SIMULATION MODELING WORKSHOP

ABSTRACT

The crucial phase in simulating a real-world system
is the formulation and development of a credible
model of that system. This workshop examines
selected phases of model development, including (1)
development. of flow charts describing the mathema-
tical-logical operation of the system, (2) the
translation of this mathematical-logical model into
a computer program, and (3) the verification and
validation of the computer model. These concepts
are illustrated through an example involving sam-
pling inspection of roller bearing assemblies.
Practical exercises will be conducted. This work~
shop is tutorial in nature and emphasizes the
fundamentals of simulation modeling.

INTRODUCTION

Simulation is a problem-solving procedure for defin-
ing and analyzing a model of a system. Simulation
can take several forms, including electrical amalog,
fluid analog, and the more familiar digital computer
simulation. In the latter context, simulation can
be defined as the establishment of a mathematical-
logical model of a system and the experimental
manipulation of that model on a digital computer.

This workshop concentrates on the model development
phase of computer simulation. It is assumed that
the problem has been defined, the significant
system variables identified, and data collected and
statistically amalyzed, It is likewise assumed
that the procedures for experimenting with a
credible simulation model, including designing
computer simulation experiments, analyzing simula-
tion output, and employing appropriate optimization
techniques, are sufficiently well understood. This
workshop examines the sequence of steps in the
model development phase, including (1) the develop-
ment of program flow charts describing the
mathematical-logical operation of the system, (2)
the translation of this mathematical-logical model
into a computer program, and (3) the verification
and validation of the computer model,

Two example problems serve as illustrated of the
principles and techniques discussed here. Both
examples involve the sampling inspection of
machined roller-bearing assemblies. The first
example considers only the sampling process itself,
and represents a typical Monte Carlo simulation.
The second example extends the first, considering

William E. Biles
University of Notre Dame

the sequence of time-events involved in the sampling
inspection, and represents a typical discrete-event
simulation. The workshop participants will perform
these simulations by hand using tables of uniformly
distributed random numbers. They will gain practice
in thg development of program flow charts and main—
taining statistics on the progress of the simulation.

SYSTEMS AND MODELS

Computer simulation offers a convenient means of
studying the behavior of a system. By system, we
mean some circumscribed sector of reality upon which
we focus analysis for the purpose of accomplishing
some logical end. For example, we might focus on a
section of a manufacturing plant where two machines
feed in-process parts onto an overhead monorail
conveyor which in turn feeds four other machines.
There might be many other machines and conveyors in
this particular plant, but we wish to focus on this
section of the overall operation. Thus these six
machines and the monorail conveyor connecting them,
together with the in-process parts and any operators
involved in this section, constitute the system
which we choose to investigate. '

A system is a collection of related entities, each
characterized by a set of attributes. These entities
engage in activities, which elapse over time and
culminate in events. An activity may last some
known or deterministic time, or some unknown or
probabilistic time. An event, which occurs at an X
instant in time, marks the termination of an activity
and alters the state of the system by changing the
values of the attributes associated with one or more
entities. For example, in the machining operation
cited earlier, the entities in the system are the »
six machines, the buckets on the monorail conveyor,
the in-process parts in the system, and the opera-
tors running the system. The attributes of a
machine might be its operational state (busy, failed,
blocked on the output side, blocked on the input
side), the number of parts it can service at one
time, and the rate at which it processes parts.
Attributes of a bucket on the momorail comveyor might
be its state (empty or loaded) and its position on
the monorail loop. An activity in which a machine
engages is the machining operation, which is also

an activity for each of the parts being machined.

An activity associated with a momorail bucket is its
movement between machine positions.

