AN_AUTOMATED METHOD OF CREATING PIECEWISE LINEAR CUMULATIVE PROBABILITY DISTRIBUTIONS

INTRODUCTION

One of the most fundamental aspects of com—
puter simulation is the generation of stochastic
variates. The basic objective is to replicate the
underlying stochastic process as accurately as
possible. In sumulation languages like GPSS and
SIMSCRIPT this is generally done using a pseudo
random number generator in conjunction with an
"estimate" of the inverted cumulative probability
distribution function of the stochastic variate.

A common way of representing the inverted
cumulative probability distribution is through the
use of a piecewise linear approximation. The topic
of this paper deals with the transformation of sam-
ple data into piecewise linear cumulative probabil-
ity distributionms. ’

DEFINITION OF THE PROBLEM

Given a set of n sample observations from a
population, construct a piecewise linear approxi-
mation of the cumulative probability distribution
function of the observed population. The only
assumption regarding the distribution is that it
is of the continuous type. The method of producing
this piecewise linear approximation should be fast
and accurate within a specified error criterion.

PRESENT METHODS

Several existing methods are used to attack
this problem. One technique is to assume that the
population has a certain type of distribution
(e.g., normal). The sample data are then used to
estimate certain parameters of the assumed distri-
bution (e.g., ¢ and u). The resulting estimated
cumulative distribution is then simplified with a
piecewise linear estimation. The major drawback
of this method is that the assumption of distribu-
tion type is not always desirable or possible. A
second drawback of the method is that an approxi-
mation of the assumed distribution is used.

Another popular method is to generate a fre-
quency histogram of the sample data and then con-
. struct a piecewise linear cumulative probability
distribution directly from the histogram. Before

the frequency histogram can be generated, a deci-
sion must be made as to the width of the frequency
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classes. The shortcoming of this method is that
there is no decision that will satisfy all distri-
bution types.

A third alternative is to generate an exact
empirical cumulative graph of the sample observa-
tions and hand fit a piecewise linear estimation
of the graph. This method is both time-consuming
and error-prone.

These methods each violate one or more of the
problem's constraints. The following proposed
method of attacking this problem takes the form of
an algorithm. The algorithm essentially automates
the hand-fitting process utilizing linear regres—
sion. A listing of the 27~step algorithm follows
the discussion of the algorithm logic.

ALGORITHM LOGIC

The algorithm initially generates a set of’
coordinates that represents estimated points that
lie on the cumulative probability distribution
function of the population. These points are con-
sidered sequentially to extend a regression line
until the maximum deviation from any point to the
regression line exceeds some limit. When the
limit is exceeded the algorithm starts a new
regression line of the remaining points and con-
tinues as above until the limit is again exceeded.
This process continues until all points have been
used.

The logic of the algorithm proceeds as fol-
lows: let X;, X, -++3X, denote -a random sample
from a random variable X whose distribution is of
the continuous type. Let Y; be the smallest of
these X;, let Y, be the next X; in order of magni-
tude, ..., and let Y, be the largest X;. That is,
Y1 < Y3 < ... <Y, represent Xj, X3, ..., X, when
the latter are arranged in ascending order of mag-
nitude. Then the statistic Yy can be used in the
following probability statement:

i
n+l

P(X < Yi) = Fi where Fi = » 1 2i<n )
This important statement can be used to show n
estimated intersectiorn points of the cumulative
distribution of X. These intersection points
(see Figure 1) are defined as:
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"PIECEWISE DISTRIBUTIONS ... Continued

Pi = (¥4, —al—l—), i=1,2,3,....0 (2)

The first regression line starts using P; and -

Py. It is then extended to include each successive
Pi until a user-controlled error criterion is
exceeded. The regression equation (Equation 3)
that is used minimizes the vertical distance to

the line for all points being considered.

