NONPARAMETRIC SELECTION PROCEDURES APPLIED
TO STATE TRAFFIC FATALITY RATES

ABSTRACT

This article reviews the practical aspects of
several nonparametric subset selection rules useful
in block design problems, and discusses advantages
and disadvantages of these methods, The popula-
tions are assumed stochastically ordered by the
parameter of interest., Rules based on rafaked
observations -are given for selecting a subset of
populations which contains, with a specified con-
fidence level, the population characterized by the
smallest (or largest) parameter value. These pro-
cedures are applied to state traffic fatality rates
recorded yearly (1960-76), New England states and
Middle Atlantic states comprise most of the subset
asserted, with a 90% confidence level, to contain
the state with the smallest fatality rate; whereas,
Southern states, Southwestern states and Rocky
Mountain states generally comprise the subset for
the state with the largest fatality rate. Note
that while this example is not based on simulation
data, such data would be analyzed in exactly the
same fashion.

L. _INTRODUCTION

In this article, the use of several nonpara-
metric subset selection procedures will be dis-
cussed and illustrated with a set of traffic
fatality data. The procedures are simple to use
and robust In the sense that inferences to popula-
tions apply under very few model assumptions. The
statistical procedures discussed here can be
motivated by the following model: each of n
independent judges orders k populations according
to some specified criterion. That is, each judge
assigns a rank of 1 to the population least desir-
able in his (or her) opinion,...,, and a rank of k
to that which is most desirable., The "best"
population is defined to be that (unknown) one
which is in fact most desirable according to this
glven criterion, and, correspondingly, the '"worst'
is the one least desirable, '

Based on these ranks, several selection
procedures for choosing a subset of the k popula-
tions so as to guarantee that the best (or worst)
is included with a probability no less than
P* (k1 <P*< 1) are discussed and illustrated., This
model has wide applicability; e.g., the n judges
may be taken as n years on which observations are
recorded, or as n replicate simulation runs., In
this case the observations recorded for a given run
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are ranked among themselves, This is the spirit of
the example presented in this article -- motor-
vehicle traffic fatality rates recorded yearly by
state. The subset formulation of decision rules is
due to Gupta (1956),

It is possible to pool all the observations
and use selection rules based on joint ranks.
Several classes of these rules have been developed
and studied by Lehmann (1963), Dudewicz (1966),
Gupta and McDonald (1970), and Lee and Dudewicz
(1974). Also, these methods are discussed in the
recent books by Kleijnen (1975) and by Lehmann
(1975). Many of the properties and limitations
discussed in this article have a direct analog in
the joint ranking procedures,

By employing the population-judge model (or
block design) rather than using joint ranking
methods, relatively large savings in computational
time and data storage-may be realized., This aspect
will be illustrated in the context of a numerical
example, As with any block design, the experi-
menter should have a fixed reasonable interpretation
of "judge" before actually proceeding with the data
analysis. The model has been investigated by
McDonald (1972, 1973) and by Lee and Dudewicz (1974),
It has been employed in a multiple comparison con-
text by Kramer (1956); Thompson and Willke (1963);
and others, References to the use of this model,
as well as several related paired-comparison models,
may be found in McDonald (1972).

In Section IT of this article several selection
rules for choosing either the best or the worst
populations are stated formally, along with the
model assumptions required to support a statistical
inference, Section III pravides a guide to existing
tables of constants, and associated approximations,
which are required to implement the selection rules,
In Section IV, these techniques are illustrated with
a set of motor-vehicle traffic fatality rates which
are indexed by state (the population) and time (the
run), Several advantages and disadvantages of
these methods are discussed briefly in Section V.

