COMPUTER SYSTEM SIMULATION:

A DESIGN EVALUATION TOOL

INTRODUCTION

The increasing complexity of weapon systems
is an ever present fact of life in the
military system procurement business.
Complexity impacts development cost,
development schedules, and operational
support once the system is deployed for
use. Complexity also has a significant
impact on how well user stated system
performance goals are met. Generally, as
design complexity increases, so does the
level of effort reguired to meet user
performance needs - on time and within
budget.

Weapon systems which contain embedded
computers are generally among the most
complex. An embedded computer system is a
collection of hardware devices and software
which serve to support an overall weapon
system mission. Embedded computers are
used to process radar track inputs, drive
display devices, control propulsion systens,
and supervise the launching of various
categories of ordnance. On a larger

scale, computers are employed by combat
elements directly to process intelligence
data, route command message traffic, solve
complex trajectory problems and assist in
controlling the movement of supplies and
replacement parts to front line units.

Like hardware, computer software goes
through an acgquisition process consisting
of concept, validation, full scale develop-
ment, and production deployment phases.

The major concern in the concept phase is
the derivation of the computer system
requirement in consonance with the overall
requirements for the weapon system. The
validation phase emphasizes the design
effort where proposals for hardware and
software configurations are brought forward
and evaluated against user requirements.

In the validation phase, design decisions

Dr. Robert S. Feingold
U.S. Air Force Data Automation Agency

are made which ultimately effect how well
the computer system will meet its performance
goals. Full scale development concentrates
on the acquisition of hardware and the
programming of software according to the
design selected in the validation phase.
Full scale development is lengthly and
concentrates on testing of hardware and
software in a controlled environment. The
production-deployment phase starts after

the production baseline is established.
Software is easily reproduced for deployment
while hardware must proceed through the
usual manufacturing and qualifying steps.

Although the process outlined above, for

the most part, follows the traditional
acquisition approach, the potential for
encountering major development problems
still remains high. Problems usually

result from decisions made quite early in
the development process. Quite often the
amount of effort devoted to hardware-
software design trade-off studies in the
validation phase is not sufficient to
adequately identify potential problems. A
contributing reason for not devoting resources
to computer system hardware and software
trade~off studies has been the lack of
adequate tools to assist in this effort.
Software design trade~offs are extremely
difficult to study before the software is
written or before the hardware becomes
available. As a result, the computer

system designer finds himself making hard-
ware configuration and software implementa-
tion decisions based primarily on his past
experience. The consequence may often be

an imbalance in total system performance

due primarily to the failure of the embedded
computer system to adequately support the
weapon at the desired level of effectiveness.

The primary goal of this paper is to present

a computer system design evaluation method-
ology appropriate for the validation phase

Winter Simulation Conference 293

Computer System Simulation (continued)

that involves the user, the designer, and
the developer in an iterative and inter-
active design evaluation activity. This
methodology, which relies on the operations
research technique of system simulation, is
asserted to be well suited for use in
evaluating complex embedded computer systems.
In this environment, the simulation pro-
grams represent relevant system and sub-
system relationships in model form and can
be used to evaluate the cost, schedule, and
performance impact of various proposed
designs in response to user stated require-—
ments. :

A "hypothetical situation” is used to
illustrate how computer system simulation
can be employed in the acguisition process.
This approach is intended to dramatize the
process by permitting an indepth look at
the computer system simulation technique
and how it can be used by a program office
responsible for an embedded computer system
development.

COMPUTER SYSTEM ‘DESIGN EVALUATION
METHODOLOGY

For our purposes we will view the design
evaluation process as consisting of six
steps related to one another as shown in
Figure 1. The process is iterative in that
the design evaluation teams can use the
results from experiments to develop addi-
tional design alternatives and suggest
challanges to existing user requirements.
This iterative process, however, cannot go
on forever. For one thing, time is usually
the major constraint. For another, and
perhaps even more important, there is a
limit to the sensitivity that model based
evaluation techniques can show given gross
statements of requirements and design
alternatives. The evaluation must stop
sometime and culminate in a set of design
decisions which are carried forward for
implementation into hardware and software.

Reguirement Analysis

Basic to the success of the design process
is an understanding of the user's objective.
Achieving this understanding is often
difficult since the path the designer
follows is often cluttered with user jargon
and user design biases included within the
stated requirement. To overcome these and
many other similar problems, user-designer-
developer teams should be formed to work
through the entire process. Clarification
of user intent and developer capability at
an early stage usually contributes to
overall success by reducing the number of
false starts in the beginning and by
shortening the design approval process
later on.

‘294 December 6 - 8 1976

ANALYSIS

DESIGN

SYNTHESIS

BUILD/MODIFY
SIMULATION
MODELS

PERFORM
EXPERIMENTS

ALTER
DESIGN

EVALUATE
RESULTS

DOCUMENTATION

DESIGN EVALUATION PROCESS

FIGURE 1

The output from this first step is an
initial understanding of the problem the
user wants solved, some insights toward
developing a set of potential solutions,
and, most important, an integrated user-
designer~developer team that can function
effectively through the remaining five
steps.

Design Alternative Synthesis

Synthesis of system design alternatives is
a creative process which combines the
designer's understanding of the requirement
and his ability based_on his training,
knowledge of the technology, and past
experience. Some alternative evaluation
takes place at this step in the process.
Realistically it is not desirable to elim-
inate design evaluation totally at this
point. Although many proposals will be
made, only a few will be worth further
study. Judgement is essential to filter
out those proposals which do not merit
further considerations. In the environment
being discussed here, this judgement is
supplied collectively by user representatives
working together with system design and
development specialists.

In the past, all design evaluation was
accomplished using techniques which did not
always account for the inherent complexity
of modern computer systems. In many cases
it could not be helped since economical
evaluation techniques were not available
for doing indepth analysis nor were there
techniques sufficiently responsive to the
designer's need for quick and accurate
answers to design trade-off questions. As
we shall see later on, the computer system
simulation approach is both available and
responsive.

Model Building

The process of model building satisfies two
very critical requirements. First, it
permits the user-designer-developer team to
articulate their combined knowledge of
requirements and design alternatiwves into a
physical entity, called a model, which is
understandable and can be subjected to
intensive analysis. If a model cannot be
built which is easily understood and incor-
porates the major design features proposed
in the synthesis step, then the entire
process up to this point is not successful.

The second major requirement satisfied
during model building is the development of
a responsive tool which is useful through-
out the remainder of the process. The
model, if constructed properly, extends the
intellectual abilities of the design evalua-
tion team by providing them with insight
into system component relationships rather
than with only masses of numbers to analyze.
The design team can try out logical com-
binations of design and requirement variables
to arrive at a reasonable understanding of
what the proposed system will do and how it
will behave under a wide variety of circum-
stances.

Model building is illustrated in the next
section where a model written in a language
called ECSS II, the Extendable Computer
System Simulator II is constructed. This
language is a product of the RAND Corpora~
tion and was developed for the U.S. Govern-
ment under sponsorship of the Federal
Computer Performance Evaluation and Simula-
tion Center (FEDSIM) and the General
Services Administration. ECSS II is being
used here because it satisfies the two
previously stated modeling requirements:
understandability and responsiveness. ECSS
IT has an English-like syntax, provisions
for compact descriptions of computer
elements (hardware and software), flexi-
bility, extendability, modifiability, and
the provision for economical rerun. At the
same time, report generation capabilities
and data collection facilities are very
good.