F=sY+b (3)
where,
k k . k
(k'J"'l){.E. I3 Fi} - {.Z. Yi} {.E. Fi}
s = i=] i=3 i=j
k ) k ,2
(k“3+1){.z. Yi} - {.2. Yi}
1=j i=j
and,
k k
{ b3 F;} - s { I Y.}
.- P 1
b = i=j i=j
ek -3+ 1}

In testing the error, the Y-axis is tempor-
arily normalized to Yp = 1.0 (i.e., Xmax = 1.0).
On this temporarily normalized scale, d (Equation
4) is the distance from the current regression
line to the most distant P4 associated with the
current regression line.

F, - sY, - b
1 1

Epsilon, &, is the user-specified limit of d.
If d > €, the last point considered becomes the
first point of a new regression line. This regres—
sion line is extended point by point subject to the
same constraints as above. Successive regression
lines are computed in this manner until they in-
clude Pp.

A routine has been incorporated in the algor-
ithm that checks to see if the series of intersec-
tions of the approximation distribution is mono-
tonic nondecreasing. A "standard fix-up" is ini-
tiated to delete the point in error.

From Figure 2 it can be seen that the locatiom
of 2 is impossible in a cumulative distribution
because it is out of sequence with 1 and 3. This
point 2 is simply deleted by the algorithm while
still leaving a good approximation of the data
points with 1 and 3. It is obvious that 2 can be
deleted without a drastic increase in error because
this '"out of sequence'" condition will only result
when two curves K and K+l have slopes nearly the
same. 'Phus, they would define approximately the
same Iline.

d = MAX —_—— (4)
jei<k
1+ 32 g2
l B
FIGURE 1

Points Used for the Piecewise Regression

C
Tu
m Fooo TR,
u
ip Fo_4 P 1
ar |
to :
ibd
v a
eb F3 o " P3 i
i
1 Fo 7 * Py
i
t F1 7 "B
y
: T T T | T
Y, Y, Y3 (A &

Sorted Sample Observations

FIGURE 2

Sequence Error
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THE ALGORTTHM

1. Let X3, Xp, X3 ..., ¥p represent n sample
observations of a random variable X whose
distribution is of the continuous type.

2. Sort the sample observations [Xi] into
ascending order and call the sorted sample
set [Yi], such that ¥; < Yy < Y3 ... < Y-

< Yn. i

3. TFor each i, 1 < i < n, let Fi = ey and
define the point Pj as (Yi, Fi).

4. Let j=1, k=2, 2=1.°

5. If k=ntl, then go to step 1ll1.

6. Find the regression line, Rl’ of points Pj

through Pk.
7. With the Y axis temporarily normalized to
Yy = 1.0, let @ = the maximum of the




perpendicular distances from the regression
line to Pj, for each i, j < i < k.

8. If d < g, a predetermined error limit, then

let k = k+1 and Lg = Ry and go to step 5.
9. Let j = k-1 and &= &+1. B

10. Go to step 6.

11. Find the intersection points, Ii, of regres—
sion lines Lji and Lj4j for 1 < i < #-1.

2. Define Iy as the intersection of regression
line Ly and the Y-axis.

13. Define I, as the intersection of regression

" line Lg and the F=1 line.

14. If Y of point Iy is negative, then redefine
point Iy as the intersection of regression
L; ‘and the F-axis.

15. Let i = 0.

16. If point Ij4+] is not monotonic increasing
from point Ii, then go to step 19.

©17. Let i = i+l. )

18. If i = &, then go to step 26, otherwise go
to step 16.

19, If i = ¢~1, then go to step 24.

20. If point Ij49 is not monotonic increasing
from point Iji, then go to step 24.

21. For each j, i+l < j < &-1, redefine point
Ij as point I44j.

22. Let 2 = 2~1 and i

23. Go to step l7.

24. For each j, i < j < 2-1, redefine point Ij
as point Ij+i.

25. Go to step 22.

26. ‘Points 14, 0 <3 <&, define the intergection
points of a piecewise linear approximation
of the estimated population cumulative prob-
ability distribution of the input data.

