_§TATISTICS; STATTONARTTY AND RANDOM NUMBER GENERATION

ABSTRACT

This paper remarks upon some issues involved in
evaluating the "randomness" of numerical sequences.
The question of how much to test is addressed,
particularly with respect to pseudorandom gener-
ators. Historical failures of seemingly random
sequences are noted. The dependence of evaluation
programme upon proposed use of the sequence is
stressed. The meaning and importance of station-
arity are considered, and results from statistical
distribution theory useful in checking for it,

and in further evaluation of a sequence, are
described. An example illustrates differences

in power of three tests directed against a
particular class of stationary alternatives to
Normal white noise.

1. INTRODUCTION

Recent developments in the foundations of proba-
bility theory (see, e.g., the review article by
Chaitin (1)) have brought to the surface and
spotlighted certain logical anomalies, involving
the usage of algorithmically generated "pseudo-
random” sequences which underlies the practice
of simulation by a digital computer. In this
paper we i) discuss, from a naive viewpoint,
some implications of these anomalies for the
simulator, and ii) survey some available proce-
dures for detecting non-randomness, with particu~
lar attention to spectral tests and conditions
under which they are most and least advisable.

Consider what might be called "standard practice." .
A stochastic model is developed which assumes

that some portion of the phenomenon under study

is describable as a random sample from a proba-
bility distribution. By a random sample we mean
realizations of random variables that are a) each
from the same probability distribution, and

b) statistically independent. A search is then
made for numbers which plausibly impérsonate

such realizations. Since thousands of numbers

are frequently needed, the economics of computa-
tion suggest that methods of generating the
numbers on-line are desirable: Economics further .
dictate that an on-line generating procedure .
must be short and sparing of memory to be usable;

a simple deterministic algorithm is thus selected.
A series so resulting, calculated deterministically
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in the hope that it may successfully masquerade
as a probabilistically generated sequence, is
called "pseudorandom," and the algorithm a
pseudorandom number generator.

The generator is carefully chosen mathematically
to avoid undesirable properties such as, say,
periods shorter than the sequence length for
planned Monte Carlo. In additiom, number theo-
retic asymptotic approximations which indicate
that certain aggregate properties of the pseudo-
random sequence agree with predictions of ‘the
stochastic model can sometimes be derived.
Finally, on the basis of a more or less vague
feeling that there is no reason to suspect non-—
randomness and that hypothesis testing is relevant
to matters statistical, the stochastic model is
elevated to the status of both a scientific and
statistical null hypothesis for generator charac-
teristics, and subjected to a battery of statis~
tical tests using generated subsequences. If
these all accept the null the generator is

called acceptable and used, frequently by many
researchers in a wide variety of situations.

What does a statistical programme for screening
a random number generator accomplish? Essentially,
it involves the rejection of generators on the
basis of subsequences which are atypical of the
hypothesized stochastic model. "Atypical" sub-
sequences are defined by membership in the
critical regions of some set of hypothesis

tests. Ordinarily, a test statistic provides a
measure of atypicality, from the point of view
of a particular test, for each conceivable sub-
sequence. The nature of a statistical screen
therefore depends upon the choice of tests,
which designates the types of sequences to be
rejected, and the stringency of application in
terms of the numbers of sequences in the critical
regions of the various tests. All this seems
eminently reasonable, until one considers the
choices to be made in designing a statistical
screen for a "general purpose” random number
generator. Which test should one choose at what
levels? How does one handle the multiple
testing problem? Just as all readers of this
paper are, in some combination of characterstics,
unusual human beings, so sufficiently close
examination of any pseudorandom sequence will
reveal some features that are not shared in the

Winter Simulation Conference 41



STATISTICS AND RANDOM NUMBERS. ... Continued

- aggregate by run—-of-the-mill sequences from a

hypothesized model. The question arises of when
the passage of an intensive screening itself
becomes a trait sufficiently unusual, on the
basis of a stochastic -model, to require rejection
of a generator. ’

