A GENERALIZED DATABASE SYSTEM SIMULATOR BASED ON THE DATA-INDEPENDENT ACCESSING MODEL I

ABSTRACT

The Data-Independent Accessing Model I (DIAM I)[1]
has demonstrated a multifaceted applicability to
the study of database problems. The literature
contains accounts of DIAM being applied to the de-~
scription of existing database systems (SDDTTG)[2],
to the description of relational implementa-
‘tions[3]}, and as a conceptual basis for new data-
base systems[4]. Such broad applicability makes
the DIAM particularly attractive as the basis for
a simulation model. A DIAM simulator could be
profitably applied to:

1) The comparison and selection of existing data-
base systems;

2) The design and evaluation of new database sys-
tems and database management techniques.

Responding to these motivations, a DIAM-based simu-
lator has been designed and implemented. A tech-
nique for specifying the representation-independent
characteristics of such a simulation was developed
and reported previously[5] but the other details of
the simulation have not been published. Therefore
the purpose of this paper is to describe these de~
talls. The emphasis is not on the DIAM concepts
themselves, which are well reported, but on their
utilization and implementation for simulation
purposes. '

The paper begins with a discussion of the purpose
and obJectives related to database simulation and
how they affect simulator design. Next a ‘concep-
tual overview of the simulation facility is pre-
sented to provide a perspective for.the ensuing
discussion of the more interesting functions and
techniques as implemented. These are:

1) Discrete query generation from a quantitative
profile;

2} Search path enumeration, scoring, and selec-
tion;

3) Simulation of path traversal by an access
engine.

The paper concludes by discussing what information
can be obtained from the simulation and to what
decisions the information can be applied.

Lowell S. Schneider and Thomas W. Connolly

Martin Marietta Corporation
Denver, Colorado

INTRODUCTION

The purpose of this paper is to describe a dis-
crete-event simulation of the functions of the
general class of database management systems (DMSs).
To represent a broad class of such DMSs, the simu-
lator is based on an underlying canonic model--the
Data-Independent Accessing Model I (DIAM I)[1,6,7].
It was conceived as a tool to aid the study and ap-
plication of DMSs and allows the simulation of:

1) A user's application, in terms of its informa-
tion structure and traffic rates;

2) A candidate implementation of the application
in a DMS, reflecting the proposed implementa-
tion of data relationships and recognizing any
restrictions imposed by a specific DMS;

3) A candidate host system representing the per-
tinent aspects of the planned host computer and
its operating system.

A user may employ the simulator to conduct studies
relevant to the choice and use of DMSs. Typical
studies of this nature might include:

1) Comparison of the operating performance of two
competing DMSs for the same application;

2) Comparison of the operating performance of
various implementations of an application using
options available within a single DMS;

3) Comparison of operating results based on dif-
fering host system configurations being con-
sidered;

4) Studies to enhance the user's knowledge and
familiarity with DMS techniques.

The simulator has been implemented using the DIAM
concepts as a foundation. The design considera-
tions necessary to apply these concepts to a fune-
tioning simulator are discussed and the nature of
the output reports from the simulator are discussed
and illustrated. Analytic studies utilizing the
simulator are now in progress.

- .Winter Simulation Conference 513

GENERALIZED DATABASE STIMULATOR

STMULATOR ARCHITECTURE

The simulator consists of subsystems, each subdi-
vided into a number of modules in a hierarchical
fashion. Four of the principal subsystems corre-
spond generally to the four levels of the DIAM,
These are:

1) Information-based model - This subsystem gen-
erates queries representative of the applica-
tion under study and malntains the data popu-
lation statisticsg .

2) Structure-based model - This subsystem accepts
the queries as Representation~Independent
Accessing Language (RIAL) statements and 'uses
definitions of the implemented access paths to
produce Representation-Dependent Accessing
Language (RDAL) statements;

3) Procedure-based model -~ This subsystem accepts
the RDAL and produces a sequence of input/
output accesses based on the definition of how
and where the access paths and data are stored;

4) Host model - This subsystem represents the
logic of the host computer system, including
its peripherals and its operating system, as
it pertains to the calculation of response
time and resource usage in processing the I/0
access requests.

Other modules carry out various control and spe-
cialty functions on behalf of the simulation.
These are grouped for discussion in the executive
subsystem, which accepts control from the oper-
ating system at execution time., It contains mod-
ules to read and store the simulation data, con-
figure the simulation, control the experimental
runs, -and produce the required output.

The entire simulator has been programmed in the
Fortran language with very few deviations from the
ANST Fortran standards. The source code has been
implemented on CDC 6000 and Univac 1100 systems;
with minor modification it can be implemented on
other computer systems, It operates in a batch
environment,

THE SIMULATOR FUNCTIONS

The principal functions of interest performed by
the simulator include the generation of queries in
RIAL,.the translation of these to the RDAL, the
translation of the RDAL statements to input/output
requests, and the simulation of the input/output
request execution. There are other supportive
functions such as data logging, data analysis, and
report generation but these are not discussed.

GENERATION OF QUERIES

The first step in the simulation is to generate
the queries whose processing is to be simulated.
These resemble queries that might be posed to a
truly representation-independent generalized data
management system. They include both updates and

514 . December & - 8 1976

retrievals, both of which may be complex in form
and content. The queries are generated in a fash-
ion that is in statistical agreement with the in-
put profile specification called Quantitative Data
Description[5]. This operation can be performed
either in a self-contained mode to produce a file
of RIAL queries or in an interactive mode with the
other blocks of the simulation wherein a new query
1s generated as needed for the simulation.

RDAL TRANSLATION

Each RIAL statement must be translated into a set
of RDAL statements. The latter are the-calls for
data and pointers that lead to. the specific data
requested. This set of RDAL statements is the re-
sult of a process that uses the access path defini-
tions to map the RIAL (which, as the name implies,
is independent of the data structure established
for the application) into a selected sequence of
RDAL. Selecting the sequence for a specific data
element involves identifying the most efficient
path from an entry point via intermediate paths to
the data desired. When a path has been selected,
its traversal is expressed algorithmically in RDAL,
which may include iterative loops. At this level
of the simulation it is also necessary to deter-
mine (from the statistical profile) how many in-
stances of each path must be traversed and how far
each path must be ttraversed to find the data or
desired pointer.