Experimentation

Experimental runs made with a model should
be designed to explore as much of the
design and requirement response surface as

possible. An exhaustive search is impossible.
However, experiments should be performed
which allow the design evaluation team to
first validate the model and second to
examine system performance behavior relative
to changes in sensitive design variables.

Model validation is a major subject unto
itself. ©Let it suffice for our purposes to
say that a model should be validated to a
point where its belavior can be explained
by either a model coding error or a phenom-
enon which the modeler can reasonably
expect from the actual system.

As a design evaluation tool, the computer
system simulation model is used to obtain
numerical data on the performance of a
proposed system given input design variables
and a simulated operational environment. A
series of experiments are usually run, each
with logical variations made to the input
parameters. At the end of the experimental
phase, the outputs are correlated with
these changds in design inputs and a

better understanding of system behavior is
achieved.

For most computer system simulation models,
there are three classes of input variables.
First, there are those' variables which
represent hardware options such as pro-
cessor speed, memory size and input-output
capacity. Second, there are variables
associated with software design options.
Included in this class are various possi-
bilities for implementing application
software, memory management techniques, and
multiprogramming control schemes. Third,
there are variables related to the opera-
tional environment. For example, a message
handling system gperates in an environment
where message arrival rates and sizes are
quantified and specifications for message
response times are given.

Evaluation of Results

The fifth step in the process is intended
to result in one of three possible decisions.
If the results of the experimental runs
indicate that the proposed designs are
inadequate, then the team must go back to
step two and try to develop new designs.
Quite often a system design which on paper
appears to satisfy the requirement turns
out to be a miserable failure. When a
simulator conclusively shows that a problem
exists, the design evaluation team has no
alternative but to drop back and try to
develop new designs.

The second possible decision is closely
related to the first but differs enough to
justify separate treatment. After several
iterations, it may become clear to the
design evaluation team that the state-of-
the~art does not provide a feasible design
for satisfying the requirement. 1In this .
case, the design evaluation team might
challenge the requirement by using the
model to evaluate the effect of relaxed

S/

295

Winter Simulation Conference

Computer System Simulation (continued)

requirement on design choice. Full user
participation in this kind of exercise is
mandatory. It must be emphasized that
modifications made to the requirement
inputs of the model are for experimental
purposes, to determine the trade—-off of
system cost to changes in requirements.

The third possible decision represents the
end product of the process to this point:
the selec¢tioh of a feasible system design.
Using the model, the design evaluation team
can select one or a small number of designs
worthy of further consideration. Given
such a determination, the design evaluation
team can move on to the final step.

Documentation

The final step, although it may appear
anticlimactic, is really quite important.
The design evaluation team must report its
findings which become the basis for seeking
approval to continue work. It is impottant
that this documentation be clear on a
number of key points. First, the process
used by the design evaluation team to
translate the regquirement into model inputs
must be absolutely clear, Second, the
documentation must clearly and completely
state all assumptions that went into the
fabrication of the model for all three
classes of inputs mentioned earlier.

Third, the model itself must be completely
explained such that the embodiment of all
the previously stated assumptions are
clearly identified within the model repre-
sentation. Fourth, the data collected from
each experimental run must be defined so
that a clear interpretation of numerical
values can be made. Fifth, the experimental
design must be described and justified.
Finally, the results from each experimental
run must be described in terms that clearly
support the conclusions and recommendations
of the design evaluation team.

These requirements for documentation may
seem excessive, but it must be remembered
that computer system simulation is viewed
by some as suspect because full disclosures
of methodology in the past were not made
and it was not clear how the recommendations
produced were derived. Remember, there is
no such thing as "hard simulation data"

upon which high dollar decisions can be
made with low risk.

ILLUSTRATION

Hypothetical Requirement

To fully illustrate the use of computer
system simulation in the embedded computer
system design evaluation process, a hypo-
thetical situaion is provided consisting of
a typical user regquirement and one possible

‘296 Dacember 6 — 8 1976

. (and model) to be proposed.

design proposal. Although only one design
proposal is discussed, it should be clear
that the methodology lends itself to
handling any number of design proposals.

[CENEE

Suppose that a tactical field activity
needs to improve its capability to quickly
process information on potential tactical
targets and provide responsive reports to
air component commands on possible tactical
air missions that should be flown against
these targets. Specifically, it is desired
to search lists of known targets, update
these data, and display those targets that
have attributes corresponding to the input
search arguments. Additionally, it is
desired to obtain timely printed reports
which display target data in a variety of’
ways. That is, report formats must be
flexible enough to satisfy new regquirements
encountered in the field.

In general terms, three capabilities are
required: first, an ability to input
target data into the system so that it can
be retrieved at a later time; second, an
ability to search and update the data base
for records satisfying a number of the
search input characteristics; and third, a
facility to provide printed reports of
previously conducted data base searches.
The user also desires to record all system
transactions in printed form so that hard
copies of all data base changes and accesses
will exist.

Based on his knowledge of the environment,
the user also provides additional details
of his requirement. First, he defines a
system encounter to be any series of inter-
actions between a human operator and the
mechanized system. For example, a typical
data input encounter consists of an input
stream of characters representing target
data and the output is a signal from the
system that these data are safely stored in
the data base. Second, the user provides
information on the number of encounters
that the system is required to process per
hour. Third, the user provides an indica-
tion of the number of characters of input
associated with each encounter category.
Finally, some indications as to the volume
of print characters needed to complete each
encounter are provided.

Table 1 summarizes these general require-
ments for all encounter categories. By
themselves these requirements are not
sufficient to develop design alternatives
let alone build a simulation model. How-
ever, for the sake of illustration, we will
assume that additional information exists
which helps refine the user environment to
a more detailed level and allows a design
For instance,
it is safe to assume that each encounter in
reality is a series of man-machine inter-—

OUTPUT
ENCOUNTER ENCOUNTERS INPUT PRINT
CATEGORY PER HOUR CHARACTERS ~ CHARACTERS
|{paTA TNPUT 30 80-1,000 480-6,000
DATA BASE 12 40-200 4,800-24,000
SEARCH AND
UPDATE
REPORT 6 30-45 96,000~144,000
GENERATTON

GENERAL USER REQUIREMENTS

TABRLE 1

actions consisting of a human stimulus
input, system processing, and final output
response. Further, we may assume that the
system operator interfaces with the equip-
ment through a keyboard cathode ray tube
(CRT) display device. By implication, the
operator must key his inputs at a given
rate and examine the outputs provided on
the CRT at a certain reading speed. Also,
the operator must spend some time thinking
before keying in the next interaction
stimulus. Finally, it is safe to assume
that the data base is stored on some random
access device, say a disk, which is accessed
a number of times to satisfy each man-
machine interaction. Table 2 provides the
numerical values associated with these
detailed assumptions.

