CONVERTING MODELS IN FORTRAN IV
TO ENABLE CONTINUOUS SYSTEMS
PROGRAM (CSMP) EXECUTION CONTROL

ABSTRACT

This paper covers the development of (1) an opti-
mization routine to be incorporated into the CSMP
system to enable the optimization of up to six
undefined parameters, (2) a stand alone program
developed to convert Fortran IV models so the
format will be compatible with the CSMP execution
routines.

By using the stand alone routine and the optimiza-
tion subroutine, a Fortran IV agricultural model
can be converted to a form that would enable CSMP
run execution control. This method has been used
to convert the USDAHL-74 watershed hydrology model
and the SIMCOT cotton model to enable CSMP execu-
tion and optimization.

INTROBUCTION

Mathematical models of plant and animal growth are
being developed rapidly as agricultural scientists
begin to use the computer for more than statistical
analysis. However, most agricultural scientists
have not yet had the opportunity to develop expe-
rience with systems simulation languages like CSMP,
GASP IV, and GPSS. Thus the mathematical models
for plant and animal growth are often computer
programs written in Fortran IV.

Because these computer programs are used to simulate
the growth of plants or animals through time, the
mode] calculations are repeated at selected inter-
vals. Thus the models, in effect, are a continuous
system model with an integration step size.

A problem in the development of agriculture models
is that many physical relationships are undefined or
are so complex that simple analogies must be used.
The agricultural modeler is confronted with mahy
situations where he must make intelligent guesses
of functional relationships. The primary task is to
verify that the hypothetical relationships repre-
sent reality. Inherent in these hypothetical
relationships are a number of parameters which may
be undefined.

Support for this paper, manuscript no. 310 came
from project 1568 of the Oklahoma Agricultural
Experiment Station.

MONITORING

Myron D. Paine, Oklahoma State University

Fred Witz, Computer Consultant

Frank Crow, Oklahoma State University

Thus, calibration of the model requires repeated
access to parameters which may be revised as expe-
rience grows. Eventually computer optimization of
some undefined parameters is required. Agricultu-
ral models represent complex systems. Even the
wisest programmers have difficulty providing suf-
ficient READ and WRITE statements, with switches,
to enable access to all parameters and variables
of the model. The adaptation of optimization
routines for the many parameters that must be
adjusted is even more difficult.

The Continuous Systems Monitoring Program (CSMP) by
IBM is an effective way to simulate a continuous
system. 132 The execution phase of CSMP has advan-
tages over executing a model in Fortran alone. The
major advantages include: (1) the possibility to
access parameters without rewriting the format
statements and recompiling, (2) ease of changing
printed output, which enables researchers to inves-
tigate subsections of the model under study, (3)
the features of run control, step size, rerun, print
or plot routines, output interval selection, and
the choice of integration routines. The CSMP
translation phase can also be used to convert

small models to Fortran subroutines to be compa-
tible with CSMP execution.

BACKGROUND

An optimization routine was written to be incor-
porated into the CSMP system to solye for up to
six undefined parameters at a time. 4 The
development enabled access to all parameters of
a given CSMP model. The access greatly acce-
lerated the calibration procedure.

Another probiem encountered with a Tlarge model was
the time required for initialization via CSMP

input translation routines. The execution phase of
CSMP was speeded up by reading an unformated

record into the rmodel COMMON. The unformated
record contained initial values of the parameters.

The optimization routine and the initialization of
parameters worked well with the CSMP control. The
use of the same procedure on other agricultural
models, written originally in Fortran IV, was
desirable. The United States Department of
Agriculture Hydrograph Laboratory (USDAHL)

Winter Simulation Conference 425

Watershed Model and the Cotton Simulation Model
(SIMCOT) were ig the process of being calibrated
against data.%:® Both of these models were
written in Fortran IV. However, the size of the
USDAHL model clearly exceeded the 1imits of the
CSMP translation phase. Thus, a stand alone pro-
gram was developed to convert Fortran IV models of
any size to a format that would be compatible to
CSMP execution routines.