RDAL TO I/0 REQUEST TRANSLATION

For each RDAL statement, the following steps must
be performed:

1) Analyze the definitions of how the path is im-
plemented (e.g., chains, contiguity, etc) and
where the data are stored (e.g., which file);

2) Request (for timing purposes) the implied data
retrievals;

3) Test for overflow and iterate through 1) and 2)
for alternatives as necessary;

4) Test for inclusion of the desired data (or
pointer) in the buffer load retrieved and
iterate through 1), 2), and 3) if necessary;

5) Perform any additional reads or writes,
RETRIEVAL PROCESS SIMULATION

The processing of each I/0 fequest is simulated
according to the configuration and dynamics of the
host computer system and its operating system.
This function determines, for each request, the
resulting response time durations and resource
usage.

QUERY GENERATION

An important aspect of the simulation is producing
sets of queries that typify the application being
considered. There are both conceptual and imple-
mentation hurdles to overcome. The description

that follows illustrates the considerations for de-
sign and the resulting implementation approach.

It was recognized early that at least two views of
traffic activity existed and that these two some-
what competed, The views were:

1) The generation of queries based on purely prob-
abilistic rates associated with the various
real-world entities that the database describes;

2) The generation of deterministic queries em-
anating from “sources" (such as computer ter-
minals or batch programs) at prespecified
rates.

The implemented Query Generation Subsystem (QGSS)
accommodates queries attributable to both concepts;
it permits the mixing of queries from both speci~
fications and the transition from one to the other.

The interaction of these two viewpoints is depicted
in Figure 1. The entity set description is the
fundamental element of the Information~-based model.
It includes the basic declaration of the entity sets
and their interrelationships as appropriate to the
application. This information is supplemented for
simulation purposes by inclusion of statistics that
reflect the entity populations and the anticipated
rates of activity--both innate to a specific entity
and associative among them.

FIGURE 1
Simplified Information Flow for Query Generation
Input
Description
-] Entity Descriptions
Population Population
‘Data] Dynamics
Random
Query
Executive Generation l Variable
Control Generation
Logic
‘ I Systen
Traffic
Demands Query Output
P| Stored Traffic Distribution

The traffic distribution represents statistical
demands for specific services. These demands are
over and above those that may be specified for each
entity via the entity description, The traffic
distribution accommodates the modeling of certain
types of demands that are best considered from an
external viewpoint. These types of demands might
include intermittent use of a terminal, scheduled
batch operations, and special transactions that,
while important, are unlikely to arise via the
entity activity statistics.

The query generation logic produces a sequence of

queries that reflects the activity implied by both
the entity activity and the demands of the stored
traffic distribution. As illustrated in Figure 2,
an explosion of the query generation logic block
in Figure 1 reveals the following major components:

1) The traffic time generator that determines the
next time at which a prespecified query will
arrive;

2) The entity time generator that determines the
next time at which each entity will be affected
by an event;

3) The event sequencer that merges the activities
of 1) and 2);

4) The query composer that generates the RIAL
© statement to be processed; :

5) The population counter that records the dynamic
effects of a query on the entity populations
and interrelationships.

Each of these is now discussed in more detail,

FIGURE 2
Major Components of Query Generation Logic

Entity d Pobulation
Descriptions | Counter

v t
Entity Time
Generator

Activity Query
Sequencer > Composer

RIAL
Statements

Traffic Time
Generator

1.

Stored Traffic
Distribution

TRAFFIC TIME GENERATOR

This generator (Fig. 3) determines the next time

at which a query will occur and what query it will
be. This is done by inspecting every traffic
source defined, examining its interquery rate, and
predicting the next time at which a query will
occur. When the time is determined, a description
of the query is selected by sampling from among

all the possible query descriptions from that
source. The description is then placed in the
traffic queue.

ENTITY TIME GENERATOR

This generator (Fig. 4) operates amalogously by
inspecting all of the entity descriptions and ex-
amining their rates of arrival, departure, and
change. The next time at which each event will
occur for each entity is predicted and the pre-
dictions are placed in the entity queue.

EVENT SEQUENCER

This sequencer then examines the queues each time
a query is needed and determines the time and
nature of the next event to be simulated.

Winter Simulation Conference 515

GENERALIZED DATABASE SIMULATOR ... Continued

-

FIGURE 3
Traffic Time Generator

Set First
‘Source

This
Source Already
in Queue

Source Active
?

Sample Next
Arrival Time
Next for This
Source | Source

i | ¥
Set Flag

for This
Source

v

Add Item to
Queue in
Sorte@ Order

Source
1Time | Name

KT

i
ll

. Source Flag
Array File

QUERY COMPOSER

The process of query composition depends heavily
on the concepts of RIAL Statement Description
(R8D)[5]. Recounting briefly, RSD is a language
for the partial specification of RIAL queries.
Its syntax is an extension to the RIAL syntax to
allow nondetermination of any or all terms in a
query. It is a convenient technique for specify~

ing pattérns of similar queries that are known to’

occur at certain rates. The RIAL syntax and the
RSD extension are illustrated in Figure 5.

When a query arrives at the composer, it is in
the form of an RSD statement. Its content can
range from completely specified

GET S1 OF CAR WHERE COLOR 1 AND
MANUFACTURER = 1

to completely uné%écified
F S1 OF ARG,

516 December 6 = 8 1976

FIGURE &
Entity Time Generator

K = Name of Entity

KMAX = # of Entities
Arrival

Activity = Departure
Retrieval

Want Compute Next
Want
Compute Next

Want Compute Next

Re:rival =

Generates
Time-Sorted Tables

Time |Entity]Activity

Increment
KDsy

L
T

The nestlng of <argument's> within <value's> is
also permitted.

For each argument, the <object> phrase and the
<qualifier> phrase is constructed according to the
RSD and the entity statistics that describe the
likelihood of an entity being referenced by the
query. The logic for <object> comnstruction is
diagramed in Figure 63 <qualifier> construction is
analogous.)