Hardware

The system will consist of a central pro-
cessing unit with memory, a multiplexor
interface channel to the keyboard-CRT
devices and the printer, and a burst mode
interface channel to the disk devices which
will hold the data base. Since the require=-
ment says that the system must consist of
state~of-the~art components, the capabilities
of each subsystem will be restricted. So,
the design proposal that we will consider
is configured as shown in Figure 2. The
names given to each class of components
appear later in the model. Also appearing
in the model are the device characteristics
shown with each system component. The
devices called C.PATH, P.PATH and D.PATH
are names given to entities over which
simulated data flows. For example, C.PATH
serves the CRT to CH1 path while D.PATH
serves the DISK to CH2 path. These too are
used in the model.

Software

Since hardware in a computer system is of
no use without software to drive it, the
software too must be designed with appro-
priate detail. Again, some assumptions are
to simplify the illustration. First, no

consideration is given to operating system
overhead. It is assumed that overhead is
accounted for within the application soft-
ware. Second, each major category of input
is served by a different program which must
be in memory for the interactions between
man and machine to take place. Third, the
system supports multiprogramming. Finally,
there is a separate program that produces
hard copy print from files stored on disk.
Under this arrangement each program that
produces print places it on disk for later
printing.

More elaboration is required for each of
the processing categories. First, the
operator receives the material he must work
with. This might be new data to input,
information for searches or updates, or
parameters for a required printed report.
The operator logs.on and waits for the
system to give him access to the necessary
system resources. Next, he engages in a
series of machine interactions until his
encounter work is complete. A request is
then made to produce all printed products
and the operator logs off. Since it is
likely that additional encounter material
is waiting, the operator is likely to
become busy again.

The software process supporting the Data
Input encounter category is equally straight
forward. PFirst, the logon is performed and
the operator is notified to proceed. Then
each time the operator provides inputs, the
program places the data on disk, updates

the data base index, and displays a response
on the operator's CRT. When all inter-
actions are complete, the logoff process is
performed. :

The Data Base Search and Update encounter
category process is more complex. After
performing the logon process, each operator
input is scanned and used to control the
search and update of the data base. Once
again, when the interations are complete, a
logoff is performed.

The Report Generation encounter is a simple
process category. -At its heart the program
interprets operator inputs, retrieves data
from the data base, organizes these data
into the appropriate report format, and
stores the report on the output spool file
for later printing.

One final process, the Print Spool Program,
completes the software program set. It is
assumed to operate as a batch or background
process and is general enough to serve a
system with multiple printers. We will see
that this comes in as a handy design feature
later. Accordingly, the program requests a
printer from the system and one by one
prints the lines contained in the output
spooling files.

Initial Timing Study

Now that all the processes are described,

297

Winter Simulation Conference

Computer System Simulation {continued)

REPETITIONS AVERAGE KEY RESPONSE

ENCOUNTER PER STROKE TIME READ TIME THINK TIME DATA BASE
CATEGORY ENCOUNTER (3 CHAR/SEC) (500 CHAR/ (SEC) ACCESSES .
SEC) ; ’
_ DATA INPUT 2-25 26-333 10-120 10~125 4-50
DATA BASE SEARCH . . .
AND UPDATE 2-10 13-66. 5-24 15-70 100-1,000

REPORT GENERATION 2-3 10-15 4-6 10-15 40-120

QUANTITATIVE ASSUMPTIONS

TABLE 2
CRT
C.PATH
300 BYTES
[/ PER SECOND
CPU
.o
300 BYTES EXECUTES 100000
PER SECOND 3 INSTRUCTIONS,/SECOND
) MESSAGES |, 130000 BYTES
OF MEMORY
CH2
300 BYTES P.PATH
l/ - PER SECOND 1 MESSAGE
) D PATH
DISK
.250 SBCOND
MESSAGE, DELAY

400
BYTES/SBCOND 32000
BYTES/

120 40 MILLISECOND MESSAGE DELAY

MASTER DISK

SYSTEM DESIGN CONFIGURATION

FIGURE 2

298 December 6 ~ 8 1976

we can make some initial timing estimates
to determine the response time character-
istics of the system. To accomplish-this
we must make a few more assumptions about
instructions executed per program as well
as input-output requirements for each
program. The assumed instruction counts
are given in Table 2. These numbers repre-
sent our informed estimate on what is
required to accomplish each process.

IENCOUNTER

[CATEGORY LOW ESTIMATE HIGH ESTIMATE
DATA INPUT 19,980 48,500
DATA BASE SEARCH

AND UPDATE 1,057,200 10,156,200
REPORT GENERATION 565,200 842,800

PROCESS INSTRUCTION COUNTS
(INSTRUCTION/HWKIDHER)

TABLE 2

Experience and knowledge of commonly used
algorithms forms the primary basis for the
low and high estimates. The reader should
not be too concerned at this point as to
where these figures originated. The

model, presented in the next section, will
clearly show all instruction execution
steps. For simplicity, each process
includes the instructions needed to complete
the required printing. Table 3 shows the
low and high estimates for input output
times. It is assumed that within a process
there is only one input-output (IO) per-
formed at a time. Furthermore, IO is never
overlapped with instruction execution. The
values in Table 3 includes all I0 for each
process. Again, IO associated with printing
is included with each of the three processes.
The precise flavor of the values shown in
Table 3 results from expressing I0 in
seconds rather than in characters per
encounter.

ENCOUNTER LOW TIME HIGH TIME -
CATEGORY ESTIMATES ESTIMATES
DATA INPUT 3.194 36.685
|DATA BASE SEARCH 21.83 81.485
AND UPDATE

REPORT GENERATION 243.808 368.925

INPUT-OUTPUT TIMING
(SECONDS/ENCOUNTER)

TABLE 3

To complete the timing study we must account
for the operator think time that is not

overlapped with any other machine process.
Since this can be quite complex, it will be
simplified by assuming that for the three
interactive processes, think time is 20
seconds, 20 seconds, and 15 seconds respec-
tively. In summary, the average timing
estimates shown in Table 4 are obtained by .
finding the mean from the low and high
timing estimates. This is reasonable if
we assume that instruction counts, data
base accesses, and transaction character
sizes for I0 are all drawn from uniform
distributions with the low and high values
given in Tables 2 and 3 as parameters.

DATA BASE
TIMING DATA SEARCH & REPORT
ELFMENT INPUT UPDATE GENERATION
EXECUTION TIME
(1000000/SEC) .342 56.067 7.040
INPUT/OUTPUT 19.939 51.657 306.366
TIME
THINK TIME 270.0 120.0 25.0
TOTAL 290.281 227.724 338.406
AVERAGE RESPONSE
TIME 285.470
TIMING SUMMARY
(AVERAGE SECONDS/ENCOUNTER)
TABLE 4

Analyses, such as the ones performed here,
are quite common and for simple systems are
adequate as well. Still one might be
suspicious because this analysis does not
account for all resources needed to process
an encounter. For example, nothing in the
analysis above indicates that the design
value of 130,000 bytes of memory is adequate
for this combination of processes. Further-
more, time could be lost by each process as
it waits for resources temporarily assigned
to other processes. Queues can develop in
a number of places. First, there are four
devices on CHl1 which can only process three
messages concurrently. Second, there is
only one CPU and a maximum of four programs
can request this resource at any given

tine. Third, the DISK devices can only be
accessed one at a time and these same four
programs can each have DISK IO requests
pending. Finally, we have only one printer,
yet three processing programs can be genera-
ting print outputs.