27. End.

0.

DISCUSSION OF THE ALGORITHM

Step numbers 1 through 4 initialize variables
and sort the sample data. The method of sorting
is left to the user. Step numbers 5 through 10
are used to find the regression lines of the
points. Each line is sequentially determined
through evaluation as described previously. Step
numbers 11 through 14 define the intersection
points of the piecewise linear polygon to be used
as the approximation distribution. Step number 14
was included by this user but should be considered
optional. With the step included, the algorithm
will not tolerate negative values of sample obser-
vations, nor will the resulting distribution con~
tain any negative values. This is useful in gen-
erating time distributions that are not allowed
to go negative. Step numbers 15 through 25 rep-
resent a "standard fix-up" routine. This routine
checks to see if the series of intersections of
the approximation distribution is monotonic non-
decreasing. It should be emphasized that the rou-
tine performs a "standard fix-up" and its accuracy
cannot be guaranteed. It is essential that a vis-
ual inspection be made when a sequence error is
noted. It will be left to the user to determine
whether or not a "good fit" has. been made.

IMPLEMENTATLON

The algorithm was implemented as a FORTRAN IV
program. The computer program reads sorted sample

data according to a user-specified format. After
executing, the program lists the intersection
points of the approximation distribution and
punches, in GPSS format, FUNCTION cards ready for
direct input into a GPSS simulation program.

A listing of the computer program along with
an example printout follows the text of this paper.
It is self-documented with comment cards.

VALIDATION

The initial validation effort was subjective
in nature. A visual verification along with a
comparison of sample means and expected values was
performed. Many sets of sample data with a variety
of distributional shapes were tested.

It was shown the algorithm works best with
symmetrical distributions. If the disttibution
had a long tail above the median, the algorithm
tended to overestimate the mean. Likewise, if the
distribution had a longer tail below the median,
the resulting expected value was slightly smaller
than the sample mean. In both cases, the differ-
ence in means grew smaller as the number of obser—
vations increased and as e decreased. The magni-
tude of the difference was typically less than one
percent of the sample mean with m > 100 and
0.015 < e < 0.002.

To further validate the algorithm, samples
from a known distribution were fed to the computer
program. The resulting GPSS FUNCTION was used to
create samples that were subjected to a chi-square
test.

The exponential distribution was used for the
exercise. Samples were generated in a séparate
FORTRAN program utilizing a uniform random number
generator and an inverse cumulative probability
function. The samples were then sorted and passed
to the main program. Two sample sizes wére tested:
n = 100 and n = 1000. '

For each of the two sample sizes, four values
of ¢ were tested: ¢ = 0.015, 0.010, 0.005, 0.002.
The GPSS chi-square test program sampled 1000 val-
ues from each distribution. Ten frequency cléasses
were used in the test (i.e., v = 9), Table 1 sum-
marizes the results of the experiments.

Several interesting observations can be made
from these results. First, as g decreased, a, the
average distance to the line for all sample points,
also decreased proportionately. Tn the above tests
d is approximately one-third the value of ¢ regard-
less of the sample size.

A second observation is that as & decreased,
the number of points on the approximation distribu~
tion increased. The smaller sample size tended to
increase the number of points faster than the
larger sample as e decreased.

The chi-square test shows that only two of the
experiments resulted in a "good fit". Values for
€ of 0.005 and 0.002 of the one thousand sample
experiments resulted in chi~squares within accept-
able ranges. This demonstrates two intuitively
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PIECEWISE DISTRIBUTIONS ... Continued '

TABLE 1

Results of Validation Exercise

n £ d L X

100 0.015 0.0043 5 58.6

100 0.010 0.0031 7 58.3

100 0.005 0.0018 14 68.8

100 0.002 0.0016 34 73.0
1000 0.015 0.0043 5 45.9
1000 0.010 0.0038 6 29.4
1000 0.005 0.0014 9 11.6
1000 0.002 0.00086 17 11.0
Where,

n - sample size

e ~ epsilon error limit

d - average error d

% - number of points in GPSS FUNCTION
2 - chi-square statistic

For v = 9, x%,95 = 16.9, x2 o5 = 3.33

obvious points. The larger the sample size the
better and the algorithm behaves best when ¢ is
small.