This paper discusses the optimization routine used

with CSMP execution control, the stand alone pro-
gram to convert Fortran IV programs to CSMP execu-
-tion, and the loader program used to expedite the
initialization of parameters.

OPTIMIZATION ROUTINE

The optimization routine was originally written by
Dr. John Witz and has two major sections. These
sections are, {1) the calculation of the perfor-
mance index for a single simulation run, and, (2)
the optimization section. The optimization section
provides the logic for parameter manipulation to
activate either a grid search routine or a conju-
gate gradient routine.

PERFORMANCE INDEX CALCULATION

The squared error performance index (PI) is com-
monly used for model calibration. The PI user must
sample simulated variables and compare the variable
value with the desired value.

The CSMP variables are specified in terms of their
position in COMMON. A single dimension vector, C,
was made equivalent to the portion of COMMON CSMP
uses for parameters and variables to allow selec-
tion of any variables at execution time. The PI
user must know the C vector subscript to be able to
use a particular variable. The user needs a cross
.reference index giving the parameter name and its
Tocation in the C vector.

A routine to make squared error calculations for up
to five variables was written. A regquirement for
more than five variables was not encountered during
five years experience. :

-

TYPES OF PERFORMANCE INDEX

Two major possibilities for calculating the PI
during a single execution of a model occur in the
dynamic section of the CSMP run and in the terminal
section. CSMP translates modéel input statements
into a Fortran IV subroutine named UPDATE. UPDATE
is divided into four sections; SYSTEM, INITIAL,
DYNAMIC, and TERMINAL. The subroutine UPDATE is
called repeatedly during the execution run. The
dynamic PI is calculated in the DYNAMIC section of
CSMP UPDATE during execution of the simulation

run. Both PI's are squared error calculations.

The two PI's can be summed to yield a composite PI.

Normally, the dynamic and terminal PI calculation

426 December 6 - 8 1976

involves physical variables of the model best sui-
ted to squared error summation. However, a cost PI
is often.desired for agricultural models. Thus,
the PI routines weré written to include an optional
section to compute cost performance of the model.

The equation defining the DYNAMIC squared error PI

is written as: - ey
Lk oy i 2
PXD = 3j_; Zj=7 CMD;* (Vj (t;) PVDij (t;))

where LND is the number of variables specified, k

is the number of data points; CMD; are the weighting
factors for the jth simulation variable; V. (ty) is
the jth simulation variable at data point 1., and
PVD, (t;) is the corresponding desired data value.
Thedata points, PVDs and t; are entered as input
data. Normally the %1 are simulation times but
other optional parameters can be used to define the
data point. :

The TERMINAL performance index equation is written
as:

PXT = sINT oMr. w (V. - PVTL)®
T o (v - PYTY)

where LNT. is a number of variables specified, CMT;.
are the weighting factors, V: «is the jth simu]ati%n
variable and PVTj is the-corFesponding data point.

The economic PI is a simple way to sum variables of
interaest. The weighting factors in-economic situa~-
tions are appropriate prices. The DYNAMIC cost
performance index can be written as:

PeD = 25NC cost Uy (Ep)aisl, 2,000k

where LNC is "the number of variables specified,
COST ; are the prices, Vi (tj) is the jth simula-
tion Variable at data point ty. . :

The instantaneous value of the DYNAMIC cost-PI-at
specified data points is more jmportant than accu--
mulated PI. CSMP print routines can be used to
interrogate the cost PI during.the-dynamic simula-
tion. The DYNAMIC cost PI 1is not" accumulated.

A simitar equation is used for the TERMINAL cost
index. The TERMINAL cost index can- be added to
the overall PI, if desired. The PI and optimiza-
tion flow chart is shown in I71lustration 1.