The resulting queries are fed to succeeding blocks
of the simulation and are also logged for examina-~
tion or reuse., The query output format is that of
the RIAL syntax.

Each query has appended to it two information
items for use at later stages of the simulation:

1) A query identification number (ID) - This is a
sequential number (base 10) starting with the
number 1 for the first query of a simulation
run;

2) A query time tag - This represents the time at
which the user or application program presented
the query to the DMS,

POPULATION COUNTER

The population counter analyzes the resulting
queries to determine what effect, if any, each has
on the static populations. The types of effects
recognized are:

1) Entity population increases (decreases) due to
the presence of an add (delete) query;

2) Entity population increases (decreases) due to
the addition of an attribute value that was
previously nonexistent (the deletion of the
last occurrence of an attribute value);

FIGURE 5

RIAL/RSD Syntax Diagrams

RIAL

<argument>:: = <object> WHERE <qualifier>

<qualifier>:: = <condition>{ OR <condition>}
<condition>:: = <quality>{ AND <quality>}
<quality> :: = <attribute name> = <value>
<value>
<entity name>:: = <name>
<attribute name>:: = <name>

<set name> :: = § <positive integer>

<name> :: = {<character>}

<alphabetic character>:: = A|B|C[.....|XIY[Z
<positive integer>:; = l!2|3|.....

R|C

<functions>:: = A|D

<statement>:: = <function>{<set name> OF <argument>}

<object> :: = <entity name>{ / <attribute name>}

it = <get name>/<attribute name>|<positive integer>

<character>:: = <positive integer>[<alphabetic character>

RSD

ARG * <positive integer>
OBJ * <positive integer>
QLF * <positive integer>
CND # <positive integer>
QLT

I
|
|
l
l
|
l
[Dsm
l
l
|
l
|
l
|

3) Interrelationship changes as a result of any
of the above or a change query.

These dynamics are accumulated in the entity de-

scription and accounted for as subsequent query
generations.

TRANSLATION TO RDAL

As summarized earlier, the next subsystem of the
simulator is required to accept the queries in RIAL
language and translate them into RDAL statements.
The latter gives instructions for traversing the
internal data structure. A major conceptual prob-
lem arises if more than one traversal will yield
the correct result. When this occurs in a real
database, the programmer using the DMS decides
which traversal to use. To give each DMS being
simulated its "best shot," it is therefore neces—
sary to simulate a "smart programmer" since choices
can often differ in performance by several orders
of magnitude. The net effect of this problem is
that the simulator must also be an optimizing
automatic programmer. This is an enormously com-
plex operation that cam only be cursorily discussed
in the confines of this paper, but it basically
involves two steps:

1) Search path enumeration - This activity deter-
mines and enumerates the set of traversals
that allows all data required by the query to
be found;

2) Search path selection - Of the set of workable
traversals found in the preceding step, one
must be .selected. In the simulator this is
accomplished by first assigning a “cost™ to
each path segment based on an expected value
of the number of accesses required, Cost de-

termination can and often does involve calling
all remaining levels of the simulator for each
candidate, .

The determination of any one such traverse is
based on the technique of searching the catalog
of access path descriptions to determine which of
those access paths each desired data element is
on and then sequentially determining the paths
those are on and iterating until one that is an
entry point is found. The entire process is re~
peated for each case in which a data element or
path is on more than one path. For each route
found "outward" from the data element to an entry
point, the reverse route from entry to the data
is recorded as a candidate traversal.

The process of finding all available paths is ap-
plied to all data demands arising from a single
RIAL statement. ’

It is quite possible that certain segments of a
path to one data element may coincide with those
to another data element, Therefore, the alterna-
tive paths resulting from one demand are compared
with those from other demands in the same query
and consolidated paths that utilize common seg-
ments only once are defined. The score attached
at the consolidated path is reduced .(improved)
from the original total for the two independent
paths. The consolidation is extended to include
successive numbers of paths, which might include
as many branches as there are demands in the RIAL
statement,

When the preferred path has been identified and
selected, it is expressed in the RDAL. This
language, diagramed in Figure 7, expresses the de-
tailed accessing steps necessary to retrieve and/
or update the data required to satisfy the RIAL.

Winter Simulation Conference 51T

GENERALIZED DATABASE SIMULATOR ... Continued

FIGURE 6

Object Phrase Construction
(Qualifier Phrase Is Similar Operation)

Get Next Event
from Table

!

Determine Which
Entity Is To Be
Referenced

v

Build Random Sequence
of Attributes of Entity

!

Go to First Attribute
in Sequence

y

Get Current
Activity Probabilities

A4

Was

Attribute

Used
?

Add Attribute
to Query

Next Attribute
(Random Ozder)

Ar . h

Y

All
Attributes
Tested -

? A

Apply Attribute-
to=Attribute Biases

FIGURE 7

RDAL Syntax

<statement> :: = <function> <operand>

<function> :: = GET|WRITE

<operand> :: = <path name> [<modifier>]é| <attribute name>
<path name> :: = X(30)

<modifier> :: = SAME|ALL|FIRST|LAST

NEXT <positive integer>|
PREVIOUS <positive integer>

<positive integer> :: = 1|2|3|.....

The RDAL expresses not only the route to the data
but also the number of accesses required to follow
each path to the desired data or pointer and the
number of data elements found at the desired loca-
tion. In an actual database application, an in-
quiry such as "List all employees whose age is 33"
will result in some number of mames returned. The
simulation, however, produces only a count of the
number of instances found. This is done by in-

518 December 6 - 8 1976

specting the statistics for EMPLOYEES vs AGE to
obtain a numeric sample value representing the
numbeyr of instances of EMPLOYEE corresponding to
an AGE qualification.

RDAL-TO-1/0 TRANSLATION

The RDAL-to-IL/0 translation is a simulation of
the logic of the DMS in responding to the data
requests. When an RDAL instruction arrives, it
references .a specific path (or data element) name.
For each path and data element, one or more def-
initions for how the path or data element has
been encoded in storage (e.g., chains, contiguity,
pointer array, etc) is given., Typically there
are three: .