MODELING AND EXPERIMENTATION

The primary purpose of this paper is to
present a computer system design evaluation
methodology appropriate for the validation
phase of an embedded computer system

Winter Simulation Conference 299

Computer System Simulation (continued)

development. This stated purpose precludes
a long treatise on modeling languages,
modeling techniques, and simulation strate-
gies. However, a brief look at the ECSS II
model is in order at this point. '

The Model

By way of a brief explanation, an ECSS II
model consists of at least four sections
each performing either a descriptive or
operative function in the simulation. The
first section, a PREAMBLE, defines global
data structures, sets which are used to

implement the flow of simulated work through

the system, and variables that hold parame-
tric values or accumulate performance
statistics. Defintions for each entity,
attribute, set, and variable are provided
in Appendix A and the complete model is
given in Appendix B. To carry on without
plunging too deeply into detail, you might
look on the Temporary Entity STAT.NOTE (See
Appendix B) as representing the encounter
material. The note is created during model
initialization; has an arrival time; is
associated with one of the three encounter
categories; and is filed in the NOTE.SET
when it is created.

The second section of an ECSS II model is
called the DEFINITION DESCRIPTION and is
used to enhance the overall readability of
the model. As will become evident later,

it is much easier to refer to time in
SECONDS and MILLISECONDS then in arbitrarily
defined "TIME.UNITS."

Any computer system simulation model must
represent both hardware and software.
Accordingly, the third section, called the
SYSTEM DESCRIPTION, provides details of
hardware characteristics in an easily
readable form. In addition, each simulated
data path is defined with a PATH statement.

It is interesting to note that only those
characteristics needed to describe a device
are stated. For example, we are not inter-
ested in IO for the CPU, so no transmission
statements are provided and the CPU does
not appear in any PATH statements. The CRT
and PRINTER devices provide the trans-
mission rate value and are included on the
C.PATH and P.PATH, respectively, which
contain the CH1 device.

The fourth section of an ECSS II model is
the WORKLOAD DESCRIPTION and is used to
describe the various system processes. In
ECSS II there are two kinds of processes.
The first or EXTERNAL PROCESS is not asso-
ciated with a device capable of executing
instructions and is therefore suitable for
simulating human behavior scenarios or
devices external to a computer like servo
mechanisms or data sampling devices. The
second process called a JOB is used to
model computer software.

300 December 6 -~ 8 1976

The EXTERNAL PROCESS USER first represents
the human operator in our model. From the
model in Appendix B it should be clear that
USER first does some initial housekeeping
followed by a statement which invokes a
program, called PROG, which runs on CPU.
USER waits for a signal from PROG and when
the signal is received, USER enters a loop
which simulates the stimulus, wait for
response, think process described earlier.
At the conclusion of the loop, USER invokes
a batch JOB called LISTOFF which prints any
output files generated by PROG. Later we
will see that all USER processes are created
at one time.

The ALLOCATE statement is used to implement
a queueing mechanism. If a CRT is available,
it is automatically assigned by ECSS II and
processing continues. If all CRT's are
busy, ECSS II puts the USER process to
"sleep" by queueing the CRT allocation
request. When another USER process releases
a CRT by issuing a DEALLOCATE statement,
ECSS IT reassigns the idle CRT to the next
USER process in line and the process con-
tinues about its business. Meanwhile, ECSS
IT automatically collects queueing statis-
tics for the CRT device so the experimenter
will know the length of the waiting line

and how long a USER process spent in that
waiting line. There are other situations
such as this in the model and I will bring
them to your attentioh as we encounter

them.

Instead of writing three separate JOBs for
each encounter category, one JOB was written
with three sections. Entry into a particular
section is controlled by a "switch" and a
parameter passed to PROG by USER. PROG has
three numbered labels: '1', '2', and '3'.
Label 'l' starts the submodel for the Data
Input function. Similarly, label '2'

starts the submodel for the Data Base

Search and Update function. Label '3‘,
finally, heads the Report Generation section
of JOB PROG.

There is a GET command near the beginning
of JOB PROG. This simulates the process of
obtaining the necessary computer memory
into which the program is loaded for
execution. If memory enough to satisfy the
request is unavailable, ECSS II forms a
gqueue for memory, suspends the JOB, reacti-
vates it when memory does become available,

‘and collects appropriate statistics.

An EXECUTE statement instructs ECSS II to
try and obtain the CPU for the program and
hold it for the time required to execute

the number of instruction indicated.

Further on in PROG are EXECUTE statements
which have expressions rather than constants
as arguments. The ECSS II system immedi-
ately starts the simulated execution if the
processor is idle. The request, on the

otherhand, is queued and serviced later if
the processor is busy. If priorities were
used in the model, ECSS II could simulate
the preempt-resume method of multipro-
gramming control. In this model however,
the first-come~first-served rule is used.
Again, utilization and queuing statistics
are kept by ECSS II.

The SEND/RECEIVE statement is associated
with simulated I0. It tells ECSS II how
much data are to be transferred and over
which PATH. Like all the statements
encountered thus far, SEND/RECEIVE state-
ments permit queues to form on both devices
and paths. The form of SEND/RECEIVE used
in the model tells ECSS II to suspend
processing, that is, the execution of any
statements until the SEND/RECEIVE statement
is fully serviced. Thus, delays associated
with obtaining the I0 devices and the IO
path and data transfer time itself are
additive to account for the total I0 time.
Once the IO is complete, the JOB may wait
in a queue to once again secure access to
the simulated processor.

ECSS II is implemented as a superset of
SIMSCRIPT II. That is,. by means of a
translator, ECSS II statements, intermixed
with SIMSCRIPT II statements, are trans-—
lated to pure SIMSCRIPT II and compiled
with a standard SIMSCRIPT II compiler for
ultimate execution. This superset-host
technique allows the modeler to represent
complex computer systems easily and use the
facilities of a powerful simulation lan-
guage. In addition, this implementation
allows complex models to be built, debugged,
run, and changed with a minimum of effort.
ECSS II and languages like it are powerful
tools and are cost/effective when applied
to problems like the one illustrated here.

There is still one more JOB to look at, the
one called LISTOFF. This JOB simulates the
spooling process to the PRINTER. The
labels '1', '2', and '3' have the same
meaning as are used in JOB PROG and provide
a means to control the size and amount of
data generated per the requirement state-
ments given previously. Here again, the
model uses the ALLOCATE statement to con-
trol access to the printer, establish a
queue, and obtain statistics.

There are several support subroutines
needed to start the model, read input
variables, and control statistical reports.
Although these routines are important, for
the sake of brevity they will not be des-
cribed further.

Experimentation Plan

Experimentation can be an extremely complex
process even with a simple simulation model
such as the one used for this illustration.
S0, in keeping with simplicity, some ground
rules are needed to narrow the scope of
experimentation. First, the parameters
which describe the requirement are kept
constant.