The value of & seems to have no positive
effect on the chi-square statistic for the small
sample size experiments. This is partially due
to the biased nature of the 100 samples. The
sample mean was more than 5 % above the expected
value and the sample standard deviation was
almost 2 % below expectations.

It should be pointed out that the program
did do an excellent job in approximating the
sample cumulative probability distribution func-
tion. 1If the exact sample cumulative probability
distribution function generated from the 100
samples were subjected to the chi-square test, it
would have also resulted in a bad fit. However,
in cases where no assumption can be made about
the shape of the distribution of the population,
the sample distribution is the best estimate of
the population's distribution regardless of the
sample size. :

A piecewise linear approximation of the sam-
ple distribution is just a condensed form for
making the sample distribution more useable in
simulation experiments. This validation exercise
shows that the program can be an excellent method

of converting sample data into simulation-oriented

cumulative probability functions.

CONCLUSION

This author has used the program to create
over fifty distributions that actually have been
used in simulation models. Where sample sizes
were over one hundred, the program generated
estimated cumulative probability distributions
that accurately replicated the characteristics of
the observed sample. In some cases, sample sizes

§9o December 6 - 8 1976

of less than one hundred were used. Due to the
peculiar nature of the underlying process being
observed, this method proved to be the only way of
estimating the distribution of the population.

The algorithm has proved itself to be not only
reliable and accurate, but also a great time-saver
in the simulation process.
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COMPUTER PROGRAM LISTING

AN AUTOMATED METHID (F CREATING =18 CEWISE
LINSAR CUMULATIVE PRCHUASILITY OILTeIsUTIGHS

TH3MAS KISKO
UNITVERSITY GF FLLIEIUA

INPUT RESUIRBEMENTS:
UNIT 3-PROGRAM SA2ZCIFICATISNS
(CNE CARD FOX EACH FUNCTIGN)

CCL FOFNMAT DZTINITICN
1-5 AS  FUNCTICN NAME

H-9 14 NUNME SR OF CHSEAPVATIONS

I3-15 F£e3 LADGEST GBSERVED VALUZ

le=21 Fé,s EDSILENM EPROR LIMIT

2£-61 10A4  FCIAMAT CF OBSERVATICN3SEG. (Z2Xs#3,2)
UNIT 2 - SAMPLE LATA

OANE RECGOPC FOUR ZACH OLsLRVATIIN

ONZ SET 7% CoSERVATIINS FOR £ACH FUNCTIUN

ZACH SEY IF LUSSRVATIUNS MUST BE IN ASCENDING ORCER
FCRVMATEZD ACCURDING TU PRUGRAM SPECIFICATION CARD

NETES: 1e ALTHCUGH ThE USEX MAY SPECIFY THE FCRMAT OF THE
LESFRYATIGN DATA AT INPUT S3MT PRINT,OUNCr ANS INPUT
FORIATS VAY HAVE TiO 23 MODIFISD =Y THSE US=F TO AVCID A
LCSES OF DATA

2e TH: PrI3EAM WILL ALWAYS HANULE UP T2 10790 UGESYRVATIAIONS
PERP FUNCTIGOM. THIZ CONSTRAINT ON THE MNJUMLER CF
CESERVATICNS IS THAT Thbh PROGHFAM CAN ONLY wCRK GON
UP TQ 1720 UNIGUE VALUES FOR SACH HEGRESSION L INE .

