'THE INTERACTIVE EXTENSIBLE SIMULATION CAPABILITY OF CML

ABSTRACT

The Conversational Modelling Language 1s a
system for the implementation of hierar-
chies of computer languages to provide
simulation and other modelling capabilities
to decision makers. The basic language

is interactive, flexible, extensible,
structured and exhibits features of parti-
cular use to the simulation of health care
facilities.

THE CONVERSATIONAL MODELLING LANGUAGE

The construction of decision support sys-
tems to serve as a basis for the rational
planning of health care delivery organiza-
tions necessarily involves modelling of
their demand and service processes. The
models developed are based on different
mathematical structures or modelling tech~
niques for different aspects of the over-
all health care delivery planning problem:
e.g. clasgsificational models of the demand
for health care, queueing models of the
servicing of this demand, statistical
models of its effectiveness, linear opti-
mization models of the consequent resource
allocations. Given the integrated imple-
mentation of these models on a computer
and sufficient empirical demand and service
time data, it is then possible to provide
planners with the projected behavior of the
delivery system for any proposed set of
budgets and utilization policies.

Any practical implementation of the above
scheme must take into account the fact that
the individuals responsible for and knowl-
edgeable about health services planning
have a great deal of information about
their decision problems that the computer
must know if it is to be of significant
help to them. However, these people are
usually not expert in modelling and rarely
expert in computer programming. It is not
practical for them to communicate this
gstructural knowledge directly to the
machine, The problem can be resolved by

Ronald E, M%lls, M, Phil, .
" President, Puter Assoclates, Ine.

the formation of a team: health plan-
ners and operations researchers inter-
act and generate specifications for
programs that transform empirical data
into useful projections. Unless the
hierarchical modelling structure is
well understood (i.e. everyone per-
ceives correctly what is variable,
what is constant, what is structural
and what is parametric) small changes
in the planning environment or objec-
tive can lead to enormous changes in
the programs, The decision support
system consisting of this team and its
programs will not be sufficiently
responsive to be used.

What is needed, instead, is a mecha-.-
nism that allows the health planner

to communicate his knowledge and ob-
jectives to a computer that is ready
to understand him: the computer pre-
viously has been given a model and
framework in which to place the infor-
mation being given to it, Further,
the construction of this model should
be through a direct communication
bagsed on a yet more fundamental model
and framework., At the base of this
hierarchy of models and specifications
of models is the computer's under~
standing (i.e. excdeutability) of its
own internal structure,.

For example, a systems programmer,
working at the machine language
(assembler) level constructs facili-
ties for the generation of random
variables and the storage of data in
lists of entities. A higher level
language programmer utilizes this
facility to construct.a general multi-
server queueing model. An operations
researcher casts this model in terms
of patients and nrursing personnel.
The health planner provides data and
recelves expected staff utilization
profiles. Each contributor provides
both additional structure (knowledge)
to the computer and a means of com~
munications (language) for the next
contributor.,

Winter Simulation Conference

331



CML SIMULATION ... Continued

To some extent, this hierarchical specifi-
cation of knowledge is already in general
practice. Computer languages bridge the
gap between machiné structure and "models”
of data and procedures. Some go further
to provide basic simulation world-views:
events (SIMSCRIPT), processes (GPSS),
activities (SIMULA). With these languages,
models with a high degree of generality
can be constructed. These may be para-
meterized by their users at run-time to
produce particular cases of interest.
However, this hierarchy is usually two-
level and at most three, and the style

and language of the interaction at each
level is radically different. For greater
flexibility and efficiency, a mechanism
admitting of more levels of specification,
consistent language and more sharing of
capabilities between levels is needed.