The severity of the paradox involved becomes
clearest when viewed in the light of the algo-
rithmic definition of randomness of Kolmogorov,
Chaitin and Solomonoff (1l). While the classical
definition of randomness refers to the probabil~-
istic origin of the sequence, the algorithmic
formulation treats randomness as a trait of the

.sequence itself, independently of how it was

arrived at. In particular, a sequence is called
random if there exists no formal computer program
for production of the sequence which is substan-
tially smaller in information content (bits)

than the sequence itself. If the complexity of

a2 sequence is defined as the minimal amount of
information necessary to tell a computer how to
construct the sequence, then a random sequence
is one whose complexity is approximately equal

to the amount of information it carries. Moreover,
the complexity of a sequence induces a partial :
ordering of randomness on the class of possible
sequences of a fixed length; those of least
complexity are the least random.

t
According to this definition, the very simplicity
and brevity which make a pseudorandom number
generator economically attractive insure that all
sequences of at least moderate length produced1
by the generator will be markedly non-random. j
Consider for a moment the question of what to do
in testing a sequence of unknown origin for '
randomness. Since we do not know if the sequence
is pseudorandom, a statistical testing programme
would still be appropriate according to the ‘
algorithmic formulation. However, the dependence
of a statistical screen on the particular hypoth-
esis test chosen is emphasized by consideration

- of what the most appropriate tests might look .
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like in this situation. They would try to reject
generators of low complexity. We might, for
example, apply a test against a class of congru-
ential or mixed congruential generators operable
within current machine capacities. The test
would reject whenever the new sequence satisfied
one of the generator algorithms, and accept
otherwise. If the generator was used to produce
"continuous" pseudorandom numbers to a sufficient
number of figures, and the class not too large,
the test would have 100% powex against the
included congruential or mixed congruential
generators, at a level close to zero under any
continuous null distribution. Such a test is
not less reasonable than more conventional tests
of randommess.

The point we wish to draw from this admittedly
labored discussion is that the concept of estab-
lishing a pseudorandom generator as a general °
purpose supplier of random numbers through a
varied programme of statistical hypothesis !
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testing is invalid. While statistical tests may
provide useful. ordering principles for the exclu-
sion of patentially misleading sequences, their
most appropriate application is in conjunction
with a perturbation analysis .of the proposed
simulation model, to determine what sorts of
violations of the stochastic model, and of what
magnitude, would compromise the outcome. Once
this is known, specific statistical tests of
type, level and power such as are necessary to
screen out generators which produce such sequences
may be selected.

We do note a circularity inherent in this discus-
sion, The perturbation analysis must be accom-
plished without simulating, as we have no baseline
sequence for our simulation. And yet, the lack

of a good mathematical perturbation analysis
frequently is what justifies a simulation in the
first place. The difficulty is hardly devastating,
however. Frequently we know much but not all
about a model to be simulated, and the knowledge
that we have often implies that certain stochastic
assumptions are more critical than others in the
problem context. Certainly, we should test
against critical violations extensively, but the
emphasis we should put on supplementing such
testing with examinations designed to delete
violations without known deleterious effects is
not clear. While undertesting may let very bad
generators for the problem slip through, over-
testing may ultimately suppress from the output

of our simulations interesting and realistic
variation, carrying the sort of information

which makes simulation a yaluable predictiye

tool. The recommendation of McLaren and Marsaglia
(15), to test on a similar problem for which the
answer is known, is certainly sound when possible.
Ultimately, the user of pseudorandom sequences
must accept the fact that he will occasionally
take his lumps.

The remainder of this paper surveys somewhat
more specifically what statistics can say about
pseudorandom generators. In Section 2, real-
life bad examples illustrate how care must be
used in choosing a generator which gives those
randomness properties of most concern to the
user. Some tests from the literature are dis-
cussed in relation to the types of non-randommess
and non~-stationarity to which they are sensitive
in Section 3 and finally, in Section 4, the
characteristics of some tests for stationary
series are reyiewed in more detail.