VARTA3ZLE DEFINITIONS:

AERR-AVETAGE CF ALL PERPRYS
ARZA - ARESA UNDER CUMULATIVE BISTRIBUTIANS
& = Y INTEKCoPT GF CURVE
33(105)~Y=INTERCEPT OF NCTH LINE

3P ~ OSREVIOUS CETTRMINED Y INTESCERT
CMIAN-MEAN CF CESERVED LGATA

SRRI~SUM OF PERR'3 FCR THIS LINZ

SRiF - PREVICUS %
FMT(13)-GBJECT  rIme
I~2CINTER FOR X(124
ILAG= | NEW CURVE &
1LAG = 2 OLD CURVE
ITIME-PREVICUS VALUE SO TI#C

ITIMZ -~ PREVIOUSLY READ TIME IN CUM (ULD TIME)

JC-COUNTER FCR # OF PUINTS RSAD IN (TINME)

K = KTH INTERVAL TE KT+ XDIV

KC-VALUE OF J AT START CF SET OF IDENTICAL VALUSS OF TIME
MC - # AEOEGXIMATE CURVES

N= NUMBEP PCINT: / CISTRIBUTIIN

NAME - FUNCTION NAME

NIP-NUMZER CF APPRIXIMATICN POINTS=FInaL VALUE OF MC + 1
PERR-SHUFTEST CISTANCE TO LINE WITH AXIS NOPMALIZED
ON-2%N+2 COMPUTATION SAVER

IMTAN -~ MSAN OF APPRGX CURVE

S - ELULPE OF CURVZ

SP -~ PREVIUUS CSTERMINED SLOPE

S€5(107)-SLCPE GF 4CTH L INE

M FOQRMAT FOR UNMIT 2 FILE

RTING (NEWw FUNCTION)

m ~o
>~

SUMX =USED TC CALCULATE S AND 3
SUMXG-USEDC TC CALCULATE S
SUMXY-USED TO CALCULATE S
SUMY ~USED TC CALCULATT S AND &

TERR-SUM OF ERR'S UDB TL THIS PCINT

TIME-VALUE FRJOV UNIT 2 FILE

X{1CZ2)=-SET OF aLL UNIGUE TIME VALUES (FOR THIS LINE ONLY)
XINCPT(100)~INTERSECTICNS OF APFROXIMATIGN CURVES

XMAX — MAX TIME OF DISTRIBUTION

Y-VALUE OF CUMULATIVE BRO3., UP TO THIS POINT
YINCPT(1GO)-INTERSECTICNS CF APPROXIMATICN CURVES

Ye(120C) - MIDPCINMT OF YS

YT-PREVINUS VALUE COF Y

REAL*8 SUMX s SUMY , SUMXQ s SUMXY s NAME
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COMPUTER PROGRAM LISTING (CONTINUED)