Parameter Adjustments

The optimization package includes both a conjugate
gradient routine and a grid search routine. Either
routine can be used to study the effect of up to

six parameters on the five variables of the PI. For
each set of parameter values, the PI ‘is calculated
and passed to the proper optimization routine. ’For
each parameter used with the conjugaté gradient
routine, the location in thé C vector and the
initial value must be specified. "Also, the °

ILLUSTRATION 1
PI PACKAGE ADDED TO CSMP

Initial

w
(D
<+
=
1]
=
el
—

Param Values
i
Model
Initial
Computation

U5,

Compute
Model
Derivatives

y

Y
Load Tare Values

Opt

Yes

Yes

Increment Per-
formance & Cost Index

Computations

Mode1

@<,

Calculate Terminal
Performance and

Cost Index
?
1 Opt 2
Type
Gradient Grid

Yes

information for the PI must be specified.

For the grid search, the number of steps to be
taken and the percentage movement for each step
must be given. The grid search parameters are
calculated according to the formula

= °* : = sa e
Tj (r) = (1 + DELJ sJ), sj 1, 2, N

where T; (r) is the jth parameter adjustment value
computeﬁ from the rth run. DEL: is the percentage
increment and N is a number of gteps to be taken
with the jth parameter. The grid search routine
prints the value of the PI for each step. The
minimum value of PI in the grid and the associated
steps are printed at the end of the program execu-
tion. .

The conjugate gradient method alsc adjusts the
parameters via computed T. (r) values for each step
in the method. Parameter‘adjustments for the next
run are entered in the CSMP INITIAL section by the
equation

= *T ., -
C (LX;) = %, % T4 (r-1)

where LX; are the parameter locations in the C
vector, i- is the initial parameter value, and Tj
(r-1) is the jth parameter adjustment value calcu~
lated from the last run.

To enable adaptation of the PI package to other
models, the PI and associated optimization routines
were written as a Fortran IV subroutine with an
ENTRY for each of the INITIAL, DYNAMIC, and TERMINAL
sections of the CSMP execution phase. To make the
PI subroutine compatible with the particular model
under study, the parameters and variables of the PI
routine must be included in COMMON during UPDATE
compilation. -

ARRANGEMENT OF UPDATE COMMON

A cross reference index of variable names: versus
location in the C vector is needed for optimization
setup. Thus, a preliminary step in model calibra-
tion is the assembly of a cross reference index on
cards. Experience with the PI package revealed a
definition of the variable names was also useful.
With the description of the variable names added to
the index cards, the index becomes a dictionary.
The dictionary can be sorted alphamerically by
variable name and numerically by location -in C
vector. The two 1lists, plus an additional 1ist of
the variable names as arranged in COMMON, are handy
references for the user,

Experience with a large dynamic model indicated the
CSMP symbol table Tookup procedure was time consu-
ming. The symbol table procedure was speeded up

by Tocating the most commonly used variables and
parameters first in their respective sections of
the COMMON.,

Even with models initially translated by CSMP, the
reorganization of COMMON and the symbol table
resulted in more efficient execution. Originally,
the COMMON reorganization was done by hand. The

Winter Simulation Conference hat

hand procedure required careful cross checking
between the COMMON area and the symbol tables.
Also, the adjustment of the CSMP table Tengths was
important.

FORTRAN MODEL CONVERSION TO CSMP

The availability of other agricultural models, in
particular the watershed model, USDAHL-74, and

the cotton simulation model, SIMCOT, +in Fortran IV
Tanguages, sparked the desire to execute these
models by CSMP. The USDAHL-74 model clearly
exceeded -the 1imits of translation capabilities

of CSMP. The totail SIMCOT package would have also.

Furthermore, to use the models efficiently, d
dictionary of variable names had to be assembled.
The desire to use CSMP and the necessity to)
assemble a dictionary led to development of a stand
“alone program named LONER, LONER was written to
convert dictionary 1listings to a compatible symbol
table and to create a default data set. Also,
LONER computed the required CSMP table lengths.