2. HISTORICAL PERSPECTIVES

The history of random number generators, which
purport to gemerate white noise, has been rather
colorful. A few cases are presented here to
emphasize by example how care must be used in
adopting a generator.

Early in the century, Student and others used
random physical measurements as random Normal



numbers. These may be suspect because of abnormal
human variation and they are inconvenient because
the entire table of them must be stored in one's
memory, computer or library. L RAND Corporation
(17), to overcome the first of these drawbacks,
devised an electronic device to generate one
million random numbers. Although the physical
construction of the device would have seemed to
guarantee randomness, RAND's statistical tests
comfortably accepted the hypothesis at the beginning
of the generation, but less comfortably so near
the one-millionth number. Again, each of these
numbers must be stored in memory for use.

Pseudorandom generators, on the other hand, require
only a few memory locations. These date back at
least as far as von Neumann's (20) "mid squares"
uniform pseudorandom generator, which obtains the
next number as the middle n digits of the square
of .the previous number (n even). At first sight,
there may seem little reason to doubt its random-
ness; however, trouble can ensue. For a simple
example with n=2, consider the sequence beginning
with the 2n digit number 4321, vis., 32, 02, 00,
00, 00, . .. . ad inf. Such an anomaly, if pro-
grammed into a computer and left there without
periodic checking, in future use might generate
ludicrous Monte Carlo results before discovery of
the problem.

Asymptotic theorems from number theoty show that
the generator X(N)=(Nk) (mod 1) has excellent
frequency properties if k=(-1-v5)/2; that is, the
proportion of numbers in any subinterval of the
unit interval is very close to the length of the
interval, at least in long sequences. With this
assurance, the first author used this generator
with abandon in a class project with very poor
Monte Carlo verification of theoretical results.
Also, aleatoric (random) music was produced with
this generator and was found to contain highly
nonrandom melodies. Further statistical testing,
based on consecutive pairs, verified that these
numbers appeared not at all independent, although
the frequency property was splendid. All prop-
erties of concern to the study should have been
tested.

Multiplicative congruential generators were intro-
duced by Lehmer (10), and number theoretic theorems
can be used to suggest which starting points and
multipliers to use with them. The generator RANDU
by IBM is an example which was in somewhat general
use. RANDU passed many statistical tests; however,
McLaren and Marsaglia (15) and Coveyou and
MacPherson (5) show that triples of such numbers
appear very dependent. Richardson (18) reports
tests of this and other such generators.

Marsaglia (14) has shown a general, geometrical
non-randomness results from multiplicative con-
gruential generators. If such non-randomness is

an important property to avoid in one's simulation
work, then one should avoid these generators.
Recently one of our students used a local generator,
which was designed to overcome this geometrical
problem. Weird Monte Carlo results led him to .
statistical tests of the generator, which revealed
very. bad frequency properties, e.g., very

significantly more than half of his uniform
numbers were greater than one~half. Randomness
properties not of vital concern should not be
traded for those which are.

The standard Normal pseudorandom generator which
approximates Normals by adding up 12. pseudouni-
forms, subtracting 6, and appealing to the Central
Limit Theorem, provides another semi~fanciful
example of why the user must test a generator for
the properties of concern to him. If, for example,
one wants to study the tail behavior of the normal
distribution by considering only those simulation
runs wherein the deviate exceeds 6.0, then he will
wait forever if the generation is done with this '
method.

With recent widespread popularity of pocket calcu-
lators (and sale of digital watches which double
as gaming houses), the performance of their

random number generators is of some interest. It
is noteworthy that Hewlett-Packard recalled its
original generator for the HP 65. Miller (16)
proposed a faster and purportedly better generator
than the one supplied by the Texas Instruments

SR 52.

