ESTIMATION OF THE BEST ALTERNATIVE

ABSTRACT

In many simulation studies there are available
severa] alternatives and the experimenter is simu-
lating in order to choose which one is best with
regard to certain specified criteria. Once an al-
ternative has been selected, people may. raise the
question: "How good is it?" For this problem one
naturally tries to provide a confidence interval
for the parameter of the best aiternative.

Estimation of the best alternative has been
studied in the last decade, and most of the works
are in the category of k-population problems under
one factor. Below we summarize these results and
extend them to experiments in factorial designs -
one-way and two-way classifications.

1. BACKGROUND AND INTRODUCTION

For quite a long time statistics has dealt
with observations that came from one population or
two populations while many other experimental prob-
lems that do not, in fact, fall into the category
of one- or two-population were put under this
frame. In the classical k-population problems the
goal of the experiment is usually to test the hy-
pothesis that the k( > 2) populations are homoge-
neous in terms of means or other characteristics.
However, if the goal is not a test of homogeneity,
the traditional analysis of variance technique is
inadequate. If the goal is to select the best al-
ternative among k of them in a factorial experi-
ment, Bechhofer (1), a pioneering worker, built a
ranking and selection procedure to choose such a
best alternative with regard to certain criteria of
"hestness" rather than testing the hypothesis that
k populations are really only one. However, in his
procedure only selection was considered. Once the
best alternative has been selected with certain
probability of correct selection, one may raise the
question: "How good is the best one?" To answer
this question one naturally tries to construct a
point or an interval estimate for the value of the
parameter of the best alternative. In recent years
estimation of ordered parameters has been exten-
sively studied on k population problems under the
consideration of one-factor experiment. In section
II, we will introduce interval estimation of the
largest normal mean under various situations in
one-factor factorial design using the traditional
assumptions (normality and independence of errors).
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In section III, this work is considered for a two-
factor factorial design with no interaction. Ap-
propriate tables are selected for applications.

I11. ONE-WAY CLASSIFICATION

Let's consider an experiment with a single
factor at k( > 2) treatment levels. In this design
of experiment it is assumed that the following 1in-
ear statistical model holds:

cees Ky J=1,2,... (1)
th

Xij =y + €5 i=1,
h

where Xij is the jt obiﬁrvation on the i treat-
ment level, u; is the i treatment mean which is
unknown, and €;; are independent and nogma11y dis-
tributed with mean zero and variance o3 for i=1,

...,k and j=1,2,.... Our goal is an interval esti-
mate on the mean of the best alternative (or treat-
ment), Mk = max (ul,...,uk), among k treatments

when the best alternative has been selected accord-
ing to ranking and selection procedure. Various

cases are possible: variances 012'5 known or un-

known, equal or unequal, and sample sizes equal or
unequal. 2 2
Case 1. Variances o4 Known. When variances g

...,okz are known (equal or unequal) Chen and

Dudewicz (3) proposed a procedure to obtain a con-
fidenceinterval for the largest mean u K (the mean

of the best alternative) as follows: In the one-
factor factorial model of expression (1}, n, inde-

pendent observations Xil’XiZ""’X are taken

in,
i
from the ith treatment level for i=1,...,k. These

observations are assumed to obey a normal probabil-
ity distribution with unknown mean u; and known

variance 012. (This assumption is equivalent to
that of the error term eij.) Then, the usual esti-
mate of B4 is given by the arithmetic sample mean

Xi = (X1.1 + X12 + ...+ Xini)/ni
for i=1,2,....k. These sampie data may be summar-
ized as in Table 1. By normal theory, the sample

mean Xi will obey a normal probability distribution
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Estimation of the Best Alternative (continued)

TABLE 1
One-Factor Experiment
treatment level
1 2 ... k
X1 %21 X1
X12 X2 X2
Observations . : .
. X e e
; 2n2 :
X
kn
X k
ln1
Sample size ny Ny ..M
Sample mean | Xl Xz v e . Xk

with mean Yy and variance oF 2/n . Now, a 100v%
(95% if v = .95) confidence 1nterva1 for the
Targest mean “[k] is