The large models involved numerous parameters.
Many of the parameters were semi-permanent. Most
of the parameters were not changed during a single
execution. An unformatted record containing the
values of these parameters,was read into the COMMON
area at the beginning of the program. The input
translator of CSMP was then used only for changes
in parameters...Thus,. the. execution of the CSMP
input routine was reduced to a minimum. There-
fore, use of a default record greatly reduced
execution time.

The Fortran subroutines were then compiled using .
a modified COMMON corresponding to the symbol table.
The .CSMP table lengths were entered by a loader
subroutine. The Joader routine also added the
symbol table and the default parameters to the
COMMON area.

CSMP DESCRIPTION

Some of the subtleties of the CSMP program must be
understood to describe the details of the LONER
program. - CSMP uses a symbol table to determine
the Tocation of variable names in UPDATE COMMON.
The CSMP symbol table is-a packed listing of the
variable names in the program. CSMP input and
output procedures look up the variable names
during the execution phase by comparing the given
name to the symbol table Tist. The Tlocation of
the name in common is thus determined.

CSMP routines allow use of single dimension vectors.
The vectors are named in the symbol table. The
number stored in the COMMON location identified by
the symbol table is an indirect address of the first
item in the vector. The numbers stored in the sec-
tion of COMMON located by vector names are called
the Vector Indirect Table.

The CSMP symbol table is arranged by sections with
the integrator output,. input, and initial

428 -December 6 - 8 1976 1

conditions first, followed by parameters entered

as CSMP data, followed by variables, followed by
vector names, and finally a 1ist of integers.
During input, CSMP interrogates the integer list in
reverse order by starting at the last entry in the
symbol table and reading backward through the
integer 1ist. After making the integer or floating
point decision, the CSMP routine starts searching
at the beginning of the synbol table to locate the
position of the parameter value in COMMON. The
CSMP routine requires internal numbers defining
table lengths to accomplish the symbol table
search. " Normally, CSMP sets these numbérs in the
SYSTEM segment of UPDATE. ‘

USER. PREPARATION

The input into LONER can be of four types; (1) the
complete dictionary card Tlisting of the
program variables and parameters, (2) the com-
pressed form of card input consisting of an
already defined symbol table, vector indirect
table, and inter table with respective Tlengths
of these tables, (3) compiled structure and
defaults stored on disk, and, (4) parameter values
on cards. ITlustration 2 shows the inputs and
outputs” of LONER.

ITlustration 2
LONER Operation

Input Output’
(User Cards) (Disk Files)
Index -
Dictioenary .
or | - ~ System File:]
. - LONER | 1 STRUCT, SYMTAB; VIT
Compressed > ‘ IS
Structure -
- > Default File:
Parameter N - DEFSTR, DEF
Values

F—

To prepare for using LONER the first time, the
progrémmer assembles a card dictionary of the
variable and parameter names in the Fortran IV
subroutines. Then the dictionary cards are sorted .
by hand into the proper COMMON sequence of UPDATE
and the desired priority. (The COMMON sequence of
UPDATE is integrator output, jntegrator input,
initial conditions, parameters, variables, and
vectors). Within each CSMP section, the programmer
1ists the variables or parameters in order of
priority with those to be accessed most often
placed first., The dictionary listing, arranged by
hand, is then used as input to LONER.

Section identification cards used to identify the
COMMON section of UPDATE are added to the dictio-
nary. The programmer uses other control- cards to
execute phases of LONER. A control card or section
jdentification card is fdentified by a colon in

column 1. Comment cards are identified by an
asterisk in column 1. :

The output from LONER consists of two main files,
usually written to disk. These two files are the
system file and the default file. The system file
contains three records; the model structure, the
symbol table, and the vector indirect table. The
structure record is a fixed length record contai-
ning the table Tlengths of the model and other
descriptive information.

The structure of the model is further defipned in

. the symbol table and the vector indirect table.
Both records are variable length. The symbol

table record contains the packed variable and
parameter names including vector and the integer
names. The vector indirect table record contains
the indirect addresses of the beginning of the vec-
tor represented by the nameé in the symbol table.

