

in a coordinate direction whenever that coordinate

direction represents an increase and utilizes a pattern
only when coordinate directions fail. Patterns for this
technique do not increase like Hook and Jeeves, buf when
coordinate changes are unsuccessful, an alternative
exists.

If all coordinate directions lead to diminished.
functional valves, pick the two largest coordinate values
found (call them vectors ql and 02) and try the point
midway between them @ + 02)/2. If that is still smaller
than the original point, use the maximum of a quadratic
approximation of the curve through those three points.

If this solution is not greater than the original we
can try other pairs of coordinate points. If all pairs of
points fail we are probably near a local optimum. '

Razor Search.  This technique, described for
simulation by Nelson and Krisebergh [38), is a variation
on pattern search described earlier. The technique is to
use pattern search until it fails, make a random jump and
use pattern search until it again fails. The two failure
points are then used to generate a new pattern. The
process is repeated until some terminating criterion is
satisfied.

The principle advantage of this technique is that it
can use the random jump to decrease the probability of
terminating at a suboptimum.

2.3 Techniques for Multimodal Surfaces

For the two techniques presented in this section,
the problem is viewed as a response surface in n+!
dimensional Euclidean space, where n is the number of
controllable variables. These response surfaces have
several local optima and the purpose of these two
techniques is to find the global optimum of such a
surface. Eldridge [41] uses a random factorial design and
regression to divide the space into several unimodal
surfaces which can then be optimized by whatever

technique one wants to use. Hartman [42] suggests a



method of determining several starting points for any
search algorithm which yields a local optimum. Eldridge
subdivides the space of inputs and searches each sub-
space,: while Hartman merely spreads the starting points
of his search fo incredse the chance.of finding the global
optimum.

+ Hartman.-Hartman's procedure-is to:

|. Describe the territory which has been searched.

2. Pick the starting point for each search "as far
as possible” from the territory previously searched.

3. Modify the description of previously searched
territory to include the newly searched territory.

4, Terminate a search if it reaches previously
searched territory.

The first step includes -partitioning the input
variable values into disjoint sets a list of "searched"
(third step) cells is generated and increased when each
search is conducted. This -approach assumes that the
cells are small enough so that there is at most one local
optimum in a cell. The cell sizes are generated by the
user.

The third step is to determine what cells to add to
the list of "searched cells". Most unimodal serch
techniques involve a succession of linear searches; while
searching along a line they ignore nearby optima.
However, at the endpoint of a linear serch a new search
direction is tried. Hence, cells which contdin the
endpoints of linear searches are added to the list, if they
are not already there.

The final step involves determining when to stop a
search. Hartman has three algorithms which differ in
this step. Algorithm Al completes each search to a local
optimum; A2 terminates if it reaches a cell which as
been found to contain a local optimum; and A3 stops if it
enters any cell on the search list.

Eldridge.

sample space (set of possible input values) info regions

Eildridge's approach is to divide the

with a single local optimum and to search in each of
these regions. He uses "fractional random factorial
designs" and regression to determine these regions.
When analyzing the regression, if cubic or higher order
effects are found in some region, the region is divided
: into smaller regions until @ quadratic fits the function
- well. .Since a-quadratic can have at most one local
opfimum, it is reasonable to..assume that each final
region-will-have at most one local optimum.

His algorithm is as follows:

. The simulation program is run at four values
equally spaced in the interval for each variable (this
includes the endpoints).

2. From-these an analysis-of variance is run and F

values of..linear, .quadratic, .and .cubic .effects are

. computed together with firstorder interactions.

3. If the cubic effect in-either variable is
significant, the range of that variable will be divided in
half and the function will be evaluated at enough more
points to determine a full factorial on each of the
subranges.

4. The process of computing F values and dividing
the space of input values is done until only quadratic or
Once the above has been
accomplished, each region is searched with a unimodal

lower effects are sigificant.

search technique, and the optimal value is the largest
(smallest) of the several computed.

These two techniques allow a multimodal function
to be searched to increase the probability of finding a
global optimum.
2.4 Comparisons and Literature Reviews

The main source of information comparing tech-
niques is Smith [501 Brooks [43] and McArthur B8ldid
earlier studies referenced by Smith. Smith compared
random search, coordinate, full factorial steepest ascent,
He found that as he

increased the number of computer runs the factorial

and simplex steepest ascent.

steepest ascent became relatively better than the others.

When the number of computer runs was small,
random search was best, while for more computer runs
the factorial design was most successful. It takes any
steepest ascent technique a few runs to find a search
direction, so one would expect it to start out slowly.
Coordinate Search did poorly.

McArthur and Brooks on the other hand, found that
for large numbers of factors, random search worked best.
This may have been because not enough computer runs
were used to allow steepest ascent to achieve the
success that is possible.

A large scale literature review of optimization in
simulation is contained in Farrell, McCall and Russell

[44]. That paper is of monograph length, contains more

- complete discussions of all techniques described here,

--and contains one or-two. fechniques not discussed here.

Wilde [51] presents a few .of the twchniques described
here, .as well as several other methods of optimization.
However, Wilde makes no reference to simulation, and
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many of the techniques he describes do not apply to
ssimulation.  Similarly,nonlinear programming text books
-Mangasarian,[ 491y Zangwifl,[52ldiscuss several of these
“techniques, but -do not present any informiation about
simulation.

" 3. BIBLIOGRAPHY
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