INTRODUCTION TO SIMULATION LANGUAGES*

D e L P L L L L T L 1 LS

INTRODUCTION

Early effort in a simulation study is con-
cerned with defining the system to be modeled and
describing it in terms of logic flow diagrams and
functional relationships. But eventually one is
faced with the problem of describing the model in
a language acceptable to the computer to be used.
Most digital’computers operate in a binary method
of data represertation, or in some multiple of
binary such as octal or hexadecimal. Since these
are awkward languages for users to communicate
with, programming languages have evolved to make
it easier to converse with the computer. Unfor-
tunately, so many general and special purpose
programming languages have been developed over
the years, that it is a nearly impossible task to
decide which language best fits or is even a near
best fit to any particular application. Over
170 programming languages were in use in the
United States in 1972 [1] and today there are
even more. Consequently, the usual procedure is
to use a language known by the analyst, not be-
cause it is best, but because it is known. It
should be stated that any general algorithmic
language is capable of expressing the desired
model; however, one of the specialized simulation
languages may have very distinct advantages in

terms of ease, efficiency and effectiveness of use.

It is not the purpose of this paper to teach
how to program in any of the languages described,
nor to discuss implementation techniques. What
we do hope to accomplish is to make the reader
aware of the characteristics of some of the more
popular languages, their strengths and weaknesses.
The major differences between special purpose
simulation languages in general are: (1) the
organization of time and activities, (2) the
naming and structuring of entities within the
model, (3) the testing of activities and condi-
tions between elements, (4) the types of statis-
tical tests possible on the data and (5) the ease
of changing model structure. In the following
sections we intend to provide comparisons of sev-
eral languages after first showing the various

* This paper is a distillation of material appear-

ing in Shannon, Robert E., System Simulation:
The Art and Science, Prentice-Hall, Inc., Engle-
wood, New Jersey, 1975.

Robert E. Shannon
University of Alabama in Huntsville
Huntsville, Alabama

philosophies of language design and describing a
number of key factors involved in choosing a lang-
uage.

ADVANTAGES OF SIMULATION LANGUAGES

The development of simulation languages has
been an evolutionary process which began in the
late 1950's. At first the languages used in simu-
lation were general purpose languages. After
programming a number of models, analysts recog-
nized that many of the situatiohs being simulated
could be categorized broadly as systems involving
the flow of items through processes. Since many
of the programs had functionally similar processes,
the idea developed almost simultaneously within
several groups of researchers in the late 1950's
and the early 1960's to develop special purpose
languages. These developed gradually from assembly
language programs with special features, through
extended commercially available problem oriented
languages, to sophisticated special purpose simu-
lation Tanguages. Any algorithmic programming
language can be used for simulation modeling. But
those languages designed specifically for the pur-
pose of computer simulation provide certain useful
features. These include:

(1) Reduction of the programming task
(2) Provision of conceptual guidance

(3) Aide in defining the classes of enti-
ties within the system

(4) Flexibility for change

(5) Provide a means of diferentiating bet-
ween entities of the same class by
characteristic attributes or properties

(6)

Relate the entities to one another and
to their common environment

(7) Adjust the number of entities as condi-
tions vary within the system.

Emshoff and Sisson [2] believe that all simu-

lations require certain common functions, which
make a simulation language different from a general

Winter Simulation Conference 15

Simulation Languages (continued)

algebraic or business programming language. Amiong
these are the need to: ‘

(1) Create random numbers
(2) Create random variates

i
(3) Advance time, either by one unit or 'to
the next event ‘

(4) Record data for output '

(5) Perform statistical analyses on record-
ed data

(6) Arrange outputs in specified formats

(7) Detect and report logical inconsisten-
cies and other error conditions. |

Further, they state that for simulations in
which discrete items are processed by specific,
operations, the following common processes are
additionally present: !

(1) Determine type of event {after re-
trieval from an event list)

(2) Calil subroutines to adjust the state
variables as a result of the event .