1) "Primary encoding - Describes the encoding of
the path or data element in its primary area
of storage;

2) Secondary encoding - Describes the encoding of
the path or data element in its secondary
(overflow) area of storage;

3) Transition encoding - Describes the encoding
within the primary area of storage that indi-
cates the path is continued in secondary stor-
age and gives directions for getting there.

For the path or data element referenced by the in-
struction, the proéess routinely looks up the
primary encoding definition. Among the informa-
tion provided in this definition is the frame of
storage (meaning file, area, partition, ete) in
which the path or data element resides. Frames
carry their own definitions, including their as-
signments to physical devices. These definitions
are also used during this stage of the process.

OVERFLOW TEST AND PROCESSING

In this simulation overflow is considered with re-
spect to each frame. The probability of overflow
arising from an addition depends on the space man-
agement strategy employed by the frame. 1If a
frame is composed of compact physical sequences,
an attempted addition that would exceed 1007 of
the space in the frame résults in an overflow. If
the frame is composed of sparse data, overflow can
occur even if the frame is not full. The strategy
may call for linkage to a secondary frame in this
event. JFor retrievals, the probability of having
to extend the search to a secondary frame depends
on the density of the frame.

The simulation maintains-a counter of the number
of instances of each encoding., These are totaled
on a running basis for each frame (which may in-
clude several heterogeneous encodings). The cur-~
rent population of the frame divided by its total
space .establishes a density as a dynamic variable.
A function of this density is taken to establish
a probability of overflow in accordance with the
pertinent cases above.

1f probability dictates that a particular re-
trieval must look in the overflow region for

data, the secondary encoding definition is util-
ized. This in turn refers to a particular frame
that has been assigned for overflow storage. If
an addition is to go to overflow, an access to
place a transition in the primary frame is simu-
lated and the writing of data to the secondary
frame is also simulated.

I/0 REQUEST GENERATION

This section creates the I/0 commands to the host
simulation. The I/0 command sequence expresses
the execution of the selected traversal, Each I1/0
command contains the following information:

1) Operation to be performed (CONNECT, STATUS,
SEEK, READ, WRITE);

2) Device type and number (e.g., DISK01=3330,
TAPEQ2=3405, CELL03=3850);

3) Device address (either a constant displacement
from current position or RANDOM);

4) Amount of data to be transferred (in bits);
5) Time tag as appended by the query generator.
EFFECT OF BUFFERING/PAGING

The number of I/0 accesses will obviously be
strongly affected by the amount of central memory
buffer space available. It will also be affected
by the amount of data transferred for each I/O.
Another effect is introduced by choice of buffer
management strategy-~what criterion is used in
making a choice of which portion ("page") of the
buffer to be overlaid. TFor example, when the
statement is GET NEXT, it implies that the next
item in path order is desired. 1If the items are
sequenced by concatenation, there is a reasonable
likelihood that the next item desired is already
contained in the buffer load previously obtained.
If the operand of the instruction is SAME, this
implies that the data element referred to is iden-
tical to a previously retrieved item, and the re-
quest is submitted to the buffering model to de-
termine if the data item is still in fast memory.

OTHER CONSIDERATIONS

Several other factors that affect databasé system
performance were intentionally not discussed.
Among the more obvious of these are journaling/
checkpoints, space reclamation (other than intra-
frame collection), authorization, integrity check-
ing, etc. Somewhat less related but certainly im-
portant are the DBMS program library, the data
dictionary, and any supplemental system record-
keeping .activities (audit trails, satistical re-
ports, etc). The reason these were not considered
specifically is that they are all, to a degree,
representation-independent functions; i.e., there
are as many different ways to accomplish these
functions as there are ways to implement a data-
base. For example, if we choose to keep track of
previously occupied space, we have at least the
following choices:

1) A chain through spaces in a file;

2) An inverted index of spaces in a file;

3) A chain through related spaces in different
files;

4) Combinations of 1), 2) and 3).

Analogously, if we choose to journal transac-
tions, the resulting collection can be implemented
under a variety of schemes, depending on how we
wish to eventually access/update the collection.
To accommodate the full spectrum of alternatives
in the simulator, we had two choices:

1) Reinvent unique analogies to each of the al-
ready developed simulator components for each
of the functions mentioned;

2) Describe the functions as representation-inde~
pendent queries and then use the existing sim-
ulator components to describe their implemen-
tation,

Our choice of the latter approach only required
generation of the appropriate supplemental queries
at the right time. This was easily accomplished
utilizing the transaction-to-transaction depend-
encles described in detail[5]. For example, to
simulate journaling we simply define the appro~
priate transaction and state that the probability
of the journal transaction is unity following any
update to the user's database. The technique is
similar for the other functions discussed.

SIMULATION OUTPUTS

Since the final purpose of a simulator is to help
an investigator to draw conclusions, the informa-
tion output by the simulator is of paramount im-
portance. Furthermore, since there is no well-
accepted figure-of-merit for database systems that
is universally applicable to all experimental ob-
jectives, this information must include microscopic
parameters as well as summary measures to allow
dexrivation of a variety of figures-of-merit. Con-
sequently, the simulator provides a total of 21
different output reports, any or all of which may
be requested at the beginning of a simulation run.

To begin with there are a number of housekeeping
reports to inform the éxperimenter about the nature
of the run. These include a Run Header that iden-—
tifies the run and reports summary execution data
and a Configuration Report that tabulates and sum-—
marizes the input data. There is also a Snapshot
Dump and a T'race Report to aid both the experi-
menter and programmer in debugging and planning
future runs,

The Response Time Summary provides an ensemble
picture of the query response time expected for
the subject DMS in the hypothesized environment,
It consists of a histogram of response times for
each query. The beginning and ending ranges of
each bar are reported in milliseconds and the
height of the bar indicates how many of the queries
processed had a response time falling in the in-
dicated bracket, An exanmple report page is shown
in Figure 8. The Detailed Response Time data
present the individual response times associated

Winter Simulation Conference 219

GENEBALIZED DATABASE SIMULATOR ... Continued

with each query. Their production is optional
since they can be voluminous for runs of long sim-
ulated time duration. Their principal use is in
locating particular queries that are producing
response times significantly differing from the
mean.