I = (m?x[xi - (L-d)oy/ /M1, m?x[Xi + dci/wﬁ;]) (2)

where L and d are tabulated in Table 2 (reproduced
from Chen and Dudewicz (3)) for various confidence
coefficients y. For practical computation, one
finds L and d respectively from ap, ropriate entry
of Table 2, computes the quantity - (L -d) °i/

/__ for i=1, ..., k, and then f1nds the maximum of
these k values, X1 - (L - d)ollvr—} ..., and Xk
L - d)ck//—_ This maximum value will be the

lower Timit of confidence interval of expression
(2). Similarly, one can find the upper limit of
interval of expression (2) by taking maximum of
(X + dcllvﬁi} cees Xk + do //n ).

In the special case where variances are equal
and known, %.e., 012 = ... = °k2 = 02, say and the

numbers of observations from each treatment level
are also equal, i.e., Ny = ... =n =n, say inter-

val I, in expression (2) reduces to
- (L -~ d)a/Vh, X[k] + do/vh)
Xk’ which was

I = By
where X[k] is the maximum of Xl’ vens

considered by Dudewicz and Tong (7).
Case 2. Variances Equal but Unknown. When vari-

ances 012, vees ckz are equal ( = 02, say) but un-

known, Chen and Dudewicz (3) proposed a similar (to
that of Case 1) procedure to obtain a confidence
interval for the largest mean “[k] except that the
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TABLE 2
Values of L (upper entry) and d (lower entry)
\\k\l\ 0.80 0.90 0.95 0.99

5 | 2.563103  3.289707 3.919928 5.151658
1.281552 1.644854 1.959964 2.575829

3 | 2.599909  3.329066 3.959107 5.187286
1.130417 1.509463 1.837609 2.475334

4 | 2.660401  3.389878  4.017437 5.238657
1.054289  1.446547 1.783419 2.432835

5 | 2.719553  3.447301 4.071764 5.286179
1.009469 1.410819 1.753084 2.409284

6 | 2.772974  3.498359  4,119849 5.328189
| 0.980189 1.387838 1.733679 2.394288

7 | 2.820580  3.543520 4.162299 5.365282
0.959610 1.371811 1.720188 2.383895

g | 2-863120 3.583710  4.200039 5.398276
0.944361 1.359992 1.710261 2.376264

g | 2.901394  3.619772  4.233886 5.427888
0.932608 1.350914 1.702648 2.370422

1o | 2936084  3.652399  4.264500 5.454695
0.923272 1.343721 1.696625 2.365804

12 | 2.996829  3.709431  4.318010 5.501605
0.909373  1.333046 1.687697 2.358972

14 | 3-048641  3.758001 4.363587 5.541625
0.899521 1.325501 1.681397 2.354158

16 | 3-093691  3.800196 4.403193 5.576453
0.892172 1.319886 1.676713 2.350582

18 | 3-133469  3.837436  4.438159 5.,607243
0.886479  1.315543 1.673094 2.347821

90 | 3-169033  3.870721  4.469424 5.634810
0.881939  1.312084 1.670213 2.345625

99 | 3.201158  3.900784  4.497674 5.659745
0.878234 1.309265 1.667866 2.343837

o5 | 3.244132  3.940999  4.535481 5.693161
0.873799 1.305893 1.665060 2.341701

pocled sample variance estimate,
, kM
=z (X
i=1 j=1
where N = ny tn, + o0 with N - k d.f., takes
the place of 012. (Data are as in Table 1.) Hence

a 100vy% confidence interval for “[k] is given by
(L-d)s/vagl, m$x[ii +ds//1) (3)

where d = L/2 when k=2, d can be found from the
usual Student's-t table at y confidence coefficient,
and when k>2, L and d can be found from Table 3
for vy = .95 (reproduced from Chen and Dudewicz {4)).
The computational procedure of I2 in (3) is similar

I, = (m?x[ii -
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Let

.5 k.