Winter Simulation Conference 9



SIMULATION MODELING WORKSHOP«--Continued

In simulation modeling, we seek to (1) identify the
entities in the system, (2) characterize these
entities in terms of their attributes, (3) determine
the activities in which the entities engage, (4)
establish the various states the system can have,
and (5). develop the mechanisms which relate these
several facets of the system to one another. We
collect and analyze data, which allows us to pro-
vide the necessary input to the model, operate the
model (simulate), and evaluate the output from the
model. We develop a flow chart which reflects the
logical relationships involved in the system being
modeled. We translate the flow chart and the re-
sults of an analysis of our data into a computer
program. For this purpose we may use one of the
general purpose programming languages (FORTRAN,
ALGOL, BASIC, PL/1), a simulation language (GPSS,
SIMSCRIPT, GASP-N), or a specialized simulation .
modeling technique (GERTS). The choice of the
language or technique to be used is usually dictated
by such considerations as availability and
familiarity.

DEVELOPING A FLOW CHART

It is well nigh impossible to describe the procéss

of developing a flow chart without doing one stmaight
away. To illustrate the development of a flow chart
to initiate simulation model development, let us
consider a simple Monte Carlo example. That isy
there are random processes in the model, but no.
time-sequencing of events.

Precision Bearing Company wishes to evaluate a new
sampling inspection procedure. For each bearing
assembly produced, one of three levels of i
"inspection" can occur. :

Inspection Percent Percent Rejected .
1. Mo Inspection 75% 0% ‘
2, _Casual Inspection 20% 2%
3. Detailed Inspection 5% 5%

‘Finished assemblies are randomly shuttled into one
of these three inspection modes with the given
probabilities. For a given inspection procedure,
the rejection rates (%) are as stated.

First, let us identify the essential entities in
this simple system. The bearing -assemblies and the
inspectors are the two classes of entities we must
consider. The system state would simply be the,
total numbers of bearing assemblies accepted and re-
jected at any point in the simulation.

How do we cause a given bearing assembly to undergo
a particular inspection mode? We sample from a
uniform distribution in the interval 0 < x < 1. We
then choose the inspection mode as follows:

0<x<0.75
0.75 < x < 0.95 _

No Inspection

Casual Inspection
0.95 < x < 1.00 Detailed Inspection

The flow chart corresponding to these logical steps

10 December 5-7, 1977

is as shown in Illustration 1 below.

ILLUSTRATION 1
Choosing & Mode of Inspection

No
Inspection

Casual
Inspection

Detailed
- Inspection

We employ a similar process for determining the out-
come of each inspection. For the casual inspection,
we sample from a uniform distribution in the inter-
val 0 <y < 1. We generate the inspection outcome
as follows:

0<y<0.98 Accept Bearing Assembly

0.98 <y < 1.0 Reject Bearing‘Assembly

Thus we add the following segment to our flow chart.

ILLUSTRATION 2

Outcome of a Casual Inspection

Generate y

Accept

0<y<0.8 Assembly

l.uj ect
Assembly

In this example we see that the flow chart repre-
sents the sampling inspection procedure applied to
one bearing assembly. If we wish to perform 100
such simulated inspections, we would add the follow-
ing components to our flow chart.

Suppose that we now wish to add to our model the
capability for generating the time events assoctated
with this sampling inspection procedure. There are
basically two such time events: (1) an arrival of a
finished assembly at the inspection station, and
(2) the end df inspection on the assembly. Suppose



ILLUSTRATION 3

Providing for Multiple Parts Inspected

I=0

Is
I =100

that the arrival rate is Poisson distributed with
mean rate A units per hour. Therefore the time
between arrivals is exponentially distributed with
mean time 1/A hours. We can use the occurrence of
one arrival to schedule the next arrival. The re~
lationship which accomplishes this event scheduling
mechanism is

tnext = tnow = (/) 1n 2

where z is a uniformly distributed random variable
0<z<1. The term Inz is a negative quantity,
and hence [-(1/A) Inz] is a deviate 0O <A<
which has mean (1/A). The flow chart segment needed
to illustrate these steps is as shown in Illustration

4. Of course, we typically start our simulation

at tnow

Suppose the inspection process is uniformly distrib-
uted 0.1 <w < 0.2 hours for the detailed inspec-
tion. When a new arrival has taken place and the
sampling inspection calls for a detailed inmspection,
the following relationship applies:

t =t

next oW + (0.1 + 0.1r)

where 0 <r <1 is a uniformly distributed random
number.,

The management of the queue of parts available for
inspection is easily shown in a flow chart, but
rather tedious to program. To accomplish this task,
we must establish a file containing the parts wait-
ing for inspection. The entries in this file are
waiting parts; that is, entities. Each entity
(part) is characterized by two attributes: (1)

the time it arrived, and (2) the type of inspection
to be pexformed. If we have one inspector perform-—
ing all inspections on a FIFQO basis, we can maintain
the file in order of arrivals, saving the arrival
time for possibly maintaining statistics on total.
time in the inspection station.