II. FORMULATION OF RULES AND- SOME BASIC PROPERTIES

Let Ilj,..., I} be k(> 2) independent popula-
tions, The assoclated random variables
Xi4o J=1lye00,n; 1 =1,..., k, are assumed
in&ependent and to have a continuous distribution
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Nonparametric Selection (continued)

Fj(x;ei) where O, belongs to some interval @ on the

i
real line. Our basic model assumption is that
Fj(x;e) is a stochastically increasing family of

distributions for each j; i.e., if 91 is less than
92, then F (%36 ) and F.(X'S ) are distinct and
F (x;0 )

example, models of the form

FJ(x 91) for all x, This covers, for

Xij b+ 6 +~B + e, ij °

where the error term may have any (not necessarily
normal) coatinuous distribution G(-).

The observations are taken in n blocks which
are well specified in advance of the analysis. The
subscript j indicates the particular block to which
the observation xij corresponds; the i indicates
Let Rij denote the rank of obser-
vation xij among xlj""’ xkj; i.e., if there are

the population,

exactly r of the observations ®

. then R_.
ij ij
well-defined since F (%3 9) is assumed continuous.
The variables Rij
inclusive. Our selection procedures are based on

n
the quantities T % Rij’ the sum of ranks
j=1
L =1,00s, k.

j? m =100, ky

less than x =1r + 1, These ranks are

take integer values from 1 to k

i
associated with Hi’

Letting e[i] denote the iEI—1 smallest unknown

j(x;e) is stochas=

parameter and recalling that F

tically increasing, we have
Fj(’“e[ll) > Fj(X;G[Z]) 2 eee 2 Fj(X;e[k]) »

allx, j=1, see, n

To accommodate the application to be discussed in
Section IV; the population characterized by 9[1]

will be called the best, and that characterized by
e[k] called the worst, 8everal subset selection

procedures, based on the rank sums, will be
reviewed. These procedures have the property that
the probability of a "'Correct Selection" (CS), i.e.,
including the best (or worst) population in the
selected subset, is bounded below by a specified

value P* (k—l < P¥ < 1), Formally, for a given
rule R, the probability of a correct selection
should satisfy the inequality,

inf P(CS|R) > P* ,

Q
where

Q={8 = (91,..., Sk): ei e ® 1 =1,...; k],

In some instances, to be noted later, this
guarantee may hold only on a subspace Q' of Q,
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CHOOSING THE WORST POPULATION

) For choosing a subset to contain the worst
population, the following two rules are considered:
R, : Select Hi if£ T, > max T, - b

. 1gi<k 3

and

R2 : Select ﬂi iff Ti >d .

The constants b and d are chosen to yield the basic
P* - condition. The constants b and d are calcu~-
lated assuming the ei's are all equal, 1In the case
of R1 this restricts the inference space as
indicated in the following property:

If Q represents a slippage configuration,
i.e., 6[1] = aes = e[k_1] < e[k], then

the probability of a correct selection

 using rules Rl and R2 is minimized when

the k populations are identically dis-
tributed, For an unrestricted parameter
space Q, the same is true for rule Rys

however, a similar result does not hold
for Ry.

CHOOSING THE BEST POPULATION

Corresponding rules for choosing subsets of the
k populations which contain the best, with a speci-
fied confidence, are:
Ri : Select I, 1££ T, £ min T, + b'
1<3<k

and

. 1
R} : Select Hi 1ff Ti <d .

N =

In this case, the constants b' and d' are chosen to
be as small as possible while preserving the basic
probabilistic guarantee,

The properties for these rules are direct
analogs for R1 and RZ’ respectively., That is,

1
By

®r1y =021 = -

the entire parameter space.

is justified over a slippage space where

. = e[k]; and Ré is applicable over

III. DETERMINATION OF CONSTANTS FOR SELECTION RULES

This section provides a guide to tables useful
in determining the constants required to implement
the selection rules discussed.

WORST POPULATION RULES

The constant b used in rule Rl is tabulated in

McDonald (1973) for k = 2, n = 2(1)20; k = 3,
=2(1)8; k=4, n =2(1)5; k=5, n=2,3. The
exact distribution of the appropriate statistic is
given and so any admissible value of P% can be used

in this range of k and n values,
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The .constant b' xrequired to implement rule Ri
Thus, the appropriate asymptotic form is given
T = nQetl)/2 - [n@2-1y/121Y2 " lu-pey .