=1, ..

o

Then for a

s Xk.

(4)

ng - 1 = 1(1)30(5)
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procedure as follows:

Then Xi
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-length L ( >0), a 100v% confidence

the largest of Xl’ .
interval for the largest mean Hik] is
(X[k] - C, X[k] + L -c)

+1 Xij/("i - no) for i

and hence fi) are tabulated in Table 4 with k = 2(1)

o

d
X[k] e?ote
given fixed

Ne
1
L
I; =

where ¢ together with h (a value that determines n;

5, 7, 10, 15, 20, and 25; and v

and b2 =1 - bl‘

Y

of size no( > 2) from

1n0
pX Xij/no’
v 12
Xi) /(no -1),

treatment level i (1 < i < k), and define
0

1

n
(X35 -

N
j:

2
max {n0 +1, [(Si/h) 1}

ple Xil’ XiZ’ .
"

and
where h is fixed >0 and [y] denotes the smallest
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TABLE 4
Values of (h, c¢) for Two-Stage Confidence Intervals 0f.u[k] when vy = 0,95,

VL 2 3 4 5 7 10 15 20 25

1 .0271 .58 .0212 .63 .0176 .66 .0152 .68 .0120 .72 .0092 .76 .0067 .79 .0053 .81 .0044 .83

2 .0958 .56 .0849 .59 .0777 .61 0724 .63 .0648 .66 .0574 .69 .0497 .71 .0448 .73 0412 .75

3 .1363 .55 .1251 .58 .1176 .60 .1120 .61 .1040 .63 .0959 .65 .0873 .68 .0815 .69 .0773 .70

4 .1597 .55 .1489 .57 .1416 .59 .1362 .60 .1284 .62 .1205 .64 .1120 .66 .1064 .67 .1021 .68 |

5 .1746 .55 1641 .57 1571 .59 .1519 .60 L1444 .61 .1368 .63 .1287 .65 1232 .66 L1191 .67

6 .1838 .54 1746 .57 .1678 .58 .1628 .59 .1556 .61 .1483 .62 .1405 .64 .1352 .65 .1313 .66

7 .1923 .54 .1823 .56 .1757 .58 .1708 .59 .1638 .61 1567 .62 L1492 .64 1441 .65 L1403 .66

8 .1979 .54 .1881 .56 .1816 .58 .1769 .59 .1700 .60 .1632 ,62 .1558 .63 .1509 .64 1472 .65