REAL YP(10CC)S3(1CI)+ ST 100)s ITIME, FiT(l“)o
. # X(1022) s XINCPTL127 ) YINZIPT(127)
28 TEZRR="T,
ERP=2.
ARE A= o
YT=%.
MC=1
I=1 . .
Q1 READ(SsE7+yEND=GT) NAMD »tie XMAXSEPS, FNT
67 MAT (A% w14 +FEe2sF G4 ,17AL)
WRITE{E,42) NAME
f; FURMAT('1°///7/7% FUNCTIUON NAME ~wwemrcr e e e e CYAT/)
WRITE(HS,A4C) N
4 FIRNAT(T NUMBER OF SAMPLE O3SERVATIUNS —= ',15/7)
WHITS(Heul) XMAY
41 FORMAT(* MAXINMUW CESFPVED VALUE ————=———— YeF%e2/)
WRITE(D.43) EPS
43z FORMAT(Y ERPISLUN —memce— e c e e e e e e e *aFfed/)
WRITZ(644) FNMT
44 FORMAT(? FREMAT 5F GISLERVATIONS —--ee-——-=— t,17A4)
Itag=2
Y=2o
JC=1 .
HREAD(2,FNFT) TIME
<t=1
G4 ITIME=T IS
KC=JC
g3 JC=JC+1
IF( JCGToN) G135 T G€
SFAD(2.F4AT) TIME
I[F (TIMEWLTWITIME) Gy TC 22
IF(TIMEECWITINVA)GE, TS 932
Y=Y+ {JC-KCI/IN*¥1.2)
X(I)=ITIME
KL=KL+1
So TF(RKCNT«1)GC T3 27
a0 TO 24
5E Y=1.
L0D)=1IT71IME
ILAG=1
IF{JCeNEL2) GI TL 27
WRITE(6,95) NAME,X (1)
a5 SORMAT(VLY p 2Rk FLNCTION *5AZ,* HAS CNLY 3NE DATA FPOINTa e TIME=
kyF T %o 3y kKR KY)
GL T &1
] APITZ{(&et51) i
1 EOSMAT(Y ERRCF-LESERVATIONS NOT INM ASLEINDING CFPDER')
3 STOP
4 S=7.
3=2
PN=2%N+2
YRP{I)=JC/PN
SUMXS=X(T)AX (1)
SUMXY=X(T1)=YRE(I)
3UAX=X(1)
SUMY=Y2(I)
4 I=1+1
IF(IGT1082)53TLR
YT=Y
=37 TO S4
27 AREA=AREA+ (X (I )-X{1-1))%YT
YP(I)={(JS+KC-1)/PN
TRIP=ENR
SP=S
Ri=E¥
7 SUMXG=SUMXC+X{I)*X (1)
SUMXY=SUMXY +X{I)%YF(T)
SUMX=SUMK+X( 1)
SUNMY=SUNY+YF(T)
S=( J#SUMAY ~SUMXESUNY) Z{ I¥xSUMXG~SUMXRSUMX)
3=( SUMY-SRSUMX ) /T
ZRR=72
20 S5 J=1,1
PERIR=AES((YP(J)=S%X(J)-B)/SURT{ I+XMAXHXMAXES*S))
[F{PERP=-LEDS) H4F,"
5 IRR=PERRHFIRR
C39 TQ (11,8),ILAG
A TEIF=TERF+ERR?
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COMPUTER PROGRAM LISTING (CONTINUED)

{ MCY) =3P '
(9s) =3P
13=X(1-12
(1)=¥P{i-1)
2¥=X(1)
L 2Y=Y2(1)
XL1Y=x{1)
(1) -
XRL1I=YP(1)
1)
SR aceey
~ARE A

LGan b ANG YODIR INTLRSEETIuN

I=2,¢C
IMy=1-1
XINC2T{1)= SELINVI))IZ(SE(IMII=-SH(1))
YINCPT(I)=EC EAINCAFICII+FEE (I .
YINCPT{1)=20 R
XINCOTY1)=—¢ /78S
TFCXINCPTL Y ¢« T3) G TO 12 -
XINCPT(13=C ,
YINCRTL{1)=8
. RINUPTANGP) ‘:.(HC))/ S(MC)
YINCPT{NULP )=
WRITE(5452 .
FOESAT( /77 S OM LETIMATZL CUMULATIVE PRIVAEILITY CGURVE e
7 PUINT INATES sLOPE INTERCEDPT )
DO 2 I=1,
WRITZ (H,51 TOI) XINIPT (1)
FIAMAT(1%, 2l s Tyt yFHe2y?) V)
WRITE{Z,3X Z{71) :
FIR®ATY 25 yE124€)
WP ITE(G 5 iCPTINOPY XTI CPT(NLD')
- 3fF X AND Y PJ[
N+
N=NUF-1
D) 84 I=1,08
IE(XINCOT{I)~XINCOTLI+1) )31 ,824872
TELYINCET(I)-YINCOT{I+1))84,83,872
[FUI.LTw) GU TO 87
[F(Y{NFPT(I"'I)N'-O-!.' ) GC 7D 87
NCP=NOP -1 . "
30 TS 82 .
JF(YIVCQT(l)oGT-Y[NCPT(I*")oD‘<.XINCF’T(I)ouT.XINCDT(I*—Z)) GC TG 37
K=T+1
5C TG &9
<=1
NOP =NOP—~1