{3) Identify specific state conditions

(4) Store and retrieve data from 1ists
(tables or arrays), including the
event list and those that represent:
the state. ‘

Some of the simulation languages are lang-
uages in the more general sense that, beyond Tink-
ing the user with the computer as a means of con-
versing, they afford the user an aid to problem
formulation. Having a vocabulary and a syntax,
they are descriptive, and consequently their users

- tend after some utilization (as with other lang-

16

uages) to think in them. Thus Kiviat {3] beliéves
the two most important reasons for utilizing sim-
ulation languages as opposed to general purpose
Tanguages, are programming convenience and concept
articulation. Concept articulation is important
in the modeling phase and in the overall approach
takén to system experimentation. Program con-
venience points up its importance during the agtual
writing of the computer program. Another advan-
tage of the simulation languages is their use 45
communication and documentation devices. By writ-
ing in English-like languages, simulations can,
more easily be explained to project managers and
other non-programming-oriented users. A major'
cited disadvantage of using simulation Tanguages
is that most were developed by individual orgarn-
izations for their own purpose and released to the
pubTlic more as a convenience and intellectual ges-
ture than a marketed commodity. Since this was
and still is to a large degree the case, most
users, accustomed to having computer manufacturers
do the compiler support work as a service, are not
set up to do this work themselves. More and more,

December 5-7, 1977

however, well-documented simulation languages are
commercially available. ‘

FACTORS PERTINENT TO LANGUAGE SELECTION

Before a programming language is selected,
the computer to be used ?both as to type and
model) must be determined. Ideally, selection of
the computer to be used is one of the decision
options open to the analyst. In actual practice,
the user probable has available a particular hard-
ware configuration and 1ittle latitude as to mod-
ification or choice. Once the computer to be

used is known, we are ready to select the language.
This selection should be a two-phased screening
process. The initial phase can be accomplished

at any time, even before a particular problem
arises. In this phase, Tanguage possibilities

are examined for their operational characteristics
relative to the user's environment and capabili-
ties. The second phase, which is related to the
specific problem must be accomplished after sub-
system modeling and computer selection.

In the first phase of the selection process
we are concerned with the availability of refer-
ences, documentation and software compatability.
We are basically trying to screen the muTtiplicity
of available languages to find those that make good
sense for us to consider later when we have a
specific problem. The type of questions to be
answered deal with the general environment in
which the analyst finds himself. Among the ques-
tions we need to explore are:

(1) Are intelligibly written user's manuals
available?

(2) Is the language compiler compatible
with available computer systems?

(3) Is this language available on other com-
puter systems where the user's problem
might be run?

(4) Does the language translator provide
documentation and extensive error di-
agnostics?

(5) When the organizing, programming, and
debugging time is combined with the
compiling and running time does the
efficiency appear attractive?

(6) What is the cost of installing, main-
taining and updating the software for
the language? (Since some languages are
proprietary, there may be an explicit
charge for these services).

(7) Is the Tanguage already known or easily
Tearned?

(8) Are a sufficient number of simulation
studies anticipated for the. future to
Justify the cost of learning and in-
stalling the new language? ’

In the second phase , we must deal with the
characteristics of the specific problem at hand.
Several different languages have probably survived
the Phase I screening and are now available for
_.possible use. Phase II, therefore, deals with
choosing the specific language to be used on the
. specific problem at hand, with the specific com~
puter to be used. Among the issues to be dealt
with in this phase are:

(1) What is the range and applicability of
of the world view of the language?
(a) What are its time advance
methods?

(b) Is it event, activity, or process
oriented?

{c) What is its random number and
random variate generation capabi-
Tity?
(2) How easily can state and entity variable
data be stored and retieved?

(3) - What is the flexibility and power pro-
vided by the language to modify the
state of the system?

(4) How easily can it be used to specify
dynamic behavior?

(5) What are the forms of output available,
what are their utility and what statis-
gica] analyses can be performed on the

ata? ‘

(6) How easy is it to insert user-written
sub-routines?

The term "world view" appears in many publi-
cations describing simulation languages. It des-
cribes the way thé language designer conceptual-
ized the systems to be modeled using that Tanguage.
Each simulation language has such an implicit view
of the world which must be invoked when using it.
The world view of a typical discrete-~-change si-
mulation Tanguage might be expressed as:

(1) The world is viewed as a set of
entities which may be modified or
qualified by their characteristics
called attributes.