9 .2023 .54 .1927 .56 .1863 .58 .1816 .59 .1749 .60 .1682 .62 1611 .63 .1563 .64 .1527 .65
10 2058 .54 .1963 .56 .1901 .58 .1855 .59 .1789 .60 .1723 .62 .1653 .63 1607 .64 .1571 .65
11 .2087 .54 .1994 .56 .19%2 .58 .1886 .58 .1822 .60 .1757 .61 .1688 .63 1642 .64 .1608 .65
12 2112 .54 +2019 .56 .1958 .57 .1913 .58 .1849..60 .1785 .61 .1718 .63 .1673 .64 .1639 .64
13 .2132 .54 .2040 .56 .1980 .57 .1935 .58 .1872 .60 .1809 .61 .1743 .63 .1698 .63 .1665 .64
14 .2150 .54 .2058 .56 .1999 .57 .1055 .58 .1892 .60 .1830 .61 1764 .62 .1720 .63 .1688 .64
15 2165 .54 .2074 .56 .2015 .57 .1971 .58 .1909 .60 .1848 .61 .1783 .62 .1739 .63 1707 .64
16 .2179 .54 .2088 .56 .2029 .57 .1986 .58 .1925 .60 .1864 .61 1799 .62 .1756 .63 1724 .64
17 2191 .54 .2101 .56 .2042 .57 .1999 .58 .1938 .60 .1878 .61 L1814 .62 1771 .63 1740 .64
18 .2201 .54 .2112 .56 .2053 .57 .2011 .58 .1950 .59 .1890 .61 .1827 .62 .1784 .63 1753 .64
19 L2211 .54 .2122 .56 .2063 .57 .2021 .58 .1961 .59 .1901 .61 .1838 .62 .1796 .63 .1765 .64
20 .2219 .54 .2130 .56 .2073 .57 .2030 .58 .1970 .59 .1911 .61 1849 .62 .1807 .63 1776 .64
21 .2227 .54 .2138 .56 .2081 .57 .2039 .58 .1979 .59 .1920 .61 .1858 .62 .1817 .63 .1786 .64
22 2234 .54 ,2146..56 .2088 .57 .2046 .58 .1987 .59 .1928 .61 .1867 .62 .1826 .63 .1795 .63
23 2241 .54 .2152 .56 .2095 .57 <2053 .58 .1994 .59 .1936 .61 .1875 .62 .1834 .63 .1803 .63
24 L2246 .54 .2158 .56 .2101 .57 .2060 .58 .2001 .59 .1943 .61 .1882 .62 .1841 .63 .1811 .63
25 2252 .54 2164 .56 .2107 .57 .2066 .58 .2007 .59 .1949 .61 .1888 .62 L1848 .63 .1818 .63
26 .2256 .54 .2169 .56 .2112 .57 .2071 .58 .2013 .59 .1955 .61 .1894 .62 .1854 .63 .1824 .63
27 .2261 .54 ° .2174 .56 .2117 .57 .2076 .58 .2018 .59 .1961 .61 .1900 .62 .1860 .63 .1830 .63
28 2266 .54 .2179 .56 .2122 .57 .2081 .58 .2023 .59 .1966 .60 .1905 .62 .1865 .63 .1836 .63
29 2270 .54 ,2183 .56 .2126 .57 .2085 .58 .2027 .59 .1970 .60 .1910 .62 .1870 .63 .1841 .63
30 2274 .54 .2187 .56 +2130 .57 .2089 .58 .2032 .59 .1975 .60 L1915 .62 .1875 .63 .1846 .63
35 .2289 .54 ,2203 .56 L2147 .57 .2106 .58 2049 .59 .1993 .60 1934 .62 .1895 .63 .1866 .63
40 .2301 .54 .2215 .56 .2159 .57 .2119 .58 .2062 .59 .2007 .60 .1948 .62 .1909 .62 .1881 .63
45 .2310 .54 .2224 .56 22169 .57 .2129 .58 .2073 .59 .2017 .60 .1959 .62 .1921 .62 .1892 .63 |
50 2317 .54 .2232 .56 .2177 .57 .2137 .58 .2081 .59 .2026 .60 .1968 .61 .1930 .62 .1902 .63 |
55 .2323 .54 .2238 .56 .2183 .57 .2143 .58 .2088 .59 .2033 .60 .1975 .61 .1938 .62 .1910 .63 !
60 .2328 .54 2243 .56 .2189 .57 .2149 .58 .2093 .59 .2039 .60 .1981 .61 1944 .62 .1916 .63
80 22341 .54 2257 .56 .2203 .57 .2164 .58 2109 .59 .2055 .60 .1998 .61 .1961 .62 21934 .63
120 .2355 .54 .2271 .56 .2218 .57 .2179 .58 2124 .59 2071 .60 .2015 .61 .1978 .62 .1951 .63
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60, 80, 120. (Selected from Chen (2).)

If our goal is to estimate the smallest mean
by an interval, the procedures g1ven above are the
same except that one changes the signs of all ob-
servations by muitiplying a negative one.