The Conversational Modelling Language (CML)
[3] represents an attempt to provide such a
mechanism. CML is an extensible, inter-
active, general purpose programming system
with special capabilities for discrete
event simulation, linear optimization and
statistical analysis. CML is constructed
hierarchically from an initial set of
fundamental programs (called the CML
Nucleus) written in Assembler for IBM 360
or 370 computers. The Nucleus provides

~all interfaces to. the operating
system for 1/0 or supervisor services

-linguistic facilities providing
CML's language extensibility

~program library management and.
dynamic object program loading

-an extensible 360/370 Assembler

With the fundamental programming facilities
provided by the Nucleus, a second level
algorithmic, structured, programming lan-~-
guage is defined. This language (generally
referred to as CML) was modelled after the
general purpose languages in popular use
during the early 1970's when CML was built:
PL/I, ALGOL 68, SIMSCRIPT II. CML pro-
vides flexible data representations:
several datatypes, structures {(entities),
arrays, lists, queues, trees, and dynamic
memory management. Program control state~.
ments are generally block oriented, which ’
encourages structured programming, and
numerous linkage conventions are supported,
which encourage modularization and allow
recursion.

CML, the CML Assembler, and the CML
linguistic facilities togethér form a
basis on which hierarchies of special pur-
pose, problem oriented, languages can be

332 December 6 ~ 8 1976

-

constructed., This system has, in ad-
dition to its extensibility, several
attributes not generally available in
simulation languages.

Consistent Environments

CML cannot be classified strictly as a
compiler or as an interpreter. Like an
interpreter, CML can accept and di-
rectly execute CML source statements.
Like a compiler, CML can translate CML
source statements into machine code and
save the machine code for later execu-
tion. Unlike most compilers, however,
CML does not generate object decks that
must be link-edited into load modules
before being executed. Instead, when-
ever a CML program is being executed or
compiled, a total CML environment is
maintained for that program: a small
set of CML service routines are always
in core when anything related to CML is
running and the entire CML compiler is
available to any system written in CML.
Thus, in a sense, like an interpreter,
CML provides support for the exécution
of its statements while they are being
executed. Although it is often not
obvious to their users, many strictly
compiler languages (particularly PL/I
and SIMSCRIPT) provide an execution
time environment by forcing the link-
editing of modules from their run-time
libraries. CML makes this environment
explicit, removing the separation be~
tween compile time and evecution time.

It is useful to characterize the opera-
tional difference between CML and more
conventional programming systems. With
these languages, the programmer typ-
ically creates source programs and uses
a compiler to translate them into
machine language expressed in an as-
yet— nonexecutable form called an ob-
ject deck. These object decks are then
link-edited, typically along with many
gstandard routines from languagé-asso-
ciated object libraries, into complete
load modules, These are loaded into
core and executed, For PL/I, and to a
lesser extent for the others, space for
program variables is dynamically allo-
cated by the language routines in the
load modules, and various capabilities
are also available for debugging.

This program construction system has
several major disadvantages. The dis-
tinct compile, link-edit and execute
steps provide three completely dif-



ferent environments, each with its own
rules and point of view. There 1s a set
of errors detectable at compile time,
another set at link-edit time, and facil-
ities for finding bugs at execution time.
This last set of capabilities is not
available for finding or correcting com~
pile or link-edit time errors. Further,
these facilities must often be placed in
the execution phase by steps performed

by the programmer before the compilation
phase. This program development is
characterized by expensive iterations

of the compile-~linkedit-test cycle until
a satisfactory load module is created.

CML differs from this approach by pro-
viding the same environment for both the
compilation and execution of programs,
and by substituting a program library
and dynamic loading for linkage editing.
When the user enters CML he has all the
facilities of the language for both the
construction and execution of programs.
The programs he creates are represented
and treated the same as the programs
constituting the CML compiler itself,
and the latter set can be easily used as
subroutines of the programs he writes.

Interaction

CML utilizes the teleprocessing and time-
sharing capabilities of its host system to
interact with users. Because of the vir-
tual presence of all levels of language
simultaneously, users can enter commands
or respond to prompts from running pro-
grams not only to provide data to the
programs but also to add to or modify

the programs themselves. There is a mode
of operation in which any statement pre-
sented to CML is compiled and immediately
executed, instead of becoming part of a
program. This allows the incremental
interactive solution of one-shot processing
or analysis problens.