(2) The entities interact with specific
activities of the world consistent
with certain conditions which determine
the sequence of interactions.

(3) These interactions are regarded as
events in the system which result in
changes in the state-of-the-system.

The concepts of process, activity and event
are shown in Figure 1 which shows the sequence of
events for washing a car. The process of washing
a car consists of 3 activities, namely, vacuumming
washing and drying. The beginning and finish of .
each of these activities constitutes an event.

The -car itself would be the entity of concern.
Sihce most simulation studies are concerned
with a system's performance over a period of time,

one of the most important considerations in design-
ing the model and choosing the Tlanguage in which

to program it is the method used for timekeeping.
Timekeeping in a simulation has two aspects or
functions: (1) advancing time or updating the
time status of the system and (2) providing syn-
chronization of the various elements and occur-
rence of events. Two basic timekeeping mechanisms
are available for use; the fixed time increment
and the variable time increment methods [4]. They
are also sometimes referred to as fixed time step
and next event step, respectively. The fixed in-
crement method updates the time in the system at
predetermined, fixed Tength time intervals (the
simulation walks through time with a fixed stride).
The next event or variable time increment method,
on the other hand, updates-at the occurrance of
each significant event, independent of the time
elapsing between events (the simulation walks
through time on events). Very little research

has been accomplished which guides the analyst in
choosing between fixed increment vs. next event
advance methods. Conway, Johnson and Maxwell[5]
provide some guidance, as does Lave[6], Chu and
Naylor{7] and Bradley[8]. Some simulation lang-
uages restrict the user to either fixed increment
or next event time flow mechanisms, whereas others
allow the use of either. We can offer no hard and
fast rules as to when fixed increment versus next
event timekeeping is preferred. Under certain sets
of circumstances each shows distinct strengths and
advantages. The final decision depends upon the
nature of the particular system being modeled. But
in general we should consider a fixed time incre-
ment method when:

(1) Events occur in a regular and fairly
equally spaced manner.

(2) A large number of events occur during
some simulated time T and the mean len-
gth of events is short.

(3) The exact nature of the significant
events are not well known such as in
the early part of a study.

On the other hand, the next event timekeeping
method:

(1) Saves computer time when the system is
static (i.e. no significant events oc-
curring).for long periods of time.

(2) Requires no decision as to the size of
time increment to use (which affects -
both computation time and accuracy).

(3) Is advantageous when events occur un-
evenly in time and/or the mean length
of events is long.

LANGUAGE "CLASSIFICATION

Many writers find it convenient to classify
simulation models into two major categories: 1)
continuous change models or 2) discrete change
models. Continucus change models use fixed incre-
ment time advance mechanisms and are appropriate
when the analyst considers the system he is study-

Winter Simulation Conference 17

Simulation Languages (continued)

!
PROCESS (nRANSACTION)
ACTIVITY I ACTIVITY II ACTIVITY III

: ! ; : } :
START FINISH START . FINISH START FINISH
VACUUM VACUUM WASH : VACUUM DRY DRY
(EVENT 1) (EVENT 2) (EVENT 3) ; (EVENT 4) (EVENT 5) (EVENT 6)

Figure }: Washing a Car
IR

ing as consisting of a continuous flow of informa-
tion or items counted in the agaregate rather than
as individual items. In discrete change models,
the analyst is interested in what happens to in-
dividual items in the system. Most discrete change
models, therefore, utilize the next event type of
timekeeping. Some problems are clearly described
best by one type or the other, whereas either type
might be used for other problems.

In the most general sense, there are three
computer techniques available for simulation; di-
gital, analog and hybrid. One possible classifi-
cation scheme is depicted in Figure 2. There are
several versions and dialects of many of these
languages and therefore only generic or family ‘
names have been used instead of listing all the |
various versions. Appropriate references for each
of the languages shown may be found in any of the
fo]]o?ing {2(Chapter 4), 4(Chapter 3), 1,.3, O
10,115,

The continuous-change block oriented simula-
tion languages are all descendants of the work of
Selfridge {12} in 1955. His program was unnamed;
however, it has proved to be the inspiration for
the large field of analog-like simulation lang-
uages based upon differential equations. The lang-
uages emulate the behavior of analog and hybrid
computers on a component by component basis. The
analog simulator languages all draw their inspira-
tion and motivation from the analog block diagram
as a simple and convenient means for des- :
cribing continuous systems.