Thus, the tabl,
The constand d' required for rule Ré

directly.
d' = n(k+l) - d

68

(1962), and an efficient FORTRAN computer program
YEAR

to evaluate numerically. the inverse normal function

is given by Milton and Hotchkiss (1969).
is identically equal to the' corresponding b value

required for rule R
where d is the corresponding value needed for rule

normal cumulative distribution function.
tion of the inverse function is contained

BEST POPULATION RULES

where &
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R
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TABLE 1
Motor-Vehicle Traffic Fatalities per Year per 100,000,000 Vehicle Miles
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The constant d for use with R2 is tabulated in
For large values of n, an asymptotic approx-

For large values of n, the following
asymptotic expression can be used to determine b
imation for d is given by

T = n@w?-19/12142 671 (1 - Py + n@+1)/2

17 18 2 21 oyax = px .

B = hink (k+1)/6]1%72 |

2()10; k =4, n

cunulative distribution function and probability

density function, respectively, of a standard

normal variate,
As in the previous case, the entire distribution

In the above equation 2(-) and ¢(+) refer to the
is tabulated and so any value of P* can be used,

expression has been tabulated by Gupta (1963)

Gupta, et _al. (1973); and Milton (1963).
McDonald (1973) for k

where h satisfies

n
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Nonparametric Selection (continued)

IV. AN ANALYSIS OF FATALITY RATES

Each year the National Safety Council pub~
lishes the motor=vehicle traffic fatality rate
(MFR) for each state in the annual editions of
Accident Facts. The MFR is the number of motor-
vehicle traffic fatalities per 100,000,000 vehicle
miles. Basically, we are considering fatalities
which occur within one year as a result of an
accident involving a motor-vehicle on a trafficway.
The death is attributed to the place (state) of the
accident, The exact definitions of all the terms
used in this context are given in the Accident .
Facts. The fatality rates are given in Table I
(to 1 dp) for the contiguous forty=-eight states
and the District of Columbia for the years 1960 to
1976 inclusive --so k = 49 and n = 17, The 1960-75,
rates were obtained from Accident Facts, annual
editions, National Safety Council, Chicago, Ill.
The rates for a given year from 1960-74, say t,
were obtained from the (t+2) annual edition and
are considered "final.," The rates for 1975-76 are
preliminary estimates. The 1976 estimates, and
rates not listed in annual editions, were obtained
directly from the National Safety Council.

Our goal is to choose a subset of the 49
states (considering D.C. a state) which can be
asserted, with a specified confidence, to contain
the state with largest fatality rate (worst popu-
lation). Likewise, a subset will be chosen for
the smallest fatality rate (best population). This
objective is often viewed as a screening technique
to reduce the number of states to a relatively
-small number for further study or characterization.
For example, a successful characterization con-
trast of the subset of states chosen for the
largest fatality rate with the subset chosen for
the smallest may suggest causal factors which play
a significant role in determining the MFR for a
particular state. I am sure that such scrutiny of
the fatality rates has been undertaken carefully in
the past. However, the 'statistical techniques

described here provide additional analytic tools to
assist this empirical process. Before applying the
selection procedures of Section II, the model
assumptions will be reviewed and checked briefly.

Let Xij denote the MFR for the iEh state and

th year, i=ly..., 49; j=l,..e, 17. The index i
denotes the state in alphabetic order; and the
index j denotes the year in increasing order., For
example, Xll = 7.0 and is the MFR for Alabama in

1960; X53 = 5,1 and is the MFR for Colorado in 1962,

The assumptions of Section II are assumed to hold.
Simply put, the Xij are assumed independent having

a continuous distribution (not necessarily normal),
Fj(x;ei), which is stochastically increasing in ©

for each fixed j. The Oi is taken to be the effect

of the iEE state on the fatality rate. This model
applies, for example, in the context of a block
design in the absence of an interaction term.