Facility Sharing Between Language Levels

It is possible, with coanventional lan-
guages, to provide a problem oriented,
interactive, user interface that is suffi-
ciently flexible to call it a language.
However, it is generally difficult to pro-
vide that interface with any of the data
processing tools already available in the
implementing language. The structure of
CML permits the easy incorporation, at
higher language levels, of the facilities
of the basic languages. Two examples of
this are worthy of note: the CML simula-
tion language includes the CML assembler
language as a subset. The simulation pro-
grammer can switch into assembler for the
coding of tricky or efficient inner loops.
The CML expression compiler and executor
can be used in higher level user lan-

guages, providing those languages with
the full computational power of arith-
metic, logical and functional syntac-
tic forms.

Events and Waits

The simulation extension of CML pro-
vides several mechanisms for the con-
trol of the simulation timer. Events
(delayed subprogram calls) can be
scheduled and timer-invoked programs
can contain WAIT statements that simu-
late the passage of time during the
program's execution. This allows the
simulation programmer to use a mixture
of process specification sgyles in
describing the dynamic relationships
of his model. These timer controls
are naturally available to higher
levels of language as well.

Debugging

Since experimentation with a simula-
tion model often involves program
changes, debugging 1s a constant acti-~
vity of the simulation user. CML pro-
vides interactive explicitly-for-debug
ging facilities; however, debugging is
most alded by the interactive execu-
tion capabilities of the languages,
When the observed behavior in one
level of a model is questionable,
statements can be entered and execu-
ted at lower levels to inspect and
modify the internal representation of
the higher level. This allows debug-
ging at any language level to be per-
formed by any user who understands

the operation of that level and the
use of the language implementing that
level.

CML Extensions

The simulation user is often assisted
by extensions of CML that have been
constructed to serve other ends.
GROUPER is a CML extension that imple~
ments the mapping of a multi-~dimen-
sional variable space into the inte-
gers. It was constructed to support
the easy specification and efficient
implementation of the classification
of hospital inpatients into groups for
utilization review. It is useful in
health services simulation as a
mechanism for associating service pat-
terns and service time distributions
with pre~defined sets of patient at-
tributes. AUTOGRP [4, 5] is a CML
extension that implements an interac-
tive statistical analysis capability,
An AUTOGRP user specifies the genera-
tion of tables, histograms, various
descriptive statistics, hypothesis
testing and variance reduction algo~
rithms via a set of commands isgued at

Winter Simulation Conference

333



CML SIMULATION ... Continued

his terminal. For the stimulation user,
AUTOGRP is valuable as a device both for
the derivation of parameters from empiri-
cal data before a simulation experiment
and the analysis of simulation results,
Finally, the Linear Modelling Capability
(LMC) provides an interface between CML
and MPSX for the formulation, solution,
and presentation of linear optimization
models.

CML has been ‘used as the basis of several
large and small scale health service simu-
lations [1, 2]. The system is available

free from the author and is ‘easy to instal
on any IBM 360/370 with 08, o

BIBLIOGRAPHY

1. Bisbee, G. The Relationship between
Case-Mix and Management of Allocation of
Medical Case Resources, Ph.D, Dissertation,
Department of Epidemiology and Public
Health, Yale University, 1975.

2, Fetter, R., Mills, R., "HOSPSIM: A
Simulation Modelling Language for Health
Care Systems", Simulation, March 1975,

pp. 73-79.

3. Mills, R., Fetter, R., Averill, R.,
The CML Reference Manual, Institution for
Social and Policy Studies, Center for the
Study of Health Services, Yale University,
Working Paper W6-49, September 1976.

4, Mills, R., Fetter, R., Riedel, D.,
Averill, R., "AUTOGRP: An Interactive
Computer System for the Analysis of Health
Care Data", Medical Care, Vol. 14, No. 7,
July 1976, pp. 603-615.

5. Theriault, K., Mills, R., Elia, E.,
The AUTOGRP Reference Manual, Institution
for Social and Policy Studies, Center for
the Study of Health Services, Yale Univer-
sity, Working Paper W6-47, July 1976.

33&1 December 6 — 8 1976



