VALIDATION -- THE BOTTLENECK IN SYSTEM SIMULATION

; ABSTRACT

In simulation exercises some degree of validation
is necessary in order to create confidence in the
results obtained. Experienced users of general-
ized simulation software and commercially avail-
able simulation tools often find that the majority
of their simulation efforts are localized in the
validation cycle. Discussed in this paper are
some of the factors which have caused the valida-
tion process to becomé more complicated and more
time consuming. This paper also summarizes the
major problems with simulating complex computer
systems and suggests some basic requirements and
design philosophies for new simulation packages.

INTRODUCTION

The major use of simulation at Chemical Abstracts
Service (CAS) is as an aid to computer configura-
tion planning. During the expansion of the
computer system over the past five years, CAS's
simulation goals have been to predict the impact
of changes in workload, hardware, and control
system software. The spectrum of project analyses
has varied widely in magnitude and complexity.

It has included analyzing major model changes in
the computer system, forecasting the operational
impact of new applications software, identifying
system components which have low utilization or
negligible growth factors, and answering some
very practical computer loading questions.

During the time CAS has been active in simulation
work, significant changes have occurred in the
company's environment, in the capabilities of the
simulation tools which are available commercially,
and in the methods employed in the simulation
process. Some of these changes have made the
simulation analysts' job easier, some have made
the job much more difficult.

BACKGROUND

Early simulations at CAS dealt with relatively
simple environments. For example, in our first
use of computer simulation we evaluated the opera-
tion of a fixed batch load on several candidate
computer configurations. We used the results of
these simulations to aid in the selection of a new

Gordon D. Edgecomb
Richard J. Thompson
Chemical Abstracts Service

computer to replace our IBM 360/65 system. The
environment at that time was limited to batch-type
processing and the primary metrics under investi-
gation were CPU time, channel load, and memory
capacity (the number of jobs that could run con-
currently).

The current environment is more complex. CAS is
no longer restricted to batch work in an MVT
operating system. We now have a mixture of batch,
specialized on-line, and .TSO applications in a
Virtual Storage (VS) operating system. In this
environment, the metrics of CPU time, channel load,
and memory capacity now become secondary in impor-
tance to paging rate, working set size, and
response time. Potential changes to the environ-
ment include MVS, mass storage, and distributed
on-line processing. This will further complicate
the simulation task and will introduce newer met-
rics for consideration such as the utilization of
individual resources on an '"on-demand" basis as
well as staging and destaging time and device
considerations,

Changes in computer simulation packages include
new attempts to more closely approximate the inter-
nal operation of today's computers as well as
improved mechanisms for building simulation pro-
files of the desired workload. The latter change
has a significant impact on the batch program
model building task by automating this time con-
suming process (1). However, part of the time
that is saved through the use of an automatic
model builder is now lost through the increased
complexity associated with defining today's
computer hardware and software characteristics to
the simulator, r

Within our range of experience, the basic approach
to simulation has not changed. However, the
traditional data input and logic building steps are
now more appropriately named '"Developing Workload
Profiles" and '"Defining Computer Hardware/Software

"Characteristies." There are two major reasons for

making this distinction. First, the new environ-
ment requires a different set of skills for each
step and second, the latter step becomes an inte-
gral part of the traditional validation loop. The
validation loop compares simulated results with
empirical data. If the results do not compare
favorably, then the simulated computer hardware/
software characteristics must be altered and the

Wititer Simulation Conference

161



Validation (Continued)

validation cycle must be repeated. This process
continues until the simulated results approximate

actual results within acceptable tolerances. Then

the model can be considered ''calibrated' and sub-
sequent simulations can be made with ‘some level
of confidence in the results.

While computer and simulator technology have
improved over the years, the simulation validation
process has had little attention and support.

This "tuning" process continues to be the activity
that requires the most effort in terms of human
resources. Validation is at the core of many
simulation failures and frustrations. It also
emphasizes the frailties of 'the simulation educa-
tion process and the complexity of today's simu-
lation packages.

SIMULATION INTEGRITY

Armed with formal knowledge and perhaps experience
in systems analysis, modeling processes, queuing
theory, and the mysteries of "black box" software,
the simulation analyst feels he is prepared to
answer the real world's question, "What if...?"
Instead, the analyst may be faced with a downfall
as he is confronted with the practical realities
and intricacies of the simulation process. The
downfall doesn't come during the drudgery of data
gathering or in working out the logical subtleties
of the model. It comes when the output is pre-
sented and the user, client, or customer asks the
next question, "How good is the answer?"