Table 5 is a complete list of the require-
ment parameters and their values given in
the order of input to the model. In addi-
tion, certain design parameters are kept

constant. These values are given in Table
6.
DATA DATA BASE
INPUT SEARCH AND REPORT

PARAMETER FUNCTION UPDATE GENERATION
1., Stimulus Input

Character Stream

{Characters) (CHAR) 40 20 15

2. Think Time -

{Seconds) {THINK) 20 20 15

3. MAXIMUM

No. of Interactions

(REP) 25 10 . 3

4, Minimum No. of Data .

Base Accesses (DBACC(1,)) 2 50 10

5. Maximum No. of Data :

Base Accesses {DBACC(2,)) 2 100 20

6. Mean Encounter

Interarrival Time .

(Seconds) {IN.ART) 120. 300. 600.

"BASELINE REQUIREMENT PARAMETERS
TABLE 5

PARAMETER VALUE

Length of Simulation Run 3600 Seconds

Data Input Program Core Size (CORE(l)) 15000 Bytes
Data Base Search and Update Proéi‘am
Core Size (CORE(2)) - 60000 Bytes
Report Generation Program
Core Size (CORE{3)} 30000 Bytes

LISTOFF Program Core Size (LIST.CORE) 10000 Bytes

Data Base Record Size (BLK.SIZE) 2000 Bytes

CRT Screen Capacity (SCREEN} 1920 Bytes

BASELINE CONSTANT DESIGN PARAMETERS
TABLE 6

The second simplifying ground rule states
that only hardware design characteristics
such as memory capacity, number of CRT's,
number and speed of printers, and the CPU
execution rate will be varied from one
experimental run to the next. These values
are input to the simulation through the
SYSTEM DESCRIPTION section of the model.

The final simplification involves the
performance measures used to evaluate each
experimental run. If anything, a simula-
tion provides too much performance data and
all too often it is precise to the fifth
decimal position while its accuracy may be
questionable. The principle performance
measure is the average response time for
each encounter category. These times are
measured in seconds and consist of two
components: time spent by encounter
material entities in a queue prior to being
worked on by a system operator and the time

Winter Simulation Conference 301

Computer System Simulation (continued)

spent in processing the encounter material
including print processing. The total
average response time will be reported for
each category along with the average total
response time across all categories.

There are other performance measures which
must not be neglected. These measure
performance relative to the utilization
and queueing characteristics for the
various' computer system resources. Accord=-
ingly, we will look at measures associated
with the CRT's, CPU, PRINTER, PATH, and
memory devices. '

In all, twelve experimental runs were made
with a partial evaluation following each
run to determine the set of inputs appro-
priate for the next run. As stated earlier,
experimental strategy is not the principle
topic of discussion, so all experimental
results will be presented more or less at
one time in the discussion which follows.

Experimental Results

To begin with, look at the results from our
baseline design. Remember, that our initial
-timing study predicted an average response
time for the three encounter categories of
290.281 seconds, 227.724 seconds, and
338.426 seconds, respectively. With this

in mind, Table 7 should reveal some start- -
ling results.

CRT = 3
K1prs = 100

RY = 130000
PRINTERS = 1/200 LPM

DATA DATA BASE
INPUT SEARCH AND REPORT
MEASURE FUNCTION UPDATE GENERATION

QUEUE TIME 1339.1 - 492.6 382.7
INTERRAL TIME 481.6 1357.0 897.1
TOTAL TIME 1820.7 1843.6 1249.8
INITIAL PREDICTION 290.3 227.7 338.4
AVERAGE RESPONSE 'TIME 1640.0

PREDICTED AVERAGE RESPONSE TIME

285.5

BASELINE DESIGH: SIMULATION RESULTS
RESPONSE TIMES

TABLE 7

Why did we get such results? To answer

this question we must look at the detail
performance measures given in Table 8.

First, waiting time in the encounter material
queue (EMQ) is quite high at 1086.8 seconds.
Given that the average response time is
1640.0 seconds, the average wait time in

the EMQ accounts for over 66 percent of

this figure. Second, the table shows that

302 December 6 - 8 1976

CRT utilization is almost 100 percent

and the CPU is busy a little over three-
quarters of the sampling interval. It
seems likely that the system needs more '
CRT devices to increase the level of
concurrent processing.

Apparently our initial estimate was faulty
because it assumed that contention for
computer system resources would be minimal.
However, there is contention evident. The
data shows that the CPU queue (CPUQ) is
empty 56.7 percent of the sampling interval
and the.length of this queue averages 0.7,

a small yet significant number. Waiting
time for memory averaged 37.5 seconds for
each memory request which represents approxi-
mately.4 percent of the average internal
processing time. A similar analysis using
the waiting time to start printing figure

of 101.5 seconds yields a percent of average
internal time equal to 11.1.

MEASURE VALUE
CRT UTILIZATION (%) 99,3
ENCOUNTER MATERIAL QUEUE (EMQ) LENGTH 19.0
WAIT TIME IN EMQ 1086.8
CPU UTILIZATION (V) 75.8
CPU QUEUE (CPUQ) LENGTH 9
PERCENT CPUQ EMPTY 56.7
PRINTER QUEUE (PQ) LENGTH 564
WAIT TIME IN PQ 101.5
MEMORY UTILIZATION (%) 17,7
MEMORY REQUEST QUEUE (MRQ) LENGTH .448
WAIT TIME IN MRQ 37.5

BASELINE DESIGN: SIMULATION RESULTS
PERFORMANCE MEASURES
TABLE 8

It is clear that more CRTs are required.
Less clear, but nevertheless apparent, is
an indication that memory capacity should
be increased along with the CPU execution
rate, number of printers and printer speed.
But how much and in what combinations?

Table 9 gives a complete picture of the
experimeénts run showing the design changes
made and the performance measures obtained.
Before we examine the numerical values for
performance measures in Table 9, look at
how the experiments were conducted. The
only change made to the baseline to get
Experiment 1 was to double the number of
CRT's. Next, the memory capacity was
doubled for Experiment 2. Experiments 3
and 4 repeat Experiments 1 and 2 but with
two printers instead of one. Experiments 5
and 6 repeat Experiments 3 and 4 but with
a CPU execution rate of 150,000 instruc-