The equation based languages break away from
the restrictions impose by the complete block
construction of the analog simulator languages
and deal directly with the equations. In 1966 the
Simulation Software Committee of Simulation Coun+
cils, Inc., presented preliminary specifications:
for a Continuous System Simulation Language. The
purpose was to standardize the Tanguage format and

December 5-7, 1977

structure of digital analog simulator programs.

It was hoped that future benefits would be com-
parable to those achieved by the by the American
Standards Association, Standards Committee on
FORTRAN. Just as there are considered to be first
and second generation discrete-change languages,
the continuous-change languages published after
these specifications showed a different orientation
and have a direct equation orientation.

Kiviat [3] traces the separation of early dis-
crete-change simulation theory into two schools.
These were the schools introduced by IBM with their
GPSS language that used flow chart symbols as basic
model descriptors and the other school which is
statement oriented. Flow chart Tanguages are
easier to learn, but the statement oriented lang-
uages are more fiexible. Most of the new lang-
uages are statement languages even though flow
chart language is appealing and in addition to
GPSS, has been used in SIMCOM and B0SS. 1in our
c]ass1f1cat1on scheme, we have used the four sub-
categories of activity, event, process and transac-
tion flow orientations. Transaction-flow lang-
uages are actual]y process languages, since they
take a synoptic view of systems; however, we have
established them as a separate category because of
their flow chart orientation. Event, activity and
process languages(with the exception of SIMCOM)
all use programming statement to describe cause
and effect relationships between the system ele-
ments.

One of the most interesting recent develop-
ments is the appearance of simulation languages
which allow combined discrete-continuous models.
GASP IV was the first wel]-documented.]anguage of
this type although a version of SIMSCRIPT II.5
designated C-SIMSCRIPT is now also available.
These languages allow the modeler to design and
execute continuous, descrete or combined simula-
tion models.

SIMULATION
TECHNIQUES
¥
ANALOG ’ DIGITAL - HYBRID
CONTTNIODS Prscams
LANGUAGES ngégAGES
e e i
r—~]
DIRECT AA‘T GASP IV GENERAL
BLO o LANGUAGE
EQUATTON ‘ ORIEgED €-SIMSCRIPT AGES
DIFFERENTIALJkDIFFERENTIAL DIFFERENCE ACTIVITY EVENT ‘
Z PROCESS TRANSACTTO,
EQUATIONS . || EQUATIONS . EQUATIONS ORIENTED ORIENTED ORIENTED FLOW }1
DSL ’ —
MiMégo gézgg DYNAMO g:; SIMSCRIPT SIMULA | 6pss
BHSL PACTOLUS A =X GAS? "I1 0PS BOSS
FORSIM~IV STMCOM SOL
DIHYSYS 1130 CcsSMp GsSP lstvpac N .
S/360 CSMP || COBLOC MILITRAN o 1
~JLMADBLOC |
Figure 2: Programming Languages
CONCLUDING REMARKS Computers: Some version available for most
) computers.
The three most popular discrete simulation
languages in the United States appear to be GPSS, SIMSCRIPT - (No known specific meaning)
SIMSCRIPT and GASP while SIMULA appears to be the
favorite in Europe. A brief summary of some of Initial Designers: H. M. Markowitz, H. W.
the characteristics of these languages is given Karr and B. Hausner -
below: RAND
GPSS - General Purpose System Simulator Versions: SIMSCRIPT I, SIMSCRIPT 1.5,
SIMSCRIPT II, SIMSCRIPT II.5,
Initiatl Designer - G. Gordon I.B.M. C - SIMSCRIPT
Versions: GPSS I, GPSS II, GPSS III, Orientation: Event (secondary process)
GPSS/360, GPSS-1100, GPSS V,
GPSS/NORDEN plus at Teast 6 Data Structure: Dynamic
others
Implementation: FORTRAN(early versions)
Orientation: Process (transaction) Assembly
Data Structure: Dynamic Time Advance: Next event for discrete
’ fixed time step for conti-
Implementation: Assembly language nuous (C - SIMSCRIPT)