Over time, there are advancements in technology
and analysts become more proficient in generating
models and developing generalized simulation
software. But over the same time, circumstances
arise which make it more difficult, if not
-impossible, to ascertain the reliability of simu-
lation results with any guarantee of accuracy,
confidence, or credibility. Consequently, the
analyst now finds that more time and effort must
be spent in the validation cycle to establish the
integrity of the simulation results. Indeed, there
are occasions where the inability to complete the
validation cycle forces the abandonment of the
whole simulation exercise.

The causes of the validation dilemma cannot be
attributed to any single factor or chain of events.
Qur experience indicates that the difficulties
contributing to the validation problem exist in
three critical areas: simulator complexity, data
availability, and persomnel skill requirements.

SIMULATOR COMPLEXITY

It's a simple truth that today's simulation soft-
ware is more complex because the computer systems
themselves are more complicated. Commercially
available or home-grown softwire has matured to
the point of adequately simulating hardware com-
ponents in a relatively simple batch system. With
this software, the impact of model changes or
workload variations can be predicted -- and vali-

h62 December 6 — 8 1976

dated within a reasonable degree of certainty.
Today's more sophisticated computer systems not
only feature advanced, integrated circuits with
faster components, but also involve highly complex
control software. A combined environment of batch,”
time sharing, and other real time applications
operating under the control of a VS operating
system is not uncommon.

This shift in emphasis from hardware to control
software leaves batch-type simulators with a
severe handicap. It is not enough for them to
treat the operating system as a simplified black
box when 50% of the CPU cycles are caused by
operating system functions in a VS configuration.
This amounts to simulating half a computer model.
One half of the model is difficult to validate,
and the other half is impossible to validate.

The emphasis on control software also changes the
focus on the types of questions asked of a simula-
tion. The concern of DP mandgement now is to
determine how to make the best use of this oper-
ating system overhead and thus defer the time when
more hardware acquisitions need to be made. The
objective of the simulations is now optimized
throughput, and the questions are in terms of the
desired number of active initiators, their
priorities, and changes caused by varying input/
output (I/0) rates. Internal queuing, paging
activity, and their causes and effects are also of
major concern. Since the operating system black
box dpproach does not allow access to these
specifi¢ metrics -- either for manipulation of the
model, or for validation of the results -- the
simulator algorithm must be made more detailed and
more explicit. This of course leads to more com-
plicated simulator software and thus completes

the circle of system complexity.

There is an independent development in technology
which has not made systems more complex, but has
magnified the problem of validating simulation
results. This independent development includes the
increased and widespread use of hardware monitors,
machine accounting, and resource utilization
systems. Through the use of this technology, many
installation personnel are now more familiar with
the operation of their systems than ever before.
This increased awareness of computer performance
characteristics focuses more attention on the
validation process. More metrics are visible and
more opportunities exist to validate the specific
situations being modeled. Users no longer accept
general answers based on loosely-validated general
models. They expect the validation process to
compare a selected subset of models against the
empirical data which is available to them. Unless
this 'comparison is within some acceptable tolerance
at this level of detail, the users will place no
confidence in the results of a larger-scale simu-
lation.

DATA AVAILABILITY

It's well known that the availability of empirical
data is essential to the simulation process. But,



the simulation analyst soon finds that the
classical sources for this data, namely, system
documentation and the analyst who designed the
system, are not adequate for his purposes. Systems
documentation was nevér designed to support simula-
tion projects except at a very general level, and
thus it rarely contains the detail that is neces-
sary to comstruct a model. It is often out-of-
date and does not coincide with the current opera-
tion of the system. Most systems analysts are
deeply involved in designing a system under severe
time constraints, or they have been reassigned to
another project by the time the simulation’ inter-
view is ready to take place.’ In eithér case, the
analyst has neither the time nor the recollection
that is necessary in -order to define an accurate
model of the system. '

The most reliable and available sources of empiri-
cal performance data ‘that.can be used for model
generation are found in three places:

e Data base access and file usage
statistics

o Computer-oriented performance data
¢ Computer-produced machiné accounting data

The data base statistics can provide detailed
information on file accessing patterns and data
element usage. Hardware and software monitors
gather performance data on equipment, and internal
software, such as the IBM System Management .
Facility (SMF) feature of the operating system,
supplies the machine and job accounting data. In
most cases, all these ‘sources of data must be used
for building models of ecomplex computer systems.
These sources of data are also vital in the
validation cycle.