The default file contains two records. The styuc-
ture of the default is a fixed length record which
defines the length of default and contains informa-
tion to insure the default file is compatible with
the structure of the model being run. The default
record contains the parameter values to be used
unless changed by the user. The LONER program

can, upon command, create the default file. The
user must input parameter values into LONER to. set
values other than zero. .

~ DESCRIPTION OF LONER
Input Control Loop

The flow diagram for LONER input control loop is
given in I1lustration 4. Basically, LONER is a
group of sections accessed in a given order by
control cards. The subsections perform their pro-
cedure and return contro] back to the command

ITlustration 3
Load System Operation

UPDATE
| 3R

System File:] _
STRUCT, SYMTAB Loader

UPDATE
Common
(Execute Phase)

Subroutine p»
Default File: .
DEFSTR, DEF)

To execute the model, a short Toading subroutine,
called from the UPDATE SYSTEM section reads the
structure information from the system file and
inserts table lengths in the correct location in
COMMON. Then the symbol table is read into the
correct location in COMMON. With the structure of
the model defined, the loader routine interrogates
the structure of default record from the default
file, If the information is compatible with the
model structure, the default record is entered
into COMMON. The Toader program also contains
subroutines enabling the user to insert parameters
or vectors directly into COMMON. The loader
initialization of the model is faster than using
the CSMP input translation package.

ITustration 4
Loner Command Loops

Initialize
|
|
Read Card
Command » System >
Sieve
» Name >

——3 Head

——» Structure
j——> Symbo1 Table ~—————sp-

——Vector Indirect Table ——»

——=Dictionary »

= lse >

l—n Create »

—- Copy >
3 C211 : —
———> Finish »
————3 Stop s

——s-i;oad Parameters —————y-
— Load Vectors ——————
——» List System ———
———List Default ———————p=
——» Set Reader ——— 3]
—»Set Printer ——r—————
——»= Set No Print Switch ———3
——»~ Set Print Switch ————

——» Set Test Mode ——————wp]

——»~ Set Abnormal End Test —

“IMnter Simulation Conference 429

input Toop which reads the nekt_contro] card,
Thus, the description of LONER is a description of
the individual subsections.

Loading the System Information

System

The system section initializes the program and
assigns output files for the system. The system
section is required whenever system informat1on is
to be read from cards and written to disk.

Name and Head

The namé of the model is used for disk file secu-
rity and to insure the proper default is being used
with the corresponding model structure. The name
on the following card will appear both in the
structure and the default structure records on the
system and default files, respectively. The
heading command is for user convenience. The
command enables print of the heading describing
‘the dictionary or model on the printed output.
Both commands are optional. '

Structure

The structure section reads four cards. If the
cards are all blank the LONER program will do the
necessavy counting. If they are not blank, the
input structure, resuiting in table lengths for
CSMP execution, overrides the counts generated by
the LONER program. The operation of the structure
section is straight forward, it reads the numbers
of integrators, parameters, variables, number of
indirect vectors, number of vector lengths and the
number of integer names. The use of default is set
and the appropriate table lengths are calculated.
Th$ CSMP 1imits are checked to see if the model
will fit.

Symbol Table

The 'symbol table section is used only for input of
the packed symbol table. This section reads the
symbols in compressed form, fills out the symbol
table with blanks if required. An optional para-
meter on the control card specifies ‘the number of
cards to follow. If specified, the number of cards
is checked. Any excess cards are printed and
ignored.

Vector Indirect Table

The vector indirect table is used only for the
compressed form of the input data. This section of
the routine reads the cards containing the
vector indirect addresses. As with the symbol
table section, the vector indirect table fills in
where necessary with zeros. As with the symbol
table input, the number of cards to follow can be
specified.

430 December 6 - 8 1976

Dictionary

The dictionary section of LONER, shown in ITTustra-
tion 5, reads the card dictionary and creates a
symbol table and the vector indirect table.