3. SURVEY OF STATISTICAL TESTS

The range of utility of a statistical test for
randomness applied to judge a pseudorandom sequence
is determined by the interaction, through the
statistic of interest, of quite separable charac-
teristics of the sequence represented by adherence
to or violation of four components of the random
sample stochastic model: i) covariance, or weak
sense, stationarity (Hannan (8)); ii) identical
marginal distributions, given covariance station~
arity; iii) independence, given covariance station-
arity; iv) nature of distribution, given i)-ii).
Every statistical test will be more sensitive to
some alternatives than do others. TFor example,
anyone with imagination can concoct non-stationary
dependency structures against which any given test
will be magnificant or powerless, depending on the
point to be illustrated. With respect to i) we
note that underlying the decision to test a pseudo-
random generator by examining subsequences is a
more stringent assumption of strong-statiomarity
of the generator; that is, that the statistical
properties of the sequence tested are the same as
those of all other sequences which may be obtained
from the generator in the future. A generator
that is not stationary is certainly unreliable.
For eyery truly random sequencé is stationary and,
if a generator is highly non-stationary, no
inference however precise about one subsequence
can tell much about the potentially different
properties of another subsequence. For example,
the precise knowledge of the mean of one sub-
sequence tells little about the niean of another
subsequence unless the generator is statiomary,
insuring that the means are equal.

A list of tests of random numbers was compiled by
the authors from a set of prominent papers in the
field (6,9,11,12,15). No attempt was made to be
exhaustive or to select a "best set" of papers.
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We briefly comment on properties of the tests
found.

The frequency test, perhaps the most well knowrn of
all tests of randommess, is simply a chi~squaré
goodness—to-£fit test to the hypothesized distrie
bution. It is useful against certain types of
distributional shifts, such as produce very high
frequencies in certain cells used in computing the
test statistic, but is much more tolerant against
less dramatic shifts. Since this is a general,
purpose mon-parametric test, it is in particular
situations inferior to its parametric alternatives.
(This last comment applies to any test based om
chi~square, Kolmorogov-Smirnov or other general
goodness-~of-fit statistics, no matter what the’
statistic is whose distribution is chosen to be
tested.) The test is permutation invariant, so
that it may function very poorly against ordered
sequences of the sort that may result from depen-
dencies, and behaves erratically in the face of
distributional inhomogeneities, depending on the
type of distributional differences encountered.

The n—tuples test is an n-dimensional generaliza-
tion of the frequencies test. Cells used are |
identical subcubes of the n-dimensional hypercube,
with n~tuples taken as points in n-space. The
test statistic is invariant to permutations of
n-tuples, or simultaneous identical permutations
within n-tuples, but no others. Thus it is sensi-
tive to some types of dependence of lag less than
n, its advantage over thé frequency test. Other-
" wise, comments on the frequency test apply. The
minimum or maximum of n tests compare extrema of n
numbers to their theoretical distributions using a
chi-square test; thus, the test concerns tail
behavior, and can be used to protect agaianst ,
distributional contamination by outliers, trunca-
tion alternatives, or non-stationarities such as
trends. It is invariant to the same permutations
as the n~tuples test. The analogous sum of n'test
is more useful against less dramatic slow shifts
or slippages in underlying distribution, or against
stationary distributional alternatives. These

" tests may perform very poorly when stationarity is
absent. : :

The venerable poker hand test examines the distri~
bution of the maximum number of matches of five
digits. This test is sensitive to association of
lag less than five, and to some distributional
shifts. Different types of rums tests, such as
runs above and below mean or median, or runs up
and down, are useful against general alternatives
to independence, and distributional shifts. Some
are unaffected by stationary departures from
assumed distribution; obviously, they utilize only
information about the order of the sample, arnd are
in no way permutation invariant. Gap tests and
concatenated gap tests, which examine the distri-
bution of gaps betweén similar digits in digit
sequences, are excellent tests of general alter-
natives. It is possible to suggest sequences for
which they fail entirely, however, since they are
invariant to permutations of gaps. Thus, j
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asymmetrical digit distributions which permute
probabilities across digits at regular intervals
produce sequences which generally will satisfy gap
tests. Kendall and Smith, who proposed these
tests (9), remark that a non-random series which
escaped the gap test 'would, it appears, have to
have a very peculiar bias indeed, such as would
hardly ever arise in practice." One would have to
agree, but add that some simulations today are
very peculiar, as is the concept of pseudorandom
numbers which was unknown to those authors.