EXPERIMENT

1 2 3 4 5 6 7 8 9 10 11
NO. CRT'S 6 6 6 6 6 6 6 6 6 6 8
KIPS 100 100 100 100 150 150 150 150 150 150 200
MEMORY SIZE 130 260 130 260 130 260 130 260 130 260 260
NO. PRINTERS 1 1 2 2 2 2 1 1 2 2 2
PRINTER SPEED 200 200 200 200 200 200 600 600 600 600 600
CRT UTIL. (%) 93.3 90,7 90.3 93.8 90.1 93.3 91.3 92.6 93.0 93.8 88.7
EMQ LENGTH 5.2 12.3 8.4 7.5 10.5 5.3 7.7 2.7 6.6 9.1 2.93
EMQ WAIT TIME (SEC) 296.3 707.0 481.7 430.9 603.1 301.9 442.0 155.7 379.6 520.0 167.4
CPU UTIL (%) 77.4 90.0 81.5 85.8 71.1 80.6 67.7 72.8 93.3 70.5 89.1
CPUQ LENGTH .73 2.28 .96 2,57 .51 2.36 .54 1.69 .60 1.87 4.09
CPUQ EMPTY (%) 53.4 28.4 47.3 27.2 63.4 35.3 64.1 46.5 62.0 47.1 19.1
PQ LENGTH 3.16 3.40 .18 .9 .08 1.25 .21 1.49 .00 .18 1.50
PQ WAIT TIME (SEC) 284,3 408.2 16.9 86.2 7.5 88.3 17.4 105.8 .09 17.6 110.5
MEMORY UTIL. (%) 87.4 65.4 88.5 69.4 389.5 69.6 87.1 73.0 86.4 60.2 80.4
MRQ LENGTH 1.96 0.0 2.36 0.0 2,07 .09 1.63 .09 2,24 Al . .27
MRQ WAIT TIME (SEC) 89.1 0.0 106.2 0.0 91.1 3.2 63.2 3.1 94.0 4.8 9.7
AVERAGE RESPONSE TIME 1039.6 1581.6 1115.0 1024.8 1184.4 923.7 939.2 655.5 927.0 1017.1 889.0
EMQ - Encounter Material Queue
CPUQ - CPU Queue
PQ ~ Printer Queue
MRQ - Memory Request Queue

EXPEﬁIMENTAL RUNS: SIMULATION RESULTS - PERFORMANCE MEASURES
TABLE 9

tions per second instead of 100,000.
Experiments 7, 8, 9, and 10 all have a CPU
execution rate of 150,000 instructions per
second, a 600 line per minute printer, but
are otherwise repeats of Experiments 1, 2
3, and 4. This design explores that por-
tion of the performance response surface
which can reasonably be considered state-
of~-the-art and responsive to the require-
ment given earlier. Experiment 11 is a run
to see the results from a design possessing
abundant system resources.

r

Now, what do these data tell us about the
proposed-design alternatives? First, the
differences between Experiments 1 and 2 are
interesting. Memory capacity doubles, yet
average response time increases with all
other design parameters held constant.
reason is quite straight forward. With
more jobs in memory, the CPUQ is longer
and, on the average, the CPUQ is less
frequéntly empty. CPU contention is much
greater in Experiment 2 because more jobs
can be in memory and issue a greater number
of requests for the CPU resource. 1In a
like fashion, more jobs processed means
more print output produced in a shorter
time. This is indicated by an almost two-
fold increase in PQ wait time. The average
memory queue length is zero which indicates
that we probably didn't need 260,000 bytes
of memory in the first place. The reader
should examine the data closely to see if
other such ancomalies can be found and
explained.

The

The second basic observation is that Experi-
ment 8 yields the best average response
time of 655.5 seconds. This is partially

explained by the low EMQ wait time of 155.7
seconds. Further explanation is provided
by observing that CPU utilization, rela-
tively speaking, is low at 72.8 percent and
memory utilization is similarly low at 73.0
percent. Taken together, this indicates
that overall system resource demands are
balanced better with this configuration
than with the others. That is, on a rela-
tive basis, CPU contention is lower, allow-
ing individual jobs to proceed to an IO
operation and thereby release the CPU
resource for other jobs. Progress in using
the CPU resource is aided considerably by
the 150,000 instruction per second execu-
tion rate.

Finally, there is a major observation that
must be made. By the very nature of. the
experiments, it is impossible to know what
performance gains can be achieved realis-
tically if design changes are made: to the
simulated software. More will be said on
this point later. But for now, there is a
performance limit beyond which we cannot go
given the nature of the experiments used
thus far in the illustration.

By way of summary, it was shown that the
simulation model could be used to evaluate
the baseline configuration proposed earlier.
In addition, a series of experiments can be
run each using a slightly altered set of
input design parameters. Finally, from
examination of the performance output
measures, it is possible to select one or
more design alternatives that exhibit
desirable performance characteristics.

Winter Simulation Conference 303

Computer System Simulation (continued)

RESTATEMENT.

In the previous sections, five out of the six
steps in the Methodology were explained and
illustrated. 1In the interest of brevity, the
documentation reguirements were not stressed.
One illustration, however, does not conclus-
ively demonstrate the usefulness of any
procedure nor does it adequately warn
potential user of the pitfalls usually
encountered during design evaluation
activity.

The model developed for the illustration
can be easily extended to examine many
possible software design implementations ih
addition to the hardware designs shown in
this paper. New models appropriate for
different application areas can also be
easily written using ECSS II. Some examples
of software related implementations which
might be addressed by an ECSS II model are
listed below:

° Prempt-resume CPU dispatching
algorithms. .
Priority driven Job schedunling.
Priority driven IO scheduling.
Program segmentation and paging.
Program overlay structures.
Working set page allocation
algorithms.

Double buffering of IO.
Multiprocessor task dispatching.
Dual channel disk access control
algorithms.

o © 0 O ©

o 0 o

Basically, this paper presented two propo-
sitions. First, that computer system
design evaluation activities should follow
the six steps outlined and be conducted by

a design evaluation team made up of users,
design specialists, and development special-
ists. Early use of the procedure introduces
discipline to the process which might
otherwise be driven by emotional bias. Use
of an integrated teams of users, designers,
and developers, tends to minimize the
communication gap problems and hopefully
shortens the overall process.

The second proposition stated that computer
system simulation.is a valuable tool which
can be effectively used during the valida-
tion phase to articulate designs in the
form of readable models and to gather
valuable estimates of performance for each
proposed design. In an important sense,
computer system simulation studies are to
the evaluation of computer system designs
what wind tunnel tests are to the evalua-
tion of air vehicle designs. For years,
Program Managers responsible for aero-
nautical system developments have relied on
the results from wind tunnel tests. The
same opportunities for evaluating and
reducing the development risk associated
with embedded computer systems are now

304 December 6 - 8 1976

-R-1895-GSA,

available to Program Managers through the
use of computer system simulation.

In concluding, it must be stated that-np -
technique, model,; or procedure can totally
eliminate the risks associated with devel-
oping complex weapon systems containing
embedded computers. The procedures outlined
and illustrated in this paper are proposed
because they tend to provide information
about and opportunities to evaluate computer
system designs in a logical way and in an
environment where hypotheses can be tested.
As such, computer system simulation and the
six step procedure in which it is employed
can significantly assist in reducing design
risk, but it will never totally eliminate
it.

BIBLIOGRAPHY

1. Bell, T. E.,
R.. A., "Computer
ment: Framework
Corp., R-549-PR,

Boehm, B. W., and Watson,
System Performance Improve-
and Initial Phases," RAND
August 1971.

2. Bell, T. E., "Computer Performance
Analysis: Objective and Problems in Simula-
ting Computers," RAND Corp., R~1051-PR,

July 1972.

3. Kiviat, P. J., "Digital Computer Simula-
tion: Computer Programming Languages,"
RAND Corp., RM-5883-PR, January 1969.

4. Kiviat, P. J., Villaneuva, R., Markowitz,
H. M., "SIMSCRIPT II.5 Programming Language,'
Consolidated Analysis Centers, Inc., Los
Angeles, CA, March 1973.

5. Kosy, D. W., "Experience with ECSS,"
RAND Corp., R-560-NASA/PR, December 1970.
6. Xosy, D. W., "The ECSS II Language for
simulating Computer Systems," RAND Corp.,
December 1975.