Time advance: Next event

Winter Simulation Conference 19

20

Simulation Languages (continued)

Computers: CDC 6000/7000

Univac 1100 series

IBM 360/370 series

Honeywell 600/6000 series
{earlier versions of SIMSCRIPT

available for smaller machines)

GASP - General Activity Simulation Program
Initial Designer - P. J. Kiviat & A. Colher-

RAND (A.A.B. Pritsker

and Kiviat - GASP II)
Versions: GASP II, GASP IV, GASP-PLUS

Orientation: Event

Data Structure: Space Reserved
Implementation: FORTRAN, PL/I ‘
Next event for discrete,fixed

time step for continuous
(GASP 1V and PLUS)

Time Advance:

Computers: Any computer with a FORTRAN or

PL/I compiler
SIMULA - Simulation Language

Initial Designers: 0. J. Dahl and K. Nygaad
Norwegian Computing
Center

Versions: SIMULA, SIMULA - 67

Orientation: Process

Data Structure: Dynamic '

Implementation: ALGOL

Time Advance: Next event
UNIVAC 1100 series

Burroughs B5500
CDC 6000/7000 series

Computer:

Each of these languages has its own strengths
and weaknesses and it cannot be said that one is
superior to another. As a generality, the easier
a Tanguage is to learn and use--the less flexible
and efficient it will be. Deciding which language
is best for a specific project under a specific
set of circumstances is not an easy problem owing
to the large number of special and general purpose
Tanguages available. In our experience, most ana-
lysts and professional computer programmers know
from one to three languages. The question then
naturally arises as to whether the benefits to be}
derived outweigh the efforts required to learn a -
new language. Each person must answer that ques-
tion for himself. Shannon [4] presents a deci-
sion flow diagram to be used in conjuhction with
a scramble book to help guide the analyst to a
particular language. -Other surveys or discussions
that the reader might find helpful in making such,
a decision may be found in Emshoff and Sisson[2],

December 5-7, 1977

4. Shannon, R. E., Systems Simulation:

Kiviat [3], Linebarger and Brennan [9], Sammett [1]
Teichroew and Lubin [10] and Tocher [11].

REFERENCES

1. Sammett, J. E., "Programming Languages: His-
tory and Future," Communications of the ACM,
Vol. 15, No. 7, July 1972.

2. Emshoff, J. R. and R. L. Sisson, Design and Use
of Computer Simulation Models, The McMillan
Co., New York, 1970.

3. Kiviat, P. J., "Development of Discrete Digital
Simulation Languages,” Simulation, Vol. VIII,
No. 2, Feb. 1967.

The Art
and Science, Prentice-Hall Inc., Englewood
Cliffs, N. J. 1975.

5. Conway, R. W., B. M. Johnson and W. L. Maxwell,
"Some Problems of Digital Systems Simulation,"
Management Science, Vol. 6, October 1959.

6. Lave, R. E. Jr., "Timekeeping for Simulation,"
The Journal of Industrial Engineering, Vol. 17,
No. 7, July 1967.

7. Chu, K. and T. H. Naylor,"Two Alternative Met-
hods for Simulating Waiting Line Models," Jour=-
nal of Industrial Engineering, Vol. 16; No. 6,
November 1965.

8. Bradley, C. E., "A Variable Time-Increment
Method of Queue Simulation," AIIE Transactions,
Vol. 5, No. 1, March 1973.

9. Linebarger, R. N. and R. D. Brennan, "A Survey

of Digital Simulation - Digital Analog Simula-
tor Programs," Simulation, Vol. 3, No. 6, Dec-
ember 1964.

10. Teichroew, D. and J. F. Lubin, "Computer Sim-

ulation - Discussion of the Technique and Com-
parison of Languages," Communications of the
ACM, Vol. 9, No. 10, October 1966.

11. Tocher, K. D., "Review of Simulation Lang-

uages," Operations Research Quarterly, Vol. 16,
June 1965.

12. Brennan, R. D., "Continuous System Modeiing

Programs: State-of-the-Art and Prospectus
for Development," Proceedings of the IFP
Working Conference on Simulation Programming
Languages, 1968.

.