Organizing this supply of data into terms and
structures meaningful to the simulator software
has long been a time-consuming manual and intel-
lectual process. Advances have been made in-this
area, however. Improved mechanisms exist for
accepting this data in machine form and automati-
cally building workload profiles for input to the
simulation seftware. But, much of the intellec-
tual effort still remains. Due to either the lack
of specificity in the model building algorithms,
or to a batch erientation in the simulator itself,
a considerable effort in hand-coding models is
still required for some applications. For example,
if the automatic model builder does not or cannot
distribute on-line or TSO transactions over the
""connect" time of the terminal, the simulator

will receive transaction models that look like
batch processes. As a result, the simulator will
process a model of typical file records and report
that eight hours of on-line transactions can be
processed in one minute. Needless to say, the
validation process will have little success in
correlating these results with actual performance.
To eliminate this problem, the model of each type
of on-line transaction must be coded separately,
For those installations which perform the majority
of their work in an on-line mode, the volume of
manual model preparation required to handle the
message traffic can become almost overwhelming.

PERSONNEL SKILLS

Simulation is not a programmer's tool; it is a
specialist's tool. It requires the combined skills
of an applications programmer, systems analyst,
statistician, systems programmer, and hardware
specialist to fully utilize its capabilities.
Application of these skills begins with the model
building process, continues through the simulatidn .
exercise and validation cycles, and ends only when
the simulation results are accepted.

In the model building process, analyst skills are
required to define the problem, to identify essen-
tial metrics and the sources of data, and to
structure the model. If simulation software is
already available, the model must be expressed in
terms acceptable to that software. If model
building software is unavailable or inadequate,
then some programming may be done to extract,
translate, and compare the raw data into suitable
input for the simulator.

These same skills are applied in the validation
process. Since most empirical data is in the form
of machine accounting data, the output from the
simulator must be interpreted or converted in order
to place the measurements on a common base. Fur-
ther, this base must be in a report form that is
familiar to management or other users of simula-
tion. To obtain this common base, it is often
necessary to write special conversion programs
that will translate the results of .the simulation
into report formats which can be compared with
system utilization reports that are already in use
at the installation,

For many simulation applications, defining the
computer hardware and control software character-
istics requires the knowledge of skilled systems
programmers and/or hardware experts who are
generally familiar with the interaction of hard-
ware and software on the computer. It is
especially important to have an understanding of
the various system interactions that are required
in order to execute a hardware I/0 operation.
Also requiréd is a knowledge of the operation of
the major queues in the operating system, the
overall mix of instructions on their system, and
the poténtial simultaneous processing capability
of the files in each system to be simulated.

Simulation does not come easy, even for someone

who possesses all of the above characteristics.

The analyst must thoroughly understand the
simulator itself and the manner in which it pro-
cesses model inputs. In general, a lack of .
knowledge about the internal logic of the simulator
is the major obstacle in the validation process.
During validation, the analyst modifies simulator
inputs to bring the results closer to actual
experience. Since the workload profile input is
based on empirical data, the majority of the tuning
involves modifications to the hardware and software
definitions. This tuning can be a time-consuming
trial-and-error process since some hardware/soft-
ware definition changes have little effect while
other changes may have gross effects on the results
of the simulation. Moreover, tuning one aspect

to match empirical data may seriously detune
another aspect if the analyst doesn't understand

163

Winter Simulation Conference



Validation (Continued)

how the simulation program is constructed or is
not alert for these possible side effects.

Assume, for the moment; that the validation cycle
is successful, and the subset of the model problem
tracks reality within acceptable tolerances. The
analyst must now introduce additional workload
profiles, extrapolate new volumes, and/or change
hardware/software definitions to ,simulate the full
scope of the postulated problem. Even with full
knowledge of how the simulator handles these
inputs, there can be no guarantee that the final
simulated results are as accurate as the validated
case. It is more probable that the results are
less accurate since some simulator functions may
not have been exercised or tested during valida-
tion. This is particularly true when the object
of the simulation is an activity which does not
yet exist and for which calibration data is
unavailable. And yet, this is exactly the case
where a good simulation can be most helpful to

a designer or decision-maker.

The problem of educating simulation personnel can
be separated into two levels: ome, learning to
accurately define and code workload profiles and
_configuration definitions and two, learning to
manipulate the simulator to achieve the desired
results. While the first level is concerned with
the basic techniques required to adequately repre-
sent a computer application in simulator terms,
the second is concerned with manipulating the logic
of the simulator itself in order to insure that it
is representing a life-like situation. Training
for the first level is inadequate in that formal
education does not really address the topic except
at a theoretical level. Training in the second
level is non-existent in vendor-supplied.packages
and is a lengthy on-the-job learning process for
proprietory software.

SOME POSITIVE STEPS

There are a number of general problems facing the
simulation anmalyst today. Most experienced users
anticipate difficulties in system complexity,
data gathéring, or skilled resources and take
steps to reduce the impact of these problems.
However, it is interesting to note that they do
not always attack the real issues. Contrary to
the conventional wisdom, it is.not the complexity
of the application which causes difficulty; it is
the complexity of the simulator software itself.
The effort required to gather data for model
building is far less than the effort required to
validate the results. And finally, a host of .
skills is required, not just a sound knowledge in
simulation techmniques.