PREPARING THE SIMULATION PROGRAM

Once the flow chart has been fully developed, it is

necessary to translate the model into a computer
program. The flow chart provides the mechanism by
which the sequence of program statements and control
are crafted. For example, in FORTRAN we generate
uniformly distributed random numbers (actually
"psuedo-random numbers" because of the algorithm
employed) by calling a subroutine., The statements

I = 19743

CALL RANDU(I,J,X)
I=J
generate a uniformly distributed value O <x<1.

The test of x to determine which type of inspec~—
tion is invoked might consist of the logical IF
statements
IF(X.LT.0.75) GO TO 50
IF(X.LT.0.95) GO TO 25
At statement 50 the mechanics of the "no inspection
process would be coded, while at statement 25 the
casual inspection" is performed. Immediately follow-
ing the second IF statement would be placed the
mechanism for the '"detailed imspection", which
might consist of the statements
IF(Y.1LT.0.95) GO TO 15
WRITE (6,10)
10 FORMAT (5X,'PART ACCEPTED - DETAIL')
GO TO 5
15 WRITE (6,20)
20 FORMAT (5%, 'PART REJECTED - DETAIL')
GO TO 5

where statement 5 generates a new arrival,

VERIFICATION AND VALIDATION

The process of establishing the credibility of the
computer simulation model, and hence its suitability
as an instrument in engineering design or economic
decision - making, involves two separate activities;
(1) wverification and (2) validation. Verification
is the activity in which we ascertain that the
computer program performs as intended., Validation
is the process by which we ensure that the model be-
haves like the actual system. These two activities
are basically performed sequentially, although
program changes made during the validation phase will
require verification.

The process of verification involves "debugging" as
well as perfecting logical operations. For instance,
in the example cited earlier involving the inter-~
action between a monorail conveyor and six machines
we would verify that, when an empty bucket coincides
with a machine having a part in the output position,
the bucket does indeed pick up the part. Otherwise
(that is, a full bucket or amn empty pick-up station)
no pick-up is executed. We could observe that the
computer program executes, but through faulty logic
"pick-ups" are made when they shouldn't and vice
versa. Thus verification involves program debugging
and careful checking of program logic.

Winter Simulation Conference 11



STMULATION MODELING WORKSHOP ... Continued

Validation requires us to execute the computer simu-
lation model at model input values that correspond
to known conditions in the actual system. The model
output values are then compared to analogous values
for the real system. Statistical techniques are
employed to test the hypothesis that the model be-
haves like the actual system. Done properly, vali-~
dation consists of completely objective evaluations.
When the validation process is completed, we can
then perform designed experiments, employing the
simulation model as the experimental environment,
and optimize the design in terms of projected system
performance, Working with a model whose credibility
has been so confirmed, we can confidently make
decisions in terms of the actual system (realizing,
of course, that there is some small likelihood of
being wrong).

SUMMARY

This workshop has reviewed the fundamental concepts
in developing a credible computer simulation model.
Several other sessions and workshops at this
conference address other areas, such as random
number and random varlate generation, simulation
languages, and statistical methodology in simulation.
Ideally, someone who has just become acquainted with
discrete-event simulation would find these tutorial
sessions and workshops extremely useful in gaining
the background necessary to begin applying simula-
tion to the engineering and economic problems con-
fronting his or her work environment,

ILLUSTRATION 4
Scheduling a New Aryival

Generate 2z

12 December 5-7, 1977