‘DG B8 J=KsNOP .
XINCAPT{ JISXINCET(J+1)
YINCPT( J)=Y INCRT(J+1)

GO TS 8G -

COANTINUE
CALCULATE MEAN 0F FUNCTION
RYZEANZO .
DO .23 I=2,NCGP
RMZANS 2. 5% (XINCPT(I)-XINCPT( I-1 )} (Y INCPT{II+YINCPT(I~1))
+RAEAN
IMEAN=X INCET (NCP) —RVMEAN
ACAR=TERP/ (MC+KL )
WRITE(S+05) Acre
FOIMATL{VITHE AVERAGE ERRUR WAS V4F7.3)
IF(NNeNE+D) %RITE(E,63) RN
FORMAT(*OWARNING : EECAUSE OF SEQUENCE CHRORS', I3,
' PGINT(S) WERE DELETED®)
ARITE(6+54) CMEAN,RMEAN
FORMAT(///* THE MTAN CF THE SAMPLE OBSIKVATIONS WAS ' ,FS,.3,
7/* THE EXPECTED VALUE OF THE GPSS FUNCTIUN IS *",FQ.3,
/7% BELOW IS THE LISTING OF THE FUNCTION'///)
IFINDP «.GEe 170) GC TC 17 -
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COMPUTER’ PROGRAM LISTING {CONTINUED)

IF(NOP L.3E. 10} GO TO 18

GC TO 1¢

WRITE(7+,14) NAME,NGP,RMEAN

WRITE(S,164) NAME,NCP,RMEAN

GO TO 13 o

WRITE{7515) NAMELNCFP4EMEAN

WRITE(E,15) MANENCF,RVEAN

GO TQ 13

WRITE(74+16) NANESNCE,RMEAN

WRITE (5,18) NAME s NCP, FME AN

FORMAT(1Xs A5, T8, "FUNCTION? »T19+ 'RN1,C?,I3,T36,°%
FORMAT(1XsA5+sTBs"FUNCTION® 4 T19,*RN14C?, 12,736, %% MEAN=
FORMAT (1XsAS+sTE, *FUNCTICON® 3 T19,*RNL+C' 3 [1,T26,"% MEAN=
WRITE(7419S) (YINCPT(I) XINCPT(I)sI=1,NOP)
WRITE(E519S) (YINCPT(I) oXINCPT (1) I=14MIF)
FORMAT(A(FG.4+sF6e2) ) . .

FORMAT( Y0V ,8(F6ebsFEL2)) .

GU TO 2A

END

EXAMPLE OF COMPUTER PROGRAM PRINTOUT

FUNCTICN NANE
NUMBER CF SAMDLE CESSIVATIUONS —-- 17
MAXIMUNM CBSERVED VALUZ
EFISLON
FCRMAT CF-0OESERVATICNS

PCINTS ON ESTIMATED CUNULATIVE PRCBABILITY CURVE

POINT <COORDINATES stcee INTERCEPT

1 " (CeCE7C, 2.0 )

CeHCHE1H4E-D2 ,8780815-N1
2 (De2734, 20.7%9)

Ce3EI395E8E~01 =~4841040E 09
3 (0463243 42,771}

Qs6H22545E~-02 2.380524E N3
4 (1.,C000, 99451) :

THE AVERAGE ERROFR WAS 2.00192

THE MEAN OF THE SAMPLZT UOLSERVATIGONS WAS 4C 500
THE EXPECTEC VALUE OF THE GPSS FUNCTICN IS &led432
BELOW IS THE LISTING JF THE FUNCTIOMN

TEST FUNCTION RN1+C4 * MEAN= 414432
« 0870

el Ne2734 32479046343 4077140000 SG.51
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