Qur experience has been that the impact of these
problems is felt more severely in the validation
process than in many other steps of the simula-
tion process. Lengthy, and sometimes, unsuccess-
ful validation cycles have the effect of amplify-
ing the already high cost of running simulations,
and of increasing the skepticism of those who
receive the simulation results.

L6l December 6 - 8 1976

Our experience has also identified some corrective
steps which can be taken by the developers of
simulator software. The suggestions deal with the
general principle of adding more synthetic pro-
perties to the simulation software, thus reducing
the amount of manual analytical interaction that
takes place in today's simulation exercises. Per-
haps the ultimate limit in this direction is a
simulator which adaptively tracks the solution

and reports optimized results.

One step is to develop a set of algorithm-gener-
ating programs which could be executed on the
simulation user's computer. These programs would
act as test drivers to develop service rates of
various system queue points under various condi-
tions, thus developing their own queue curves.

This approach is similar to that taken on trace-
driven modeling techniques as described in earlier
papers by Dr. Sherman (2) and by Noetzel and
Herring (3). Only the major operating bottlenecks
of a particular installation should be considered
as candidates for automatic queue curve generation.
We also suggest that standardized, machine-readable
data sources should be used as input to the
algorithm generators. Two sources come to mind -~
SMF and hardware monitor data. This approach
would eliminate much of the guesswork associated
with setting the variable parameters in today's
simulators. Of course, these queue curves would be
valid only on the particular computer on which the
programs were run. The challenge remains for the
vendors of simulation software to adapt algorithm
generators to the functions of a wide variety of
computer models,

The next step is to enable the input of the simu-
lator to be in the same terms as that of the out-
put. Again, we.suggest that these terms be in SMF,
or some equivalent with which the users are
familiar. To assist in the step previously men-
tioned, simulator pre-processors would synthesize
this data into its resource queue demand components
for processing by the algorithms of the simulator.
This step would immediately reduce the amount of
time required in the validation process to resolve
differing sets of figures. Further, in the model
generating process, hand-coded models would be
reduced to an assemblage of SMF definitions.

Automatic model generators are becoming common-
place, but there is still 1ittle software avail-
able for automatic validation. With the combina-
tion of features just described, i.e., SMF type 1/0
and automatic algorithm generators, considerable
progress can be made toward an automatic validation
cycle. This automation could occur by comparing
the simulated output to original input (both are
SMF), modifying the algorithms where required,

and executing the simulation again. This iterative
process could continue until the simulator was
validated according to some parameterized tolerance.

Some attention needs to be given to the typical
need to run a sequence of simulations for a se-
quence of variables in certain input parameters.
gimulation is an arduous enough task without having
to resubmit runs with only minor alterations to the
postulated problem. The ability to accept and-



Modet
Building
Process

Plan
Simulation

Develop

Profiles

Define Computer
Hardware/ e}
Software

Test

Subset
Validated

No

Modify/Extend
Parameters

Run Complete
Simulation

Workload - - =~

>

Validation
Loop




process ranges of input values on a specified set
of variables would add to the flexibility of the
simulation process.

We also suggest that designers introduce some type
of code to calculate how long a simulation will
run based on the input it must process. With all
the effort involved in preparation and validation,
nothing is more exasperating to the analyst than
to see his job abort because it took longer to

run than he expected it to. .
If these types of improvements were mdde to simu-
lation software, then the users could devote more
of their time to simulation as a tool instead of
as an end in itself. .

SUMMARY

Although computer and simulation technology have
improved over the years, little improvement has
been made in the critical simulation validation
process. Throughout this paper we have attempted
to focus attention on the validation process as an
integral part of any simulation exercise and on
the factors that influence the result of the
validation process. These factors include such
items as simulator complexity, contemporary com-
puter system complexity, data availability, and
the extensive personnel skills that are required
in order to complete the simulation exercise.
Along with the identification of problem areas

we have also included some suggestions for cor-
rective steps which the developers of simulation
software may take in order to reduce the amount
of manual analytical interaction required to
perform a simulation exercise. Overall, we have
tried to present these topics from an experienced
user's point of view.

BIBLIOGRAPHY

(1) Edgecomb, G. D., "Automatic Model Building,"
NTIS, March 1974, PB-232 033/1WC.

(2) Sherman, S., '"Trace Driven Modeling: An Up-
date,' SIMULETTER, Vol. 7, No. 4, (1976),
pp. 87-91.

(3) Noetzel, A. S. and Herring, L. A., "Experience

With Trace Driven Modeling," SIMULETTER, Vol.
7, No. 4, (1976), pp. 111-119.

466 December 6 - 8 1976°