After the initialization of the dictionary section,;
a card is read and the first word on that card is, =
interrogated for recognition. If the card is alpha-
meric, the dictionary section fills the symbol table
and reserves storage space in the default table.

ITtustration 5
Dictionary Section

Initialize

[
A

Card —Alphmeric
Recog. |
Sieve +—Section Identification
——Fillers (Blanks)
A——-Conments
SYMTAB
4Print Blank; Save FiTl
& Vector Next . Symbo1
Ignore Length | Command | Table
Reserved -
Finish 1 Reserve
Previous Default
Section Storage

Prepare
for . 4
new >

Section

SeCtion identification card$ are identified by a
leading colon, the same as command cards. How-
ever, the section identification cards are dis-
persed through the dictionary and identify the
appropriate CSMP section of the following variable
names. CSMP sections are timer, the integrators,
parameters, variables, vectors, and integers.

An end card is used to identify the end of the
last section.

The dictionary section counts the number of symbol
names and reserves the appropriate default storage
for each section. The Timits of a CSMP section
cannot be set until the dictionary section
receives a section identification card indicating
d new section will start. The dictionary routine
then saves the identification information and
proceeds to finish the computations for the)
previous section. Upon returning from the previous
section, the dictionary routine checks if the pro-
gram end has been reached. If not, the routine
prepares for the next section and continues. .

Filler cards are identified either with a plus, for
a single dimension variable, or ampers and for
vector storage. When these cards are encountered,
the symbol table is left blank, and the appropriate
length is reserved in default. As elsewhere in the
LONER program, the dictionary section recognizes
comment cards by an asterisk. Comment cards are
printed in the output listing but ignored other-
wise.

The section identification card for integers is
optional. If it is included, the variable names
following will be identified in the integer section
of CSMP symbol table. The other option is to
identify integers by using a negative identifica-
tion number on the dictionary cards. The dictio-~
“'nary section of LONER recognizes the negative
nimber and later generates an integer table for
these variables. Any number of variable names can
be integer. However, CSMP can recognize only 20
names. Thus, the user may want to specify 20 most
important names to be entered through CSMP finput.

Use

The use section bypasses the dictionary or com-
pressed input section and recovers a previously
compiled system from disk storage. Thus, the
routine goes to the systems file and reads in the
fixed length structure record. The structure
information enables the reading of the variable
length symbol and.vector indirect table.

Loading Default Information

Once the user of LONER has defined a system either
by using the compressed form on cards, the long

dictionary Tisting, or retovering the .
system from disk storage, the default information
can be processed.

Create

The create section creates an empty default and
inserts the vector indirect table.

Copy

The copy section enables the LONER user to copy an
old default record from the fault file.

Call

At this point in LONER execution, the user must
have a system and an empty or an old default
defined. The CALL section enables the user to
read in new parameters or new vectors to either
(1) 111 an empty default, or (2) modify an

old default.

Finish

At this stage in LONER execution, the user has a
compiled system and updated default. The finish

chﬁion results in the new default file written to
isk.

Two supporting subroutines are required. The
subroutines enable LONER to read or write a variable
length record in unformatted mode into or out of a
fixed dimensioned array. The subroutines accomplish
this without resorting to a slower implied do loop. -

Other Loner Execution Commands

The load parameters and load vector-sections cause
the program to read parameters and vectors,
respectively. The 1ist system and 1ist default
sections cause LONER to print out the system
records and the default records, respectively. The
stop section ends LONER execution.

Set Commands

A number of commands are provided for user conve-
nience to enable the user to set the reader and the
printer file numbers, to set print or no print
switches, to set a test mode and to test abnormal
endings. The test mode prevents output to either
system or default file. The abnormal ending test

is used primarily for LONER modification by a
programmer. When LONER encounters an abnormal end, -
the routine prints out an organized dump,

DISCUSSION

The LONER program has been used in three major
applications., Although the USDAHL-74 model dup1i-
cated runoff data on one experimental watershed
near Oklahonmia State University, the model failed to
give accurate predictions for a second watershed.
The Fortran IV subroutines of USDAHL program were
converted to use with CSMP execution. The conver-
sion enabled effective simulation of a model
consisting of about 2,000 cards and 15 subroutines.
CSMP execution and the PI package was used to
locate model parameters to enable the model to
predict accurately on the second watershed.