IIT. TWO-WAY CLASSIFICATION

In this section we consider a factorial exper-
iment with two factors having no interaction. The
first factor, let's call factor A, has I (>2)
treatment levels and the second factor factor B,
has J (>2) treatment Jevels and hence there are
IxJ treatment combinations. Then in this design
of experiment it is assumed that the following
well-known linear statistical model holds:

X1J£ Wt o+ B+ €ijp° (4)
i= 1, I J = 13 » d3 & = 1, 2, s N
where Xijz is the 2 th observation at the i th Tevel

of factor A and the j th level of factor B, p is the
general mean, o is the main effect of factor A at

level i and B, is the main effect of factor B at
level j with the restrictions g a; = 0 and zsj =

It is also assumed that the errors eijz are inde-

pendent and normally distributed with mean 0 and
variance o, § for £ = 1,2,. . Let M, =M + o4

denote the true average with factor A at level 1,
i=1l,... 3 let u joH + B. denote the true aver-

age w1th factor B at level j, j=1,...,J; and let
13 =y + o + B denote the true average with

factor A at 1eve1 i and with factor B at level J.
Let n 1. denote the largest one of My seees Hpos

let u[ J denote the largest one of u 1 s Mg
and let “[IJ] denote the largest one of Uygseees

Hrpe ooeo Mo

The goals for two-factor factorial experiment
may be:

(1) Estimate by an interval the mean of the
best treatment level, u 1.1° of factor A regardless
of factor B. (1.1

(2) Estimate by an interval the mean of the
best treatment level, y a1’ of factor B regardless
of factor A. (.d]

(3) Estimate by an interval the mean of the
best- treatment combination, “[IJ]’ among all treat-
ment combinations.

For the goals listed above, independent obser-
vations are obtained according to the model (4) of
factorial experiment. These sample data are summa-

rized in Table 5 where X and n, are the 1th
mean and sample size, respect1ve1y, of factor A,

X . and n . are the Jt column mean and sample sizg
respect1ve1y, of factor B, and X i3. and n are the

(1,J) treatment combination mean and size respec-
tively.

TABLE 5 :
Two-Factor Experiment
Factor B Sample Sample
Size | Mean
1 2 eer 4 (row) | (row)
X111 %121 X101
11X115 X9 Klo2 | ™. | K
X1in  *12n X1an
X011 *om X231
X212 X322 X202 | 2. | Xa.
Factor A |2
Y21n  *oon X20n
fmm % X
X112 *122 X1o2
I, ) i n | %y,
X1in X12n XLan
Sample n n ces N
ane! 1 "o 2
(Column)
Sample X b .. X
ampl a1 ko .J
(Column)
2 2 .. 2
For goal (1), when o..“ = ¢ with o known the

TJ
procedure is the same as in case 1 of section II
except that we replace X by X s Dy by n; s and o;

by o. When o i5 =g w1th o unknown the procedure is

the same as in case 2 of section II with ((I-1}{J-1)
degrees of* freedom)

2 _

s% = 5 5 (4 '-X.j+i)2/(1-1)(a—1)

iJ

‘where X is the grand total sample mean, For the

goal (2), the procedures of cases (1) and (2) of
section II can also be applied Just like what we do
for goal (1) except using X 0 instead of X i

n; . Finally for goal (3) when o 32 s are known,

Winter Simulation Conference = 77




Estimation of the Best Alternative (continued)

the procedure is the same as in case 1 of sectionII
except using X, TR n, and i3 instead of X s n1,
and o respectivé]y. When o?i = 02 w1th<5unknoWn
the procedure in case 2 can be applied using S2 as
an estimate of 02. In the final situétion when
cijz's are unequal and unknown the two-stage pro-
cedure described in case 3 can be applied for each
treatment combination.