7. Nielsen, N. R., "ECSS: An Extendable
Computer System Simulator," RAND Corp., RM-
6132-NASA, February 1970. -

8. Watson, R., "Computer Performance
Analysis: Applications of Accounting
Data," RAND Corp., R-573-NASA/PR, May 1971.

- APPENDIX A
STAT.NQTE - Temporary entity gsed to
represent the encounter material and to
retain statistical values collected as the

entity passes through the simulated system.

ST.ATIME - Attribute which saves the

arrival time of a STAT.NQTE.

ST.STIME - Attributes which saves the
starting time for processing the encounter
material on the computer system. NOTE:
ST.STIME-ST.ATIME is the time spent waiting
to begin processing.

ST.RTIME - Attribute which saves the time
that the final response is provided for the
encounter.

NOTE: ST.RTIME~ST.STIME 'is the time spent
processing the encounter on the computer
system.

NOTE: ST.RTIME-ST.ATIME is the total
response time for the encounter material.

ST.TYPE - Attribute used to tell JOB PROG
what type of encounter is being processed.

1 = Data Input
2 = Data Base Search and Update
3 = Report Generation

ST.EXEC - Attribute which accumulates all
CPU execution time for the encounter.

ST.BLOCK - Attribute which accumulates all
intervals of time waiting for a resource to
be provided (except the CPU) .

ST.READY - Attribute which accumulates the
time intervals spent waiting for the CPU to
be made available.

NOTE.SET - A First-In-First-Out Set used to
hold the STAT.NOTEs after they are created.

CHAR - Three element array used to hold the
humber of input stream characters per
encounter input interaction.

CORE - Three element array used to hold the
memory bytes required for each encounter
process.

REP - Three element array used to hold the
upper limit for the number of interactions
per encounter.

THINK -~ Three element array which holds the
non-overlapped think time for each encounter
interaction.

INT.ART - Three element array which holds
the encounter material mean interarrival

time used to generate simulated encounter
transactions.

ST.RPT - Variable used to input the stop
time for the simulation.

DBACC - Two dimensional array of two rows
and three columns used to hold the upper
and lower data base reference counts for
each encounter category.

BLK.SIZE - Variable for the disk data
record size in bytes.

LST.CORE - Variable for the size of the
LISTOFF program in bytes.

SCREEN -~ Variable for the size of the
simulated CRT screen in bytes..

APPENDIX B

/*SIGNON
PREAMBLE
TEMPORARY ENTITIES.ss
EVERY STAT.WOTE HAS

AN ST.ATIME,

AN ST.RTIME,

AN ST.TYPE,

AN ST.EXEC,

AN ST.BLOCK,

AN ST.READY

AND BELONGS TO A NOTELSET

RM(O31 A

DEFINE ST<STIME)SToRTIME,ST4EXEC,ST4BLOCK,ST.READY,ST.ATINE

THE SYSTEM OwiNS A NOTE.SET
DEFINE NOTELSET AS A FIFQ SET

DEFINE CHAR,CORE,REP AS 1=DIMENSIONAL,
AS 1-DIMENSIUNAL,

DEFINE THINK,INT.ART
DEFINE ST.RPT AS A REAL VARIABLE

AS REAL VARIABLES

INTEGER ARRAYS
REAL ARRAYS

DEFINE DBACC AS A 2~DIMENSIONAL, INTEGER ARRAY .
DEFINE BLK.SIZE, LST.CORE,MAX.CNT,SCREEN AS INTEGER VARIAJLES

DEFINE MAX,TIME,ART AS REAL VARIABLES

END ' 'PREAMBLE
DEFINITION DESCRIPTION

Winter Simulation Conference 305

Computer System Simulation (continued)

DEFINE UNITS
1 SECOND = 1 TIMELUNIT,
1 SECONDS = 1 SECOND,
»001 SECONDS = 1 MILLISECOND,
1 MILLISECOND = 1 MILLISECONDS,
1 M8 = 1 MILLISECONDS

DEFINE UNITS
1 BYTE = 1 DATA.UNIT,
1 BYTES = 1 BYTE,
1000 BYTES = 1 KBYTE,
1 KBYTE = | KBYTES

END 1 1DEFINITION DESCRIPTION
SYSTEM DESCRIPTION

SPECIFY 1 CPU WHICH
STORES UP TO e BATCH JOBS,

EXECUTES 150000 INSTRUCTIONS PER SECOND,

HAS CAPACITY OF 260 KBYTES
SPECIFY { CH! wHICH

TRANSFERS 3 MESSAGES COUNCURRENTLY

SPECIFY 1 CH2 LIKE CH1I EXCEPT IT
TRANSFERS 1 MESSAGE

SPECIFY 8 PRIVATE CRT, EACH
TRANSMITS 300 BYTES PER SECOND,

ABSORBS 250.0 MILLISECONDS PER MESSAGE

SPECIFY 3 DISK, EACH

TRANSMITS 32000 SYTES FER SECONT,
ABSORBS 40,0 MILLISECUNDS PER MESSAGE

IDENTIFY DISK#i AS MASTER.DISK
SPECIFY 1 PRIVATE ACCIG.FILE
SPECIFY 2 PRIVAYE PRINTER wHICH
TRANSFERS 1 MESSAGE,
TRANSMITS 1200 BYTES PER SECOND

PATH C.PATH CONNECTS CH1 TO CRT
PATH D.PATH CONNECTS ChHe TO DISK

PATH P.PATH CONNECTS CH1 TO PRINTER

END 'YSYSTEM DESCRIPTION
WORKLOAD DESCRIPTION

EXTERNAL PROCESS USER GIVEN TYP,ATIME
DEFINE TYP,PR,C,VOLUME,REPITITIONS,P,I,8N

AS INTEGER VARIABLES
DEFINE ATIME
AS A REAL VARIABLE

LET LIDENTITY(.J0OB) = "USER Q" ¢+ TYP

CREATE A STAT.NDTE CALLED SN
LET ST.ATIME(SN) = ATIME

LET ST.TYPE(SN) =TYP

FILE SN IN NOTEWLSET

ALLOCATE FROM CRT AS C

LET ST.STIME(SN) =sTIME,V

LET VOLUME = RANDILF(1s+N.MEMBERS(DISK),1)
LET REPITITIONS = RANDI.F(2,REP(TYP),1)

306 December 6 — 8 1976

VVKEEP STallST3iCS
PVSAVE TRAWSACTIO 17YvE

YIGET A CRT UR GET [t wobuf
YISAVE START TI~E

JV'GEN DISK PACK TO BE «SEV
PIGEN ITEXRATIUN FUR ubkR

LET PR = ,PROCESS
START PROG CALLED P GIVEN PR,VOLUME,

REPITITIONS,TYP,SN
ON CPU VISTART L¥u PHUGKA -
WAIT FOR SIGNAL YISUSPEND usTTL Y= IS “BaAcY
FOR I = 1 TO REPITITIUNS, YISET UP 14TExaCTlu
Do.ll .
SEND CHAR(TYP) BYTES FROM . DEVICE(C) TO CH1 VIA C,PATH TJd P
WAITING FOR A RESPONSE VISUSPENy Fux ®kdy HESPL-SE
WAIT FOR THINK(TYP) SECONDS VETHINK 1 B F%f <k 3Fy58E
' VAT ONEXT Pea«Pl
LOOR V']
SUBMIT LISTOFF GIVEN TYP,VOLUME,REPITITIONS, SN
T0 CPU "IBATCH JOB TO LIST ANY OQUTPUT
- DEALLOCATE THE C - VIPHYSICAL RELEASE OF CRT
TERMINATE ‘
END ;’USER