FIGURE 8
TATA TKNEFENNENTY ACCESSING WPAUEL STWULATCO
PERFNTMANCE FTGURS CF MERIT
MIN PESFONSS TIVE = 5.837 MILLISSCONRS
NWEAN REISPCNSE TIME = €115.2h3 VILLTSECCHDS
MAX RESECNSE TIVE = 164543,830 MILLISFCONCS
STANDARN QEVIATICN = SEER,1C7
AEG RANGE ENN RANGE QANK {CCCURENCES)
5.3 20,5 *
23640 LTlel .
42543 £27.3 .
65743 RIT.% .
A05.0 1C6¢C.8 *
192,39 123543 *
1217, 148048 .
1430, ¢ PR *
1E92.9 1RG22, .
193€.3 2:28%.3 .
z837.8 2ZLLe8 ¥
z2vi .2 240140 »
26", 0 zegilt ¥
PEAC.D 283%.3 >
2813%.1 3LSi.8 A
00,9 3202 *
200,12 IusiLg *
WIt, 0 652 *
TE3L.0 3800 ¢ *
892,0 2 -
4923, S *
L2,0,9 b] .
LUzl 0 S M
822,10 H .
c ¥
: »
o .
.3 L]
3 .
: ¥
o3 .
: ¥
: L
v ¥
»
L
»
»
7€25.0 »
7R0%, *
AEG RARGE END ARANGE ¢ 5 416 1% 28

The Swmmary Resource Utilization provides a cap-
sule view of the resources consumed by the DMS
under study during the simulated run. These data
include total and average response ‘time, total
and average I/0 time, total and average number of
bits transferred, and total and average central
processor time. A Detailed Resource Utilization
report is also provided that lists, for each physi-
cal device (disks, controllers, tapes, ete), the
total time utilized and the total amount of in-~
formation transferred for each query processed.

A sample of this report is shown in Figu;e 9.

The Ensemble Query Statistics report provides a

statistical profile of the query stream processed.
It reports the total number of queries and the

520 . December 6 - 8 1976

total number of sample arguments processed, and
breaks these down by function (ADD, DEL,..).

Also, for each -of the RSD specific query types,
the number of queries resulting from that descrip~
tion is reported. 1In -addition, a Query tabulation
that actually lists each query and the time at
which it was generated is provided. These reports
are illustrated as Figures 10 and 11 respectively.

TETAL SZSCPASE TIws =
YCTAL PYTS IRANCFEZOL
YCYAL T/CS GFNTRATEG

TCTAL FISFONGF TTwe =
TOYAL SITE Yoam<EtCo=p
TLTAL I/6s fenesavsr

FIGURE 9

RETATLIT ©ZSAORS US2GE

CATA INDEFINFENT BRCESSING PFrLEL STIMULATCR

1237121, 7¢2 YILLISECPNNS

2163802,
€312

13242,267 STILLUSEFCNNS

Z13RceT .2
700

QUERY Ae MAS/HES NAWE SESECASE TINE BITS TEARSFEFET NC. CF T/CS
. reesTa 2uLbte ' £332.3 tec |
1 evaLrs 12122,132 217267K,¢ 520,32
s newer 23,7¢ PIS TR 1.7
1 reque 12127.07 Z13€981.0 £30,0
1 CHang 13281,3€ 2140802, stg,¢
1 erTELYE 13351,3€ Z14299%,7 53f,~
1 01Svi2 2444€ 4332.1 1.2

QUESY NI~ NAS/LrS MLARE DTSELNGE TIME OITS TEARNSFFEEL MG, CF I/CS
2 CREFETN 2balE 4232.% 1.9
2 CyeLls 131=¢ .91 21267 Bk, 2 £27.2
2 CFTAT E7.%% 4CT2.7 17
? reaYTs 23,48 41322 1.9
2 rLee iy 12714.7¢ gLommag, 52R,8
? THANS 13262.7¢ CLIECET,. $33.3
2 AToLY 132F2.2¢ 213ECRTL D 63040
2 rIsvie L7.5C *IE4.0 el

QUEPY T NAT/HNS Kaus QFSECMSE TTMF ATYS TSARKFERET NG, OF T/1S
T rreeTy PY.an e NN 1.7
? rYALS 16e5,72 2USILEF RIR,"
T CFIAr §3,.7¢ ATBL,G 2.2
3 crata L7,6¢ A2€L,D 2.0

Of course, the principal importance of the tabula-
tion is the role it plays in the derivation of the
other profiles, but it can also be used to insure
that all possible query types have been antici-
pated in the application programs, and it can even
be used as a test file for program checkout.

The ensemble statistics can provide insight to
some effects that are not initially apparent:

1) Total number of queries in a time interval -
This is an important parameter if the input
statistics were assembled from piecemeal ob-
servations;

2) Percentage representation of each query class -
This can be of particular importance for
queries that occur as a result of other queries
as is the case, for example, with system-
oriented trahsactions such as journaling. It
can also be useful for projecting the results
of the partially specified queries,

NATA TRNEFEMOENT ACCESSTNG MPCEL STMULATCR

CUEOY STATISTICS

FIGURE 10

ML TYPES INTEPAALLY GENERATED SOURFE GFKEFATEDN
NUWNZ® RE TOANMSACTICAS 2= A 17
KUMEZP rF ppFgTse 21 R 15
TCYM FOPELEYITY 113 26 87
AVEPART CCHrLTYTTY/TRANS 4e52¢ 3,250 Se118
AVEPARE CCWELTYITY/CUESY L,012 2.250 Se.801
FUMCTTCNS CIQUSSTED PSR pUEEY
PECCENT CF RETS (RETY 1C.17 2%.00 LELET
PERLENT OF AFNS (ARR) Gel 2.09 f.0C
PECCENT £F CFLS (TrEF) Ce00 0.92 €.0¢C
BEQGENT TF CHAT (NKF) E5.A7 75,90 £2,77
NUFRER CF YYKES SACE TREINSACTICA FPCLESSED the number of instances of strings encountered.
TOANSACTTON NASS = YOTAL ATEL FCUNT = 3 This report can also be PSed to design search logic
TCANGACTTICN NAME = RAGIR ACATE AOUNT = 2 for particular queries since, as previously dis—
q s P y
:;:"*::;;2; :::i = :E{'rg?;;ql ?ggsl = < cussed, it is the result of optimal automatic pro~
NS = i - o = 2 .
TEANSACTION MART = ALL £ONIRA2 oruNy = 0 gramming. This will also point out query classes
TEANGARTTAN MAYE = ALL CCONTE-Z R 3 that are not adequately supported in any way by
;z:’:ﬁE;;E: :::E = :E:Tr:ﬁ2‘2$ gfﬁ:; = g the representation being considered. An example
NS ! pUE = nCM t CHURT = . .
TOANRECYTCN RAMS = GASIE OTL T FCUNT = 2 RDAL tabulation is shown in Figure 13,
TCMCSACTIrN AEMT = BEL Tpog rPOUAY = o
:;ig::?:i:: e o zgt ;::: : ﬁggf; = i The Named Address Space (NAS)* Usage Summary and
TEENCACTION NpwE = Se(TAck 4 COUNT = M the NAS I/0 Summary report the primary activity
TOANSACT I AEwE = 3L TASK 3 COUNY = bl relative to each NAS used in the simulation. The
;if”:::;%ﬁ: :::g = ::5 ESSTTAQ(:ggz; = g data include total number of accesses of each type,
.:;fqbr,,,k MAME = OFG CONT=1 COUNT = Y the mean density and standard deviation, and the
TEAASALTION RAME = CHF FOMT2 rUNT = 4 density at the conclusion of the run., Similar to
TRANSACTICA MAME = WG REL TATK FCUNT = 3 these is the Overflow Swummary that reports second—

ary (i.e., overflow) activity relative to each

FIGURE 11
MATA TANEDCMNENT ANPTRQING MAngy STWLATrD
CUEPY TAFULATICN
fYSeY Aywnze o TEANSACTTICN ANWDEQS = 4 THRY 1 AY TTIWE = 115, REL
LHE STTNSG ,rF, S0 CCNT ’ CANT NywvAaFpe HHEOE, CANT aywvace = 73281 LANDLSUR NO = ¢t 31
FPUTRY MIFDZSD = 4 YOAMCACYTLN MUMEEDRS = 2 THGU 2 AT TIvc = 297,271 ’
[k S § « LT, FLNTOADY 4 LCATQART AUmPZE 14 CeNYRARTNR 4 STADY nate 4 COMBLETICH raTE /
rLEATTEN 7 reo / METHrD TYRE ’ FOAT ANCLNT /7 UPNATE WHEDE, CONTSACT NMAER = oeent
fUEoY Aypacoe = 3 TRARSACTTCP AUMEBERS = 1 THoy T AT TTVE = LESTLESE
RIY <f WFF, FELATTN YAy g OONY AYwarco 7 " QEQ /7 PG AP /’ T AMCUNT / Py oWHFERE COAY N
puece = L2328 JBRC,.M RER = €IIs?
RUERY AUMOCR = 4 TOARSACTTCA MUMAFGR = 4 THRYy A AT TIMEZ = ARy, 617
nEY Q1 ofF, PELETIN TASY 2 NCrT KNUMBER / noeeqn / L Y /7 T AMCUNT ! PY +HHERE CCAT N
Lueze = J0N0L JaND.n cERQ = ciel?

The ensemble query statistics thus help to charac-
terize the aggregate workload of the system, as
well as to identify certain queries or query
classes to which the workload is most sensitive.

The I/0 Tabulation lists, for each query, every
input/output request processed, including the physi-
cal file name, the number of bits transferred, and
the address at which the operation was performed.

It is particularly useful for: calibrating the sim-
ulation against instrumented benchmark runs using
the real DMS being studied. An example is showm

as Figure 12.

The RDAL Summary report shows the total and aver~
age number of accessing instructions over the sim-
ulation run. It is backed up by the RPAL Tobula-
tion that shows, for each query, the resulting
path traversed during its processing, including

NAS. Included in this report, shown as Figure 14,
is the total number of overflow-related accesses,
and the path on which the overflow occurred.

The path (called strings in the simulator's term—
inology) usage statistics describe each individual
path and are useful for reaching conclusions about
what to do about inadequate data structures. Path
utilization frequency is helpful in identifying
paths that are costing more to maintain than they
are worth, Storage requirements can be adjusted
by examining:

1) The number of instances of each path;

2) The ensemble average dength of path instances.

*NASs are equivalent to physical files in other
notations.

Winter Simulation Conference 521

/ ~

GENERALIZED DATABASE SIMULATOR ... Continued

- .

FIGURE 12
TATA TRDEPENCENT ACCESSING VCDEL SIWULATCR
NUERY MUMPEER = 2
p=An (766 OIVS CF [LLArL TIVE (NTRF= P] RFAT (1440 RITS NF CUEFTN QCOCL TYWE (nT<e= © Y
°=An {L21F RITT ¢ NVALGR (COG1 TTIVE (NTSF= €] REAYG $007Z /IYR NF CYBLUS Qroey TIME (PT1eF= £]
oEAn ~267Z OTYS COF CYALUS $854Y TINI (NTSE= € ¥ eSADN 23:7? FYTS OF CYALUS 2£2701 TYME (NY<F= R ¥
FEAD _"178 PYTS CF CYALUS 122%E TIVE (NISF= 2£272) 9FAn L0072 OTTR NF CVELUS 200081 TTYMF (DISF= & A
RCAN T3I;7Z BTTIC OF _PVYALUS 3515 TTME (NTSC= $(172) cEAT 16772 uIYS NF CVALUS Ngoe1 TIYE (nI<e= € ¥
eEADn {E57Z RITS COF NUALUS. 0291 TIMF (DYSP= J3272) SEADN 00272 RPTTR nF CVELUS 20921 TTWE (NTRE= €)
o280 (g7 RITS CF OVALLS £G301 TTME (CISF=©) fELN CQRFTZ BTYS OF CVELUS ~CEQ TTINE (NISE= £P°77)
EFAN I["7Z BTYE (F CVALUS “Cufid TIME (NISF= 8) READ 480272 ®BITS OF CVELUS LCLRES TIWE (NITF= §iL72Y
©FEAN A329° OITS CF CVALUS (5201 TIVE (NISe= ¥] BZAN T319%¢ RTYS NF GFIMD -poone TIME (NYSF= 9 A
2FAQ IA437R NTTS CF CCATA (C0CY TINE (PISE= 9] GEAR [3872 RTYS onF CVALUS 2(0C1 TTINE (NTICF=-LL1£2)
BZAR 13372 °I7¢ CF CAALUS LI1LE TINE (PISP= :0172) pEan CInv2 ATYS 0F CUPMYS 15021 TIVE (NT<E= P ’
erAn "Ill7Z FITS CF CVALYS L2771 TIve (RISF= ¢] REACQ 20072 8TYS CF CVALUS CO2€€ TTWME (NTISF= ((C72)
oran 072 BITS CF 7 QVALUS (€If1 TIWE (DISF= R) REAT £3L72 BITS NF CVALUS fg518 TTIME (NYSP= 2CI72Y
PFAD TI372 /ITS CF CVALUS ZG0C1 TTME (OTSF= T) WEAT £2077 BITS OF CVALHS JCS10 TTIME (NTSE="(CI72Y
°TAN T1ITZ °IvVE F FYALUS 24571 TINS (NISF= ©) CEAD. 22072 ETYS nF CVYALHS 2CC"1 YI¥E (DTSE= P]
£=an G.7Z BIYR (F CVALYS 23847 TIME (ATSP= £CC72) RFAN (0372 BTYS NF CYALYS ©C001 TYME (DYSC= ® \
eean 1537z AYYE CF CVALUS T3281 TIME ENISE= geer?y REAN Z336L PTIVS QF CYALUS £CO0L TYWE (nYSe= & \J
RIAD 13LRE ATTS FF CFTAN £g3gL TTIME (NISe= P) QEAN 20028 BTTS DF CRATA £LC21 TT¥E (NJSF= € ’
QUESY NRVvEZE = L .
pPELN 11932 2AITS (CF CFLS £F2C1 TYVF (NISP= R ¥ RFAD 0444l °TTS NF CPEFTN C(EC1 TYVE (NTeP= © y
DPTAN L J24E RITS CF cyaLnP CCLS51 TIME (NTSE= © h] READ 20072 RITS OF CVALUS ggGC1L TYYE (NTSF=x P]
BEAN 12(72 PYTS rF CVALUS [o47B TTME (NI%C: &) QEAC £ag8er BITS OF CVRLUS £4C%1 TTWE (NTSF= @ Y
°zZan 1348z AITS CF CFIAC $CCYL TTME (NYSP= P) SFAD 2202R QTTS NF CTATA G021 TIME (NTSP= P]
FIGURE 13
NATA INMCOEAPENT AFCESSTNG MONSL STHULATCS
POAL YARULATICA
NUEPY AUVRTT = N
TRSY voy NAWE IGET P FEG WFYRAME SRET (CATRACT NC KEYNAME TEET NIZXT = 21712 JCF, CONTPACT NC Y2LNF FFT
CONTORCT NN, VALLT TESTARCE *GSY CCMIRACT ASE R
QUERY AUMFFC = z -
SRET KSY N2AME TEST [CEL KETYNAWE SEEY CLAVCACT NC KEYNSVE SEET NFXT = C41F3 CF, TONTPACY NC VAIUT SGEY
COMT2ACT NP VALUE TFSTAMNRE eheY CCNTRACT ASE IRTY CONTRAGT AUVRET IREYT CANTORACTYCW $GET STBRT NATF =T sTvoLE

AATA INPSPENDEAT ACCESSING pCNEL TTMUL AT C?

" evERFLCK SUMVACY

ICTAL NC.

KAS AFCESSER QEY TOTAL AC, ARD

] 1nTA%L € 0
FDEFIN 2 e

reLs u g

Y8 Pe < ¢

" cvats LeE3L e
CNAVE < ¢

CENTS 3 3

CEINE G g

cnave 3 ¢

REL HAUSINE CVISFLCH AAS BCCESSED KO, WET NC. ACT

0 8EqQ VALHNE PIU AAMT cvaLus 1€263 g
CORTRACT MO VALUE FEU NANE cvatus 229E6 1
RFF VALUE °oFy NANFE CuaL U< 130¢ i}

‘522 December 6 - 8 1976

TTICH nave $€Z71 TURLYICH $ESY 7FE *EEY METHCT TGET TVEE IGET CCNT AMBUNT GEY UFCATF
NLERY pwoRES o k]
SEEY wiY yaMD Y) DEN KIYNAWE PCT NEYT = 02RPR ,0F, O FER VAIUE 2GFY 0} FEO VALYUF TNSTANCE SEFT DELAYF
n TReK ASG TEZT COMT pywmce IRST N ORER IGET ER AC RET T avCp Y IRET. £Y GEY SAME LCF, N GTL VALHE 2G6TT
KI¥T = 72712€ FF, © FEC VELUE fFET 0 FEQ VALLF TASTENCE SEET QELATED TASK ASH SFET CCNT NUMREP GFT C Ffn | IGEY
B0 AL, CGRIT T ANCLAT IRET-FY
FIGURE 14 Overflow strategies are also easier to formulate

when 'you know:

1) The minimum and maximum number of instances of
a path type;
2) The ensemble average minimum and maximum

length of instances of the path type.

Also, Path-to-Path Transition Frequencies can help
in making the critical decisions about which links
to implement by "fast addressing" (e.g., con-
tiguity) rather than "slow addressing" (e.g.,
pointers). They also provide insight to whether
individual paths ought to be combined because
they're almost always accessed together. Examples
of these reports are shown as Figures 15 and 16.

Finally, it is possible to gain additional insight
about the information itself. The Entity Set Pop-
ulation Statistics and Description Set Population
Statistices report the cumulative effects of the
population dynamics, showing the initial, minimum,
maximum, and final populations. These can provide
insight to the magnitude of the fluctuatioms,
which ultimately determine headroom requirements.

And, by varying the query mix, it is possible to
identify queries or query classes to which the
fluctuations are most sensitive so some provisions

can be made to control the problem,
are shown in Figure 17,

These reports

FIGURE 15
;navu INDEPENDENT ACCESSING MODEL STWULATrO
SYRING (SAGE STATISTICS
STRINE AAME NUMAES TYPE INSTANCES waAY FIN LENGTH (733 YN TI®ES ACCESSEN
RELATER TASK ASSG 1 ASh 750,20 7508, 7760, 5.C9 - Se 71,
N °FqQ VELUF YNSTANCE 2 £5h 7503.00 7500, 7500, 0,09 1. 1. S
D PFC vaLUE 3 [TECY.TY 7563, reeg, 1.07 1. 1. 162F4,
N REC XFYNAME 4 F<6G 1.248 i. 1. 7523.00 7500, 75ee,. 73
FINTMUM LEAGTH FOP S=-STQIAR e MAXTVUM LENGTH FCP ZoSTCTAG 7500, MEAN LENGTH FOF E-STOING Z0R.
FIGURE 16
CATA INCCRENCENT ACFESSTNG NOCSL SYMULATC®
STOTAL LSAGT STATISTICS
COCOTLATICN »ATQTY
{CUFFENT STPTNR)
STCINE NBME TYPE/NYUMEER 1 2 2 4 5 [7 R c 18
(FREVIONS)Y
GCLLATSC TASK ASh 1 €c < - 39 2 . bt 4 r >
N S0 YALLE TNSTANGE 2 ¢ [3 2 e 4 2 o [£
D v¥a vapLrs 2 1 1 1€z2t¢ 0 0 0 3 jJ ¢ r
0 PIC KEVAAMET 4 i [} i i} 2 i] i [r
CEEFATIVG [Ty ® t y 2) ¢ e 2 r r c
CONTEACT 8SG £ d] ¢ [[0 0 i} ¢ [}
CCORTRACY NC VALLS IASTAMCE 7 3 [} 1 Q 2 e L] 9 4 8
CCNTOACTAS YALUEZ TASTANCE * [} [} ¢ [} 4 23¢¢ [2714 < 3
OFF VALUZ TAGTANRS g 9 L [[[} 2] 9 [r "
CONTCACT NG VALLE £SC 13 r g 4 L] 4 8 i 8 € 72CEE
FIGURE 17
NATA TNRSPENTENT ACCISSTNG MPREL STVULATCD
ENTTYTY ECFULATICN STRTISYIrS
(TITY NUMnco EATITY NAWE PNFLLATION NATA .
EnTI N TATTTAL FTYAAL PINTHUY MAXT VUM ADDYTICM NELETYON
1 FONTEACT A(MIFRT 937 3272 ICAC 3090 9 e
2 CCHITACTYRE NAMTS gel £8) Rl 500] e
3 CCAYEACY npfcg 42 4312 yee 43z 2 1
4 AUWRES CF KENTHS 12¢ i2¢ 1zc 12 14 a
& EFF MUNEERS 785¢ F2173 el g 8 €
5 AHARN PFTHCRS 3 (3 6 € [£
7 FCATEECTY TYPFES i i¢ 10 10 [jd
4 gree £ss ciad 58032 sgan 5001 2 z
9 CIVICICY CEN MYVMEERS FETL [J3-3d] [3Dy 6En N 3 n
18 BUFCHASE RTN MUMREPS €502 EECO €500 620 jd e
11 FEQGSEV YEASS 10 16 1" 19 0 €
12 UPRATES €90 EGL [:381] €01 1 |4
13 |UF K(CS cene 5680 5008 500 % e
14 PCRE CavaAS 16 10 i¢ 10] n
NESCPP NUMRER NESCRE NAWE
1 CCNTRALT 2gen 3c00 3C0¢0 3000 | t
4 FELATED TASK 7:80¢C 7500 7580 7500 ¢ 9
3 SUE CCAY ESRT 6500 6500 6530 0 T
Winter Simulation Conference 523

GENERALIZED DATABASE SIMULATOR ... Continued

REFERENCES

1. Senko, M. E., Altman, E. B., Astrahan, M. M.,
Fehder, P. L., and Wang, C. P. A Data~Independent
Architecture Model 1l: Tour Levels of Description
from Logical Structures to Physical Search Struc-
tures. IBM Research Report RJ982, San Jose,
California, February 1972.

2. CODASYL Stored Data Definition and Translation
Task Group (SDDTTG). Stored-Data Description and
Data Translation: A Model and a Language. Un-
published Technical Report,: March 1976.

3. Schneider, L. S. %A Relational View of the
Data-Independent Accessing Model."'" Proceedings of
the 1976 ACM/SIGMOD International Conference on
Management of Data, June 1976.

4. Senko, M. E, Specification of Stored Data
Structures and Desired Output Results in DIAM IT
with FORAL. 1IBM Research Report, 1975. (T. J.
Watson Research Center, Yorktown Heights, New
York)

é2h December 6 - 8 1976

5. Schneider, L. and Spath, C. "Quantitative
Data Description." Proceedings of the ACM SIGMOD
International Conference on Management of Data,
San Jose, California, May 1975.

6. Senko, M. E., Altman, E. B., Astrahan, M. M.,
and Fehder, P. L. "Data Structures and Accessing
in Data Base Systems." IBM Systems Journal, No. 1,
1973, pp 30-93.

7. Senko, M. E. and Altman, E, B, DIAM Note 1 -
A “"Framework" Mode for Implementing a Record-
Storing Facility. IBM Research Report RJI1365
(21150), San Jose, California, March 1974.