IV. AN ILLUSTRATIVE EXAMPLE

In this section we consider the estimation of
the largest and the smallest mean traffic fatality
rates in the southeastern United States including
Alabama, Florida, Georgia, North Carolina, South
Carolina and Tennessee. The motor-vehicle fatality
rate for each state is pub11shed each year by the
National Safety Council in the annual editions of
Accident Facts. Basically, we consider the fatali-
ties which occur within one year as a result of an
accident involving a motor-vehicle on a trafficway.
The death is attributed to the state where the
accident occurs. These fatality rates are given in

Table 6.
TABLE 6
SELECTED MOTOR-VEHICLE TRAFFIC FATALITIES PER YEAR
PER 100 MILLION VEHICLE MILES IN THE
SOUTHEASTERN U.S. ‘
STATE 7
YEAR| AL FL G NC  SC TN
60 7.0 5.7 6.3 6.8 7.8 5.6
61 7.0 5.4 6.0 6.5 7.9 4.8
62 6.9 5.6 6.2 6.7 7.8 4.9
63 7.5 6.0 6.8 7.0 7.7 6.4
64 7.0 5.9 6.5 7.6 8.0 6.9
65 7.4 6.1 6.5 7.3 7.3 6.8
66 7.0 6.0 7.0 7.4 7.9 7.4
67 7.1 5.4 6.7 7.1 7.0 7.0
68 7.0 6.1 6.9 7.2 7.0 6.4
69 7.0 5.7 6.4 6.5 6.4 7.1
70 6.4 5.2 6.2 6.0 6.2 6.6
71 6.8 5.0 5.7 5.9 5.8 5.5
72 6.0 4.5 4.7 5.8 5.1
73 6.2 4.5 5.3 5.3 4.9
74 4,1 3.7
Source: These rates are selected directly from the

paper entitled, "An application of nonparametric
selection procedures to an analysis of motor-
vehicle traffic fatality rates" by Gary C.
McDonald, Proceedings of 1977 Winter Simulation
Conference. For the purpose of illustration
some Tatest and estimated rates are not included
in the table in order to have unequal sample
sizes.

In this example, a state is a population; the
characteristic is the fatality rate recorded each
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year for each state. We are interested in the state
which has the largest mean (motor-vehicle fatality)
rate or the smaliest mean rate and the values of
the mean rate themselves. Here we assume that data
do not violate the assumptions of independence, nor-
mality and homogeneity of variances. (Actually, the
fatality rates recorded for each state are indepen-
dent of those for others; normality and homogeneity
of variances have been checked by goodness-of-fit
test and the Bartlett's Chi-quare test, respectively.
We find that these basic assumptions are satisfied.)
In the present example we have k = 6 states (popula-

nu

tions). The sample sizes are ny 15, n, = 15,
= 14, ng = 14, ng = 12, ng = 14; the sample mears
are X1 = 6.69, X2 5.39, X3 6.23, X4 6.65,

5 = 7.23, X6 = 6.10; the samp]e variances are s%

0.68, 5 = 0.49, s5 = 0.41, s5 = 0.47, s& = 0.57,
é 0. 87 and the pooied sample var1ance with de-

grees of freedom v = 84 - 6 =78 is found to be

., Kk
s z (n; - 1)s 2/( z n: - k)

j=1 i=1 i
14(.68)+14(.49)+13(.41)+13(.47)+11(.57)+13(.87)
78

= 0.58.

From this calculation we can see that South Carolim
has the largest sample mean rate (Xs = 7.23) and
F]or;da has the smallest sample meah rate (X2 =
5.39).

If we define the "best" state to be the one
with the smallest true mean rate p 1 (which is un-

known) and the "worst" state with the largest true
mean rate u[G] (unknown), then, according to

ranking and selection procedures, South Carolina
(with the largest sample mean rate) will be iden-
tified as the worst state and Florida (with the
smallest sample mean rate) the best state. However,
the true mean rate of the worst or the best state
has not yet been estimated. Hence, if we want to
know how bad the worst state is, we would Tike to
provide a confidence interval for the mean fatality
rate of the worst state. Now if we wish to deter-
mine a 95% confidence interval for the true mean
rate associated with the worst state, that is, the
1argest mean u/_l, then we need to compute

- {L - d)s/ and X + dS//__ for each sample

by using the 1nterva] of express1on (3) in case 2
of section II. For k =6, v=178, and y = .95, we
find L = 4.19, and d = 1.75, respectively, from
Table 3. The computations needed to construct the
confidence interval are shown in Table 7.

Expression (3) indicates that the two end
points of the interval I2 are the largest numbers

in the corresponding two Tast columns in Table 7.
The largest in the left column is 6.70, and in the
right is 7.61. Then the 95% confidence interval
for “[6] is



I, = (6.70, 7.61) BIBLIOGRAPHY
[} M e ettt 0 1. Bechhofer, R. E. "A Single-Sample Multiple
S : z : : : Decision Procedure for Ranking Meansof Normal Popu-
N " " " ] " " lations with Known Variances," Annals of Mathemati-
L cal Statistics, Vol. 25 (1954), pp. 16-39.
e g g g ¥ ok
N . . . . . -], 2. Chen, H. J. "A Class of Fixed-Width Confi-
. li-- mt_-g mg < @ m@ mg o E« dence Intervals for a Ranked Normal Mean," Technical
=< > |~ ~| o~ NPT TS Report Number 111, Department of Statistics and
Be g |2 — -l e — Computer Science, University of Georgia, Athens,
= N + . N - - - Georgia (1976) accepted by Communications in Statis-
= ore =2} [} ) 73] ') o ——tlcs'
= IR et ™ N 9 o
= 0 7 ) © O~ © 3. Chen, H. J. and Dudewicz, E. J. “Interval
a Estimation of a Ranked Mean of k Normal Populations
L o s @ 98 2 3 with Unequal Sample Sizes," Report 73-21, Department
~ 8 <  © & © o of Ma’ghematica] Sciences, Memphis State University,
W< p " " " " A Memphis, Tennessee (1973).
E 2 ol © 9 Y 9 W 4. Chen, H. J. and Dudewicz, E. J. “Interval
5 S N N B ! Estimation of the Largest Normal Mean Under Unequal
=] 13 o o & o 3 Sample Sizes," submitted to Communications in Sta-
Bl R o] R o R R tistics (1977).
= s LD O — il Oy ]
3 % ) E -‘i" : g -I'\Z‘ ' k" 1 l"\" 5. Chen, H.J. and Dudewicz, E. J. "Procedures for
o= . ) of af o o o Fixed-Width Interval Estimation of the Largest Nor-
(et I N I B! ] ST R I mal Mean! Journal of the American Statistical Asso-
ol |= |~ =~ = ciation, Vol. 71 (1976) pp. 752-756. —
8 1 1 T 1 1 1 1
[ o~ o o o o o o 6. Dudewicz, E. J. "Statistical Inference with
g o< ﬁ 2 2 :‘; : : Unknown and Unequal Variances," Transactions of the
= Annual Quality Control Conference of the Rochester
g e Society for Quality Control, Vol. 28 (1972) pp. 71-
] o~ ) < s} w0 85.
G}
i 7. Dudewicz, E. J. and Tong, Y. L. "Optimal Con-

and we are 95 percent sure that the interval (6.70,
7.61) will contain the largest true mean fatality
rate. Since only one of the six sample means is
contained in this interval, in this case, X5, it is

tempting to also assert that the state South Caro-
lina is the worst one with confidence level y =.95.
(This happens to have the same conclusion as that
by ranking and selection procedures. In fact, the
interval may contain at least one of the sample
means.)

Moreover, if the goal is to tell how good the
best state is, we will, by a similar manner, con-
struct a 95% confidence interval for the smallest
mean rate associated with the best state. The com-
putational procedure is the same except that one
replaces the value of Xi by its negative counter-

part.and the estimating procedure is the same as in
case 2 of section II. After the interval for -u[l]

(the largest one now) has been calculated, we mul-

tiply a -1 to the interval to obtain what we desire
In our example, the desired 95% confidence interval
for the smallest mean rate M1 is (5.05, 5.87).

Since only one of the six sample means is contained
in this interval, in this case X,, it is tempting to

also assert, with cdnfidence level y = .95, that |
the state Florida is the best state which has the
smallest mean fatality rate in the southeastern
United States.
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