Table 2 provides an analysis of variance for the
data in Table 1., Both indices, state and year, are
highly significant in explaining the variation in
the MFR's, -

Tukey (1949) developed a test for non-additivity
when there is a single observation per cell, as
given here, This test on the original data, summa-
rized in Table 2, strongly indicates that an inter-
action term cannot be deleted from the basic model.
However, Tukey also pointed out the influence of
the scale of measurement upon the existence or non-
existence of interaction effects, An appropriate
choice of a monotonic transformation applied to the
data may yield the subsequent Tukey test insignif-
icant suggesting that the interaction is an arti-
fact of the scale of measurement (see Winer (1971)).

The large non-additivity mean square could
result from one or more discrepant data points

TABLE 2
ANOVA and Tukey's Test for Traffic Fatality Rate Data
ANALYSIS OF VARIANCE
SDURCE SUN OF SQUARES il HEAN SQUARES F-VALUE  PROB(F)
NEAN 21426.276 y
YEARS 494.833 16 31.052 114,258 9.000
STATES 1053.980 48 21.957 89.793 0.000
RESIBUAL 208.720 748 0.271
TOTAL 23185.810 833
TUKEY“S TEST FOR NON-ADDITIVITY
13-ttt i i
SDURCE SUK OF SQUARES - OF MEAN SQUARES F-VALUE  PROB(F)
RESIDUAL 208.720 « 768 0.271
NON-ABDITVITY 31.871 1 31.871 138,229 0.000
BALANCE 176.848 767 0.230
96 December 5-7, 1977



and/or from analysis in an inappropriate scale of
measurement, Tukey suggests aplot of the sums of
cross-products versus row means, i.e.,

17 -
jEl Xij‘?%j#Xv-)va' X;.» a8 a tool to examine the
influence of these factors, A single discrepant
observation.tends to be reflected by one point
high or low and the others distributed around a
nearly horizontal regression line. An analysis in
an inappropriate scale tends to be reflected by a
slanting regression line.

The cross-product plot for the fatality rate
data is given in Figure 1. A slanting regression

FIGURE 1

Sums of Cross-products for Traffic Fatali;y Rates
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line is readily apparent, as is one low point
corresponding to the state of Wyoming. This low
point is due primarily to the increasing large
fatality rates for Wyoming over the last several
years. Wyoming is the only entxy for which

the fatality rate has been nondecreasing since
1973, The strong slanting nature of the plot
strongly suggests a change of scale.

Table 3 provides an analysis of variance and
Tukey's test for non-additivity for the trans-
formed data Yij = EIL(Xij-l). This table indicates

that factors, state and year, remain significant
while the interaction term is insignificant. Thus,
a block design with no interaction does not appear
unreasonable, Since the rank procedures are invari-
ant to order preserving transformations, the
analysis can proceed on the original data, It
should be noted that the checks appearing in
Tables 2 and 3 do assume a normal distribution for
the error terms to substantiate the F-tests; how~
ever, the rank procedures to be applied do not
impose such an assumption.

Since the values of k (=49) and n (=17) are
large for this application, the constants required
to implement the selection rules are determined by
the asymptotic formulae given in Section III.
Taking P* = ,90, the h-solution to

[--}
I e en2/?)1%8 g@yax = 90
-0
as given in Table 1 of Gupta et_al. (1973), is
h = 2.5816. Thus,
B = (2.5816) [17(49)(50)/61%/% = 215.09 .

Also, 8 (1-p*) = 871(.1) = -1.28155, as given in
Owen (1962), and so

/

A = [17(49%-1)/121%% (-1.28155)

+ 17(50)/2 = 350.27 .

TABLE 3
ANOVA and Tukey's Test for Transformed Traffic Fatality Rate Data
ANALYSIS OF VARIANC
SOURCE SUN OF SQUARES DF HEAN SQUARES F-VALUE  PROB(F)
MEAN 1477.5496 1
YEARS 39.0298 14 2.4393 161.0992 0.000
STATES 81,5632 48 1.469%92 112.2200  0.000
RESIDUAL 11.6290 748 0.0151 ’
TOTAL 1609.7717 833
TUKEY’S TEST FOR NON-ABBITIVITY
SOURCE SUK OF SQUARES bF MEAN SQUARES F-VALUE  PRDB(F)
RESIDUAL 11.46290 748 0.0151 .
NON-ADDITVITY 0.0004 1 0.0004 0.0281 0.861
BALANCE 11.6286 767 0.0151
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Nonparametric Selection (continued)

The remaining needed value is simply
qr o= 17¢50) - T 2 499,73 .

Now, the two selection rules for choosing a
subset containing the worst population, i.e., the
state with the largest fatality rate, are given by:

0 '

R, : Select the i state iff T,> max T, -215.09 ,
1<j<a9 J

and

R2 : Select the iE state iff 'I.‘i > 350,27 .

The corresponding rules for selecting the sub-
set for the best population, the state with the
smallest fatality rate, are ‘

R! : Select the i state 1££ T < min T, +215.09 ,
1<5<49 4

and

R th

é : Select the i— state iff T, < 499,73

To apply these selection procedures, the
state MFR's, for each year, must be ranked, The
state with the lowest rate receives a rank of
l,..., and the state with the highest rate receives
a rank of 49, For the year 1960, Rhode Island has
rank 1 and Nevada has rank 49; however, adifficulty
arises in assigning the rank 2. Connecticut and
the District of Columbia both have rates of 2.8
{to 1 dp) and are equal contenders for the ranks of
2 and 3. When ties occur such as this, each of the
tied states are assigned the average rank; e.g.,
both Connecticut and the District of Columbia are
assignéd a rank of 2.5 for the year 1960. Aftex
ranking the states for each year, the rank sum for
a state is computed by summing the ranks across
years. The rank sum for the itR state is denoted
by Ti and the collection of rank sums is given in

Table 4.

The presence of tied observations results in
a difficulty common to many rank techniques. In
Section II, the observations were assumed to have
a continuous distribution implying that tied
observations do not occur and that a complete rank-
ing of the populations is available from each
judge. The distribution theory underlying the
determination of constants in Section III depends
on this implication of no ties. The presence of
ties substantially complicates the distribution
theory, and exact results are virtually nonexis-
tent, In many instances, this difficulty can be
avoided by calculating (or measuring) the obser-
vations to additional significant digits so as to
eliminate ties. In the motor-vehicle fatality
rate example this could be done by using the
fatality and mileage data to compute rates to
additional decimal places, However, since this
example employs the asymptotic results, and the
number of observations tied for a specific rank
within a given year is small compared to the number
of states, the resulting error should be small
using the easily obtained rates. The treatment of

98 December 5-7, 1977

ties with rank methods is discussed at some length
by Hijek (1969) and Lehmann (1975).

TABLE &

JState Rank Sums and Selected Subsets with P* = .90

Selected Subset fortT

Best Worst
1 1
State . Rank Sum R1 R2 R1 R2
Rhode Island 23.50 * 0k
Connecticut 39,50 * Ok
INew Jersey' ~ . 55,00 * ok
Dist, of Col.. 91,00 * %
Massachusetts™ 103.50 * %
Maryland 126 .50 * 0%
Pennslyvania 133,00 * ok
New Hampshire 160,00 * K
Maine . 185,50 ®  %
Washington 220,00 *  0*
Ohio 224,00 * ok
Delaware 226,00 * 0%
California 239.50 %
Illinois 244,50 w
Virginia 268,00 *
Michigan 275.50 *
Minnesota 287.50 %*
New York 303.50 *
Nebraska 311.00 *
Wisconsin - 368,50 * %
Kansas 382,50 % *
Indiana 401,50 %* %*
Oklahoma 413.00 * %
Florida 443,00 * *
Iowa 444,00 * ¥
Utah - 452,50 * %
Colorado 453,00 * *
N. Dakota 461,00 * ¥*
Texas 463,00 * ¥
Missouri 477.50 * *
Oregon 484,00 * %
Vermont 534,00 *
Kentucky 537.50 *
Tennessee 567,00 L
Georgia 597.00 * %
Arkansas 618,00 * %
S. Dakota 619,00 * %
Wyoming 635,50 %
W. Virginia 643,50 * %
Arizona 691,50 * %
N, Carolina 693,00 * %
S. Carolina 694,50 * %
Alabama 702,00 * %
Idaho 713,00 * %
Montana 733.50 * %
Louisiana 757,50 * %
Nevada 772,00 * %
Mississippi 777.50 * 0k
New Mexico 778.50 * %

+States chosen by selection rule are indicated

with *,

The results of applying the selection pro-
cedures Ry» Ry, Ri and Ré are contained in Table 4.

Since max T, = 778,50, the rule R1 selects all
1449 A
those states for which Ti->-778'50 -215.09 =563.41,



There are sixteen such states with a sufficiently
large rank sum, The other rules are applied
similarly,

The statistical conclusions of this analysis
can-be-summarized-by referring to the inference
property stated in Section II. The thirty states:
selected. using rule R2 can be asserted, with 90%

confidence, to contain the state which is char-

acterized by the largest fatality rate. The same
confidence statement applies to the sixteen states
selected using rule R1 if, in fact, forty-eight of

the states have the same fatality rate and one
(unknown) state has a rate at least as large as
this common value, In order to justify the infer-
ence over the unrestricted parameter space of
fatality rates, twice as many states are selected,
in this example, than are required for an inference
over the slippage configuration. Similar inference
remarks apply to the subsets selected using rules

Ré and Ri and asserted to contain the state with

the smallest fatality rate,

The subset of sixteen states determined by
R1 to have the worst state contains primarily

Southern states, Southwestern states and Rocky
Mountain states. On the other hand, the subset of
twelve states selected by Ri to contain the best

state consists primarily of New England states and
Middle Atlantic states; however, the states of
Ohio and Washington are included in this group
also,

V. SUMMARY DISCUSSION

The advantages and disadvantages of using a
selection procedure based on ranks are parallel to
those of any statistical rank method. Primary
advantages are computational ease, valid inference
based on weak assumptions and the knowledge of an
ordinal relationship for the populations (i.e.,
actual numerical observations are not required).
The first of these advantages can be substantial
in large scale repetitive computation., For
example, to provide for a future analysis of the
fatality rate data, all that need be stored is the
rank sums, given in Table 4, of forty-eight states,
The sum for the remaining state is determined since
the rank sums for k populations and n judges must
sum to nk(k+l)/2, When the 1977 fatality rates
become available, these can be ranked and the
individual state rank sums updated easily.

Disadvantages of these methods include
restricted inference, unknown operating character-
istics (including optimal choice of score functions)
and computationally difficult distributions. The
restricted inference is applicable to the selection

rules Rl and Ri. Little is known about character~

istics, such as expected subset size, of these
procedures outside of the probability of a correct
selection. In our example, the selection rule R2

selected considerably more states than the rule Rl‘

How much of this can be explained as a property of
the techniques versus a sample phenomenon is not
known, Finally, the distribution theory associated

with these rank procedures can be quite complicated.
Some exact results are available and asymptotic
results can be applied easily, However, tied obser-
vations result in substantial complications and no
results are available currently to handle this
problem. When possible, the experimenter should
avoid these difficulties by .refining the measure~
ments or calculations to avoid ties,

Selection procedures based .on ranks are devel-
oped sufficiently well to play a useful role in the
analysis and interpretation of data, These tech-
niques, however, are in the embryo state within
the user community, Increased usage of these
methods in data analysis and simulation studies,
and the appropriate documentation of the findings,
will encourage further research and development of
these methods to understand and abate the dis-
advantages, and to expand the advantages, briefly
discussed here,
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