Winter Simulation Conference 1431

The discrepancy between the model performance and
real data occurred when excessive runoff after a
Tong dry spell was predicted by the model and
real data indicated very little runoff. A series
of PI investigations indicated the equation for
soil cracking was significant. However, the soil
cracking parameters were internal variables calcu-
Tated from other input:data. When the Fortran
subroutine made the calculation, the input
variables were destroyed. Thus, the PI package
could not function. Rewriting of the Fortran
subroutine was suspended because of personnel
termination.

The LONER routine was used to enable CSMP execution
of the SIMCOT routines for germination and
immergence. The SIMCOT germination and emergence
program was compared to field data collected by
Oklahoma State University. The germination and
plant growth simulation was easily compared
visually to the actual data.

Several elements in thé model were erratic. The
CSMP ability to select different output para-
meters and frequencies enabled the researcher to
systematically inspect the model performance. An
integration-step size incompatibility was detected
in the equations defining moisture at various soil
depths. Improvement of the model required struc-
tural changes. Personnel graduation terminated
the modeling efforts. .

The third major use of the LONER program has been
to assemble the COMMON area .of a physiological beef
model, BOSCO5. The physiological model 1is a
combination of the well developed thermal and
growth sections of the old BOSCOM model, a newly
developed stomach section, a newly developed
anaerobic digestion section, and a tentative
protein pathway model. Combining the four models
into one comprehensive model was facilitated by
LONER. The symbol table, COMMON and default size
have been defined. Structure organization and
‘parameter calibration of the entire model is
proceding.

The PI package has'enab1ed calibration of the para-
meters of the BOSCO5 model. When calibration

becomes erratic or difficult, the CSMP capability
to print out selected variables at desired fre-
quencies has enabled the researcher to identify
needed structural chahges. A subsection of the
model structure can be easily changed, if
necessary, by recompiling the proper subroutine.
Each BOSE05 subroutine has ENTRY calls, for the
INITIAL, DYNAMIC, and TERMINAL sections of CSMP.

Conclusions
(1) The execution routines of CSMP combined with a
general purpose PI package enhances the deve-

Topment and calibration of agricultural models.

(2) LONER compiles CSMP compatible structure and
default records from a dictionary list.

L32 December 6 - 8 1976

(3) LONER enables conversion of large Fortran IV
programs to the CSMP execution format without
using CSMP translation.

(4) The default file, created with the aid of
gONER, allows a significant reduction in model
initialization time over CSMP input transla-
tion or the usual formatted read statements.

REFERENCES

1. IBM Application Program, 1968, System/360
Continuous System Modeling Program (360A-CX-16X)
User's Manual H20-0367-2, IBM Corporation,
White Plains, NY 10601.

2. IBM Application Program, 1967, System/360
Continuous System Modeling Program (360A-CX-
16X) System Manual GY20-0111-0, IBM Corporation,
White Plains, NY 10601.

3. Paine, M. D., 1971. Mathematical Modeling of
Energy Metabolism in Beef Animals, Ph.D. thesis,
Oklahoma State University, Stillwater, Oklahoma.

4. Witz, John Alva, 1972. Systems Modeling and
Computer SimuTation of the Beef Feedlot Animal,
Ph.D. thesis, Oklahoma State University,
Stillwater, Oklahoma.

5. Holtan, H. N., et al., 1974. USDAHL-74 Revised
Model of Watershed Hydrology, Plant Physiology
Institute Report No. 4, _Agriculture -Research

Service,.U. S. Department of Agriculture. ’
6. ARS-S-52, 1975, Computer Simulation of a Cotton

Production System, Agriculture Research Ser-
vice, U. S. Department of Agriculture.

*