JOB PROG GIVEW USR,VOL,INTERACTIONS,TYP,SH

DEFINE USR,VOL,INTERACTIONS,I,J,Sh,SPACE
AS INTEGER VARIABLES

LET LIDENTITY(.JOB) = "PROG 0" + TYP

GET CORE(TYP) BYTES FROM CPU CALLED SPACE VIGET REQUIRED "tEaURY
ALLOCATE ACCTG.FILE VOLOCK On ACCTL FILE LOGU-
RECEIVE B00 BYTES FRUM MASTER,DISK VIA D.PATH F"TH PRIORITY 1 :
OEALLOCATE ACCTG.FILE (RELEASE ACCTG FILE LDCK wi,
EXECUTE 3500 INSTRUCTIONS 'L O0GON PRUOCEDURE
SIGRALTUSR =~ =7 TTooTr o w) < T ATTELL USER TGO PRGCEED T 7T
WHILE INTERACTIONS GT 0 . "SET UP INTERACTIUAS LUOP
DO'I. ’
WALT FOR INPUY T YSUSPEND FUR USER PRUNPT
G0 TO 1.2,3 PER TYP 16070 SUBPRUCESS PR TR TYPE
t1! YEINPUT DATA FUNCTION :
EXECUTE 2500+CHARC(TYP) INSTRUCTIOwS YUINTERPRET IMPUT FRO# uSER

SEND CHAR(TYP) + 200 BYTES 7O DISKsvOL VIA D.PATH

YIpYUT InPUT DATA OM DISK
EXECUTE 4000 InNSTRUCTIONS VIUPDATE 1MUDEX FORMAT RESFUNSE
SEND CHAR(TYP) BYTES VIA C.PATH AS A RESPQONSE ''SEND RESPU.SE Tu USER
GO TO CUNTINUE

tat ' 'SEARCH=UPDATE FUNCTIGHN
EXECUTE 500 *CrAR(TYP) INSTRUCTIONS tISCAN IWRPUT FUR PEQUEST
LET J = RAwDI.F(DBACC(1,TYP),UBACC(2,TYP),1) ''GEM ACCESSES TU FINp LATA
FOR 1 = 1 7O J

DUII'
RECEIVE BLK.SIZE BYTES FROM DISKAVOL VIA D.PATH ''READ LISK BLLLK
EXECUTE SOXBLK.SIZE INSTRUCTIONS VIEXAMINE #HiLUCK FUOR REw NATA
Loop . v'1
EXECUTE 200 *J INSTRUCTIONS 'YPROCESS DATA KETRIvEe::

SEND BLK.SIZE BYTES TOU DISK#VUL VIA D.PATH

'"YUPDATE 0ISK BLULR PER KEWUEST
SEND SCREEN BYTES VIA C.PATH AS A RESPCONSE ''SEND KESPUNSE TU USER
GO TO CONTINUE

'3 ' TREPDORT GENERATIONM FUNCTIOM

EXECUTE 500 * CHAR(TYP) INSTRUCTIONS 'PINTERPRET REWUEST

LET J = RANDILF(DBACC(1,TYP),DBACC(2,TYP),1)

FOR I =t T0 J
(3]0 RPN
RECEIVE HLK,SIZE BYTES FROM DISK#VOL VIA D.PATH VIGET REPURT cAlaR
EXECUTE 15 *BLK.SIZE + 100 INSTRUCTIUNS ''FCRMAT mEADI 6 A wedusT
SEND (BLK,SIZE+0.20%BLK,SIZE) BYTES TO DISksvUL

VIA D.PATH YPFORMATTEDG wuThkul [o 18a SPuL

Winter Simulation Conference 307

Computer System Simulation (continued)

308

Loop 'l
EXECUTE 4000 INSTRUCTIONS
SEND CHAR(TYP) BYTES VIA C.PATH
AS A RESPONSE .
YCONTINVE! ;

SUBTRACT 1 FROM INTERACTIONS
LOOP ''INTERACTIONS

EXECUTE 2500 INSTRUCTIUNS
ALLOCATE ACCTG.FILE

RECEIVE 800 BYTES FROM MASTER,DISK VIA D.PATH.

SEND 100 BYTES YO MASTER.DISK VIA D.PATH
DEALLDCATE ACCTG,.FILE

ADD LEXECUTION.TIME(.JOB) TO STLEXEC(SN)
ADD ,BLOCKED.TIME(,JOB) TO ST.BLOCK(SN)
ADD JREADY.TIME(.JOB) TO ST.READY(SN)
FREE THE SPACE

TERMINATE

END Y IPROG
JOB LISTOFF GIVEN T,V,BLK,SN

DEFINE T,ViBLK,1,PRT,SN,SPACE,J,SIZE
AS INTEGER VARIABLES

LET JTOENTITY(,JOBY = “L3TF 0" =+ 7
GET LST.CORE BYTES FRDM CPU CALLED SPACE
ALLOCATE PRINTER AS PRTY
EXECUTE S000 INSTRUCTIONS

, ?D T0 1.2,3 PER T

1
LET SIZE = CHAR(T) + 200
60 TO CONTINUE

121
LET SIZE = BLK.SIZE + 0.20 » BLK.SIZE
GO TO CONTINUE

13
LET J = 0
FOR I = 1 TO BLK
LET J = J + RANDILF(DBACC(1,T),DBACC(2,T),1)
LET BLK = J
GO TO 2
'CONTINUE'
FOR 1 =1 7O BLK
DO'.‘
RECEIVE SIZE BYTES FROM DISK#V VIA D.PATH
EXECUTE 5%SIZE INSTRUCTIONS ,
SEND SIZE BYTES TO .DEVICE(PRT) VIA P.PATH
LooP *'I

LET ST.RTIME(SN) = TIME.V

ADD EXECUTION.TIME(.JOB) TO ST. EXEC (SN)
ADD .BLOCKED.TIME(.JOB) TO ST.BLOCK(SN)
ADD L,READY.TIME(,JUB) TO ST.READY(SN)
FREE THE SPACE

DEALLOCATE THE PRT

TERMINATE
END YILISTOFF
END ' "WORKLOAD DESCRIPTIGN

December 6 - 8 1976

'YPREPARE USER RESPUISE SubivKY
'ISEND RESPUNSE TO USER

YICLEANUP FUR LUGDFF

'HLOCK On ACCTG FILE FORr LUGUFF
VIGETY ACTG BLOCKX FOR UPDATE
VIUPDATE ACCTOG FILE

VIRELEASE ACCTG FILE

VPALL OUWE FREE CORE SPACE

VIOBTALw weBDrw CURE Fur JDB
GBTAIN PRINTER FUