SELECTION IN FACTORIAL EXPERTMENTS

ABSTRACT -

The performance of many if not most real-life
systems which are simulated depends on two or more
factors which can be set at various '"levels." In
order to understand the behavior of such a system
‘the experimenter must conduct a factorial experiment
in which the behavior of the system is studied at
selected factor-level combinations. It is often
of interest to select the "best" factor-level
combination, i.e., the one associated with the _
highest average response.

The purpose of this paper is to discuss some
of the more commonly used statistical selection
procedures. Selection procedures appropriate for
use with single-factor experiments are considered
first. The ideas associated with the use of these
procedures are then generalized to two-factor
experiments (and implicitly to multi-factor
experiments) and new selection procedures for use
with such multi-factor experiments are described.

1. INTRODUCTION AND SUMMARY

In an interesting paper presented at the 1976
Winter Simulation Conference, Dudewicz [1976]
described some applications of ranking and selec-
tion procedures in simulation studies. Earlier,
Kleijnen [1975] (see, in particular, pp. -553-561
and 599-675) had given a broad discussion of the
virtues and drawbacks of a large variety of such
procedures with particular reference to their use
in simulation studies. Dudewicz [1976] dealt
exclusively with single-factor experiments, i.e.,
experiments in which the individual conducting the
simulation varies only a single factor, e.g., job
shop precedence rule, in order to determine which
such rule yields (say) the highest average output.
However, the performance of many if not most real-
life systems which are simulated depends not on one
factor but on two or more factors which can be set
at various "levels." For example, the experimenter
may choose to vary not only the job shop precedence
rule but also (and simultaneously) the form of the
arrival time distribution in order to study their
joint effect on the average output of the system.
This type of problem is mentioned by Kleijnen
(p. 561). Thus, in order to understand the behav-
ior of such a system, the experimenter must actually
conduct a factorial experiment in which the
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behavior of the system is studied at selected
factor-level combinations. It is with such multi-
factor experiments that we will be concerned in the
present paper.

It is our purpose in this paper to provide the
reader with relevant background concerning some of
the more commonly used selection procedures. First
we discuss single-factor experiments--in particular,
we state precisely the statistical assumptions that
are usually made, describe two of the now classi-
cal statistical formulations of the selection
problem, and give literature references to several
of the procedures which provide solutions to these
problems. We next discuss two-factor experiments
(and implicitly multi-factor experiments), and show
how the single-factor statistical assumptions and
formulations used with selection problems can be
generalized in a natural way to deal with corre-
sponding multi-factor selection problems. We then
present newly-devised seléction procedures which
provide solutions for these multi-factor selection
problems.

The new procedures follow from as yet unpub-
lished research undertaken jointly by the author
and Professor Charles W. Dunnett, Department of
Clinical Epidemiolegy and Biostatistics, McMaster
University, Ontario, Canada. The theory underlying
the procedures reported herein, and related proce-
dures, isdeveloped inpapers presently being prepared.

2. SINGLE-FACTOR EXPERIMENTS

2.1 STATISTICAL ASSUMPTIONS

We assume that we have k populations I,
(1 £i2Xk) of normally distributed data, the ith
population having population mean uy and popula~
tion variance ci; population Hi (L <iz<k)
should be thought of as being associated with the
ith "level" of a qualitative factor. The u, are
assumed to be unknown. Let u[1] ;'u[2] 2.2 u[k]
denote the ranked values of the His it is assumed

that the pairing of the Hi with the ”[j]

In this
2

(1 21,5 £k) 1is completely unknown.
exposition we also assume that oi =g
(1 £i<k), the common value being assumed known
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Selection in Factorial Expefiments {continued)

or being assumed unknown. The general case in
which the values. of the cii are assumed known but

perhaps unequal, or are assumed completely unknown
will not be considered here; for the former see
Bechhofer [1954], p. 2i, and for the latter see
Dudewicz and Dalal [1975] or Rinott [1974#].  We
denote the mth observation from n, by Xim

(L£isksm=1,2,...), all observations being
assumed independent.

2.2 TWO FORMULATIONS OF THE SELECTION PROBLEM

The two most commonly used formulations of the
selection problem are due to Bechhofer [1954] and
Gupta [1956], [1965]; these are referred to as the
indifference-zone approach and the subset approach,
respectively. The formulations are described below.

2,2.1 The Indifference-Zone Approach

The goal and probability requirement assoclated
with the indifference-zone approach are:

Goal: "To select the lével (population)

assoclated with.-utkj." (2.1

It is assumed that prior to the start of experi-
mentation the experimenter can specify two constants
{8%,P%} (0 < 8% < w, 1/k < P%* < 1) which are then
incorporated into the following probability require-
ment:

Probability requirement: -

Prob{Selecting the level (population)
-assoclated with ﬁ[k]} 2. p%

(2.2)
whenever u[k] - u[k-l] > &%,

The experimenter then restricts consideration to
procedures which guavantee (2.2).

2.2.2 The Subset Approach

The goal and probability requirement associlated
with the subset approach are: '

Goal: "To select a (non-empty) subset ,
of the levels {(populations} which 2.3)
contains the level (population) - :
assoclated with- u[k];"

It is assumed that prior to the start of experimen-
tation the experimenter can specify a constant

{P*} (1/k < P®* < 1) which is then Incorporated
into the following probability requirement:

"Probability requirement:

Prob{Selecting a subset of the levels
(populations) which contains the
level (population) associated (2.4)

regardless of the values of the My
(L<1gk)

The experimenter then restricts consideration to
procedures which guarantees (2.4).
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The goal (2.3) can be thought of -as a screening
goal which 1s particularly appropriate when the
number of levels (populations) is large. Having:
conducted an experiment employing (2.3), the
experimenter might follow up with an experiment
employing (2.1). See Remark 2.1.

2.3 PROCEDURES

2.3.1 The Indifference-Zone Approach

If the experimenter wishes to guarantee (2.2),

and the value of the common variance 02 is
assumed known, then he can use the single-stage
procedure of Bechhofer [1854]; this procedure is
described in Dudewicz [1976], Section II, and
Kleijnen [19751, pp. 601-607. :

If the experimenter wishes to guarantee (2.2),
and the value of the common variance is assumed '
unknown, then he can use the two-stage procedure
of Bechhofer, Dunnett and Sobel [1954] (but he
cannot use a single-stage procedure--see Dudewicz
[18711); this procedure Is described in Kleijnen
(19751, pp. 608-610.

2.3.2 The Subset Approach

If the experimenter wishes to guarantee (2.%),
and the value of the common variance is assumed
known or is assumed unknown, then he can use the
single-stage procedure of Gupta [1956], [1965];
this procedure is described in Kleijnen [19751],

p. 555,

Remark 2.1: -Recently Tamhane and Beckhofer [1877]
proposed a two-stage procedure which guarantees
(2+2) when the value of the common variance is
assumed known. This two-stage procedure has the
highly desirable property that the expected total
number of observations required by the procedure
is always less than the total number of observa-
tions required by the corresponding single-stage
procedure of Bechhofer [1854], regardless of the
configuration of the population means. The two-
stage procedure can be regarded as a composite
one which performs a screening function in the
first stage, and selects a best level (population)
in the second stage from among thosa levels
(populations) not screened out in the first stage.

3. TWO-FACTOR EXPERIMENTS

3.1 STATISTICAL ASSUMPTIONS

We assume that we have »xc populations Hij

(L<gigr, 1 <] <c) of normally distributed
‘data, the (1,])th population having populaticn
mean uij and population variance aij; popula~-
tion Hij
thought of as being associated with the ith "level"
of the first qualitative factor and the jTh "level®
of the second qualitative factor. The. uij are

(Lgigr, 1< <c) should be

assumed to be unknown, We write



-~

W,. = W + o, +B U (L<izr, g

i <
ij i i jze)

= Tovg = D ovgy ol

r c
where } a, = ) Yi 14
i j=1 & if1 4 gn

Then a; is referved to as the "effect" on the

population mean of the ith level of Factor A, Bj

is referrved to as the "effect" on the populatlon
mean of the jth level of Factor B, and Yi i3 is

referred to as the joint "effect" on the population
mean of the ith level of Factor A and the jth
level of Factor B. The quantity Ylj is also

referred to as the Ffirst-order (or two-factor)
interaction "effect."

1f Vi Z 0 (all i,j) then we say that

interaction exists between the levels of the two
factors. 1In this situation it usually is not
meaningful to seek the "best'" level of the first
factor and the "best" level of the second factor
(since each depends on the level of the other
factor); however, it is meaningful to seek the
"hest" factor-level combination. To this end we
let ¥r1] __u[l] L2 u[ e] denote the ranked

values of ‘the uij'

of the Hij
1<3zcyl<psre) is completely unknown.

It is assumed that the pairing

with the Hp3 (L<igr,

if Yij
interaction exists between the levels of the two
factors. Here it is meaningful to seek the "best"
level of the first factor and the "best" level

of the second factor. We thus let

?[lj é=§[2] Leeel af ] and B[l] ?[2J é;"§=?[c]
denote the ranked values of the o and Bj’

0 (all i,j) then we say that no

respectively. It is assumed that the pairing of
the 1, ij with the a[ ] and/or the B[ ]

(L<iz<r,l<jsce;lcper,lzcqgge) is
completely unknown.

We also assume that c?. = 02

1]
1 <j <ec), the comnmon value being assumed known
or being assumed unknown. We denote the mth
observation from 1,. by X, (L <i<r;
ij ijm =" =
l<jiszec;m=1,2,...), all observations being
assumed independent.

(Lgizgr,

3.2 TWO PORMULATIONS OF THE SELECTION PROBLEM

As we did in Section 2.2 for single-factor
experiments, we now describe the use of the
indifference-zone approach and the subset approach
for two-factor experiments.

3,2.1 The Indifference-Zone Approach

3.2.1.1 Interaction Between the Levels of the
Factors. The goal and probability requirement
associated with the indifference-zone approach for
Yij £ 0 (all i,j) are the same as (2.1) and .

(2.2) with % vreplaced by rc.

3.2.1.2 No Interaction Between the Levels of the
Factors. For i3 =0 (all 1,3), the goal and

probability requirement are:

Goal: "To select the level of Factor A
associated with ar r]’ and

simultaneously to sele*t the (8.1)

level of Factor B associated with
1"
Bred’

It is assumed that prior to the start of experimen-
ta@ion the experimenter can specify thvee constants
{52‘[’5’5’1’*} (0 < gz,sﬁé < ®, 1/re < P* < 1) which

are then incorporated into the following probability
requirement:

Probability requirement:

Prob{Selecting the level of Factor A
associated with a[r], and

simultaneously of selecting the

level of Factor B associated with

Br -} >P

Lel (3.2)

Ihv

%p] T %p-11 2 %G

whenever and

|v
O
3

Pre1 ™ Pre-11 2
3.2.2 The Subset Approach

3.2.2.1 Interaction Between the Levels of the
Factors. The goal and probability requirement
associated with the subset approach for v,. 20

(all i,j) are the same as (2.3) and (2.4) with
k replaced by rc.

3.2.2.2 No Interaction Between the Levels of the
Factors. For Yij =0 (all i,j), the goal

and probability reguirement are:

Goal: "To select a (non-empty) subset of
the levels of Factor A which contains
the level associated with a[r],

and simultaneously, to select a (3.3)

(non-empty) subset of the levels of
Factor B which contains the level
associated with B[c]'"

It is assumed that prior to the start of experi-
mentation the experimenter can specify a constant
{P*} (l/rc < P* < 1) which is then incorporated
into the following probability requirement:

Probability requirement:

Prob{Selecting a subset of the levels of
Factor A which contains the level
associated with ot[r], and simul-

‘taneously, of selecting a subset of
the levels of Factor B which contains
the level associated with B[c]} > P

(3.4)

regardless of the values of the oy and Bj

(lzgizgr,123z0)
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Selection in Factorial Expegiments (continued)

3.3 PROCEDURES

In this section we assume Yy
and give procedures which will guarantee (3.2) and

(3.4) when the value of the common variance 02 is

. assumed known, and when the value -of the .common
variance is assumed unknown. The precedure are
generalzzatlons of procedures previously proposed
for single-factor experlments.

. 8.3.1 The Indifference—Zone AEproach

If the experimenter wishes to guarantee (3.2),
and the value of the commen variance is assumed
known, then he can use the single-stage procedure
of Bechhofer [1954], Section # (and Example ‘3,

p. 37); see also, Kieljnen [1875], pp. 634-636.

The virtue of cenducting one two-factor
experiment ratheér than two independent single-
factor experiments to guarantee (3.2) is discussed
by Bawa [1972]. In effect the factorial design
‘of the experiment makes the data "work twice™ and
is in this sense more efficient than two Indepen-
dent single-factor experiments; this results in a
saving (sometimes substantial) in the total number
of observations required to guarantee (3.2).

If the experimenter wishes to guarantee (3.2),
and the value of the common variance is assumed-
.unknown, then he can use the following new two-

. stage procedure of Bechhofer and Dunnett [19771
which is a generalization of the two-stage
procedure of Bechhofer, Dupnett and Sobel [1954]);
constants g (which depend on {(r,c) v 6*/6*,?*})
are given in B&D [18771)]

"3) In the first. stage take an avblitrary common
number N0‘> 1 of observations from each of.

the rc populations nij (Lgi<r, 153 g0
b) Calculate
r ¢ N
X z 20' (Xijm -
i=1 3=1 m=l

is an unbiased estimate of 02 based on
v = rc(N -1) degrees of freedom.

3o 4
_mz Xy 4n/Ng) /v which

¢) Enter the appropriate table (e.g., abbrev1ated
Table 1, below, for (r,c) = (2,2) and (2,8),
selected v, 6:/6% =1, Pk = 0.95) and
obtain a constant g.

d) In the second stage, take a common number N-N,

of additional observations from each of the k
populations where

N = No if M < NO

N=[M} if M > N
(3.5)
where M = (/FgS/6B) /r and [M] denotes the
smallest integer equal %o or greater than M.

e) Calculate the »+c over-all (first stage plus

¢ X
second-stage) sample sums ) ) Xijm
. 351 m=l
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20 (all 1,3)

(Lgigr), Z X X (113 é ¢), and let

izl m=1 Im :
) 5 ¥
X = max{ X (1 < i <},
J=1 m=1 frlim - 151 'm=1 19m
» N oy - |
’gl 5 ilelm maX{igl mgl lem (l 21 sol
£) Select the level that ylelded- §1 m—z-l Xre 1t

as the one associlated with a[r]’ and the

r
level that yielded )} J X as the one
' 121 pey  ibelm

associated with BEc]'"

TABLE -1
Values of g for P#% = 0,95, 6*/6*
and (r,c) = (2, 2) and (2,3).

r= 2 r= 2
V| c=2 V| c=3
i 2,7215 8 2.4939

12 2.1645 || 18 -
ls | 2.1083 24 | 2.0852
20 | 2.0759 || 30 2.0713
24 -f :2,0548 36 2.0565
28 2.0392 || 42 .| 2.0u460

32 2.0276
. 36 | 2.0192
40 2.0125

® | 1.9545 © | 1.,9857

The values In this table are abstracted from tables

in Bechhofer and Dunnett [1977] which give many
additional g-values for selected
{(r,C),v,Sg/sg,P*}.

Remark 38.1: The g-entry assoclated with v = «» in
Table 1 can also be used if the experimenter wishes
to guarantee (3.2), and the value of the common
varlance is assumed known {which is 1mplled if

= @), Then a single—stage procedure is used with

a common mumber N = [(/’go/s*) /r] of observations
being taken from cach of the rc populations nij

(lgizsgr,1s3%¢c); the decision rule is the
same as that given in step f) of (8.5) with the
phrase in e) "first stage plus second stage"
replaced by "single-stage." (This rule is then
equivalent to the one given in Bechhofer [1954],
Bection &, )

8.8.2 The Subset Approach

If the experimenter wishes to guarantee (3.4),
and the value of the common variance 1s assumed
known or is assumed unknown, then he can use the




following new single-stage procedure of Bechhofer

and Dunnett [1877] (which generalizes the single-

stage procedure of Gupta[1956],[19651)3 constants h

depending-on {(r,c),v,P*} are given in BED [19771).

"a) Take an arbitrary common number N > 1 of
observations from each of the rc populations
L. Lsigr,lzi<e)

ij
b) Calculate
2 r c N N 2
=737 1 73 SR X5 /N)°/v which
i=1 4=l m=1 M =1 Y

. . . . 2
is an unbiased estimate of o¢° based on

v = re(N-1) degrees of freedom.

c) Enter the appropriate table (e.g., abbreviated

Table 2, below, for (r,c) = (2,2) and (2,3),
selected v, P% = 0,95) 4nd obtain a con-
stant h. (3.8)
d) Calculate the r+c sample means
c N

X...= ¥ Y %X, /oN (L<i<mw),

* j=1 m=1 T
- E N
X. = z X.. /e (1 23§ 2¢), and let

3" iz g M

Xp]e. = max{?i__ (1 <iz )},

X = max{ilj. (L <3 <e)l,

A

y '[C]'

e) Retain the ith level of Factor & (L <i g r
among the selected levels of Factor A if and
only if

)

X;.. ;R‘[r]_. - VZhg/VcH,

and retain the jth level of Factor B

(L 23 £ c) among the selected levels of
Factor B if and only if ‘
X, 2% ~ V2hS/vrN."
Je = '[C]’
TABLE 2

Values of h for P#* = 0.95 and
(r,e) = (2,2) and (2,3).

r =2 r = 2
V| e=2 V|c=3
4 2.7215 6 2.6469
8 2,2849 12 2.3479
12 2.1645 18 2.26083
16 2.1083 24 2.2186

28 2.0392 u2 2.1658
32 2.02786
36 2.0192
4o 2.0128
© 1.9545 L 2.1009

Note; If r =c¢ then g
(in Table 2).

(in Table 1) equals h

4. MULTI-FACTOR EXPERIMENTS

No new ideas are encountered for multi-factor
selection problems (i.e., selection problems
arising from experiments iavolving three or more
qualitative factors) which were not already present
in two-factor selection problems. The method of
generalization from two to three or more factors
is clear; additional tables of the g- and h-
constants are necessary; some of these will be
contained in Bechhofer and Dunnett [1977].

5. CONCLUDING REMARKS

The reader who is interested in further study
of selection procedures is veferred to Gibbons, .
Olkin, and Sobel [1977], and a textbook in
preparation by S. S. Gupta and S. Panchapakesan.
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