The hypersphere test and sums of squares test use
the generator to approximate known properties of
distributions of quadratic forms of generated
numbers. Since each focuses on particular param-
eters of the associated distribution, it will be
sensitive to departures from the distributional
assumptions which change these parameters (in the
case of the sums of squares test, these are parti-
cular percentiles of a chi-square distribution),
and insensitive to departures not reflected in the
parameters chosen. Thus, the sums of squares test
will not be sensitive to distributional departures
which preserve percentiles but not the basic shape
of the relevant chi-square distribution. The
choice of percentiles used may drastically alter
the characteristigs of the test. The concept of
the test is sound for looking at heavily skewed
distributional departures from Normality. Use of
tail percentiles may be quite effective for
detecting occasional dramatic distributional
contamination.

We could not interpret the Qi test of a random
line, the binary tree test or the scattering
experiment test, incompletely described (12),
but suspect the properties of the first are
generally similar to those of the n~-tuple test.

The class of spectral tests, including the maximum
autocorrelation to lag k test, median-spectrum
test, the Grenander~-Rosenblatt test (which is a
Kolmogorov~-Smirnoy test on the integrated period-
ogram) or the modified Bartlett spectral test, are
strongly dependent on covariance statiomarity and
may be totally ineffective against non-stationary
alternatiyes. The tests differ essentially in
which alternatives to a flat spectrum they select
for exclusion. The maximum autocorrelation test
is sensitive against strongly periodic spectra.
The median-spectrum test rejects alternatives
partial to high or low frequencies, the modified
Bartlett test rejects clumping of the distribution
into smaller frequency ranges, and the Grenander-
Rosenblatt test is a broad but weak simultaneous
screen against all patterns of autocorrelatiom.

We remark further on spectral tests in Section 4.

From the variety of tests noted, it should be
clear that researchers have approached the problem
of checking randomness with considerable ingenuity
and imagination. It should also be clear that the
invention of tests for randommess is, however, an
essentially easy problem, as the whole panoply of
statistical methodology. may be brought to bear.



Tests of virtually any hypothesis may be viewed as
or converted to tests of randomness. Some very
good tests against particular alternatives are
immediate consequences of standard statistical
methods, and are clearly more effective against
particular classes.of 'alternatives than any of
those proposed. As an example, simple linear
regression of generated number on place-in sequence
is an excellent test of slow linear slippage in
mean under normality, homoscedasticity and inde-
pendence, a test certainly superior under these
conditions to any test previously mentioned.
Covariance stationarity may be examined by appli-
cation of amalysis of variance proceudres to
transformed sample autocorrelations derived from
subsequences. Spectral tests which take into
account that autocorrelations of lag nk, n = 2,3,
- . . should appear in conjunction with true lag k
autocorrelation can be developed. In general,
likelihood ratio statistics may be constructed
against specific alternatives to obtain asymptoti-
cally efficient tests of fixed sample size.
Sequential methods may be used against some

simple alternatives. The possibilities for develop~
ment of tests explicitly tailored to alternatives
are virtually unlimited, and should involve much
fun for statisticians. But many such tests will
overlap, and it is essential that they not be
applied in shotgun fashion, since the use of
redundant tests may serve-to sanctify a bad
generator and the use of too many tests of dis-
joint critical regions will result in the utiliza-
tion of only numerical mush as input to our
simulations. Pseudorandom number generators
should be examined using a battery of tests of
moderate proportions, members of the battery
chosen specifically with reference to the nature
of non-randommess which threatens the desired
simulation. Overall, pseudorandom number generators
may then serve us well, with a little bit of luck.

4, STATISTICS AND THE STATIONARY CASE
A generator 1s strongly stationary if its statis-—
tical properties do not vary over time. If they
vary over time, then a) the generator cannot be
producing identically and independently distributed
random variables, as purported, and b) one canmot
infer the properties of later sequences to be the
same as those of sequences tested formerly. Thus,
stationarity is an important property for a random
number generator. Here we cite facts which, used
in tandem, can provide powerful tests for station-
arity and randomness, and we comment on the power
of these tests.

As stressed previously, pseudorandom generators do
not give truly random numbers, so it is essential
to test one's generator for those, and only

those, properties which are of concern to his
study. Should this require several tests, then
one must keep in mind the problem of multiple
comparisons. That is, two (or more) tests are not
as cheap as one, but rather have a higher chance .
of making at least one error when all hypotheses
tested aré true. .When this is taKen.into account, *
the resulting inferences are .necessarily less
powerful for detecting any given departure from
the hypotheses. One safe way to proceed is ‘to do

«

both individual and simultaneously valid inferences,
rejecting any hypotheses rejected by the simul-
taneous procedure, while collecting fresh and
independent samples with which to retest hypotheses
which are accepted by the simultaneous test but
rejected by the individual omes. For example,
"reject if !X|>1.64//n" is a test that the mean of
unit variance Normal variables is zero, and this
test has significant level .10. If two such
n-samples are tested like this, simultaneously,

and one requires .10 for the combined significance
level, i.e., the chance that either test rejects
when both means are zero, then each test must be

of the form “reject when [X|>1.95/vn", which is
somewhat less semsitive than the "1.64 tests" when
a hypothesis is false. Should either |X| exceed
1.96, then its hypothesis should be rejected,

while a value between 1.64 and 1.96 is cause for
retesting with a fresh sample.

In testing for several properties of randomness in
a generator, it should be kept in mind that tests
for one such property may assume that other such
properties are valid. If the tests are performed
one after another, this will specify the logical
order of testing.

The basic building blocks for testing generators
come from statistical distribution theory. Next,
a comprehensive but not exhaustive collection of
these results and their application, particularly
useful for testing for or under stationarity, is
given along with the authors' favorite references
to these results. Some of these results are given
in more detail by Bohrer and Putnam (2).

Assuming stationarity, unit variance and Normality
(or, for a conservatiye test, fourth moment less
than 3), independence can be tested using estimators
C(K) for the autocoyariance at lag K. The null
and alternative distributions for these are
asymptotically normal, and under the null hypoth~
esis, the C(X) are independent for different
values of K. This provides a "serial covariapce"
test at any lag K, vis, reject if C(R)>(N-K) 2. A
test which is valid simultaneously for several
lags K, and which provides a better omnibus
picture of the randomness situation, is based on
the null distribution of v(N-K) C(K) being that of
a random sample from the standard normal distri-
bution. Thus, the empirical distribution function
for the several covariance estimators, so normed,
can be compared to the standard Normal, e.g., by
picture, Kolmogoroy-Smirnov statistic, or Cramer—
von Mises statistic; see Wilks. (21).

Figure 1 shows the appropriate picture for a
sequence from the IMSL generator GGNRF (ref.
Bohrer and Putnam (2)), Alternativyely, .
aésuming stationarity within the'sequence tested,
independence can be tested using the normal
distribution theory for the periodogram (see
Brillinger (3), Chapter 5) or its integral (see
Grenander and Rosenblatt (7), Chapter 6). This
procedure seems first to have been used for
randomness testing by Lewis et al. (11). Like
the omnibus serial covariance test it assumes
stationarity, but guards against dependence at all
lags simultaneously. The Grenander~Rosenblatt
test compares the integrated periodogiam with the
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!

Emgiridal D.F.:

Omnibus Serial Covariance Test '
For Generator ‘GGNRF

(Courtesy Simuletter)

ILLUSTRATION 1

3.00

right triangle of height .5, which would be
expected under independence; the critical points
for the maximum absolute difference between the
hypothesized and émpirical distributions are given
on page 196 of Grenander-Rosenblatt (7). Figures

. 2, A and B, show how the non-aleatoric gemerator
of Section 2 and the PDP-1l1 gemerator, respec-
tively, fail and pass this test. Figures 24 and
2B note that the distribution theory applies
asymptotically and exactly for Normal random
sequences, and conversatively for uniform sequences.
To test from a specified distribution, empirical
distribution functions can be compared visually
with the hypothesized distribution; if independence
can be assumed, than Kolmogorov-Smirnoy distri-
bution theory can be used for hypothesis testing.

Tests for stationarity of a generator, between
sequences of observations, can be made if the
hypothesis of randomness within each sequence is
acceptable. K For themn, the random variables can be
transformed to normal variables, and stationarity
is tested by a standard, one-way analysis of
variance; see Scheffe (19), Chapter 3.

Omnibus tests of several hypotheses tested inde-

pendently, or about the same hypothesis tested on
independent sequences of data, may be combineéd by
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using the fact that the null distribution of the
negative of twice the summed logged P-levels of
the individual tests has a chi-square distribution
with degrees of freedom twice the number of tests;
ref. Anderson and Bancroft (1), Chapter 12,

Power

Assume now we are sampling from a large pseudo-
random sequence. Consider a single example to
compare the sensitivity of poker hand, lag-5
serial covariance, and ommibus spectral test,

to departures from randomness. The non-random
case considered is one with fifth order dependence,
vis. X(N)= (WQ)+pW(N-5)), where W(N) is a
sequence of independent standard Normals. Since
the poker hand test considers only 5-tuples, and
since no 5-tuple contains both W(N) and W(N-5),

it has power equal to the significance level, near
zero. The power of the serial covariance test is
calculated using Hannan's (8, page 40) formula for
the variance and is tabulated in Table 1, as a
function of P, and sample size. By an argument
using Normal distribution theory and Stein's proof
for termination of the sequential probability
ratio test, a lower bound on the power of the
spectral test can be obtained. This lower bound
increases to one as sample size increases. The



ILLUSTRATION 2

Integrated Periodograms
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A. Non-Aleatoric Generator B. PDP-11 Generator
(Court§§y Porges—ChegEg—Drasgo)
bound is lower than the power of the lag 5 serial Powerlessness
correlation test, because it is a bound, but
probably more because it protects against more 0f course, tests which assume stationarity, may be
alternatives, and hence must pay the price in very bad for series' which are not stationary.
power. See Table 2. For example, the spectral test with significance

level a has power a for protecting against the

non-stationary alternative X(N)=(W)+(-1)Nx
pW(¥-1)), for any p>0, where the W(N) are
identically and independently distributed.

TABLE 1

Power of the Lag-5 Serial Covarlance Test

Power

Level P Sample Size
0.05 0.05 100
0.05 0.10 100
0.05 0.20 100
0.05 0.05 250
0.05 0.10 250 °
0.05 0.20 250
0.05 0.05 500
0.05 0.10 500
0.05 0.20 500
0.10 0.05 100
0.10 0.10 100
0.10 0.20 100

. 0.10 0.05 250
0.10 0.10 250
0.10 - 0.20 - 250
0.10 0.05 500
0.10 0.10 500
0.10 0.20 500

.08
.18
.52
.13
.36
.86
.20
.61
.99
.15
.27
.63
.21
.48
.92
31
.72
1.00
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e
] TABLE 2
LOYER BAUNDS DN POWER OF THE JWKIBUS SPECTRAL TEST
TEVEL b4 SAMPLE POWER
0.05 0.3 500 0.00073
0.05 0.2 300 Q.32732
S S 7 R S48
005 0.3 1000 9. 00608
0.05 0.5 1000 0.64754
0T 00955
. 8.0; . 0.9 1000 1.00009
.0 0.3 300 0. 0000
- 0.01 O.; SQ¢ 0.01105 L
R 0.9 500 0.95699
0.0%1 . 0.3 1900 0.00009
0.0 0.5 1300 0.13475
— 18— 836762
0.0v 0.9 5000 1.00000
B ]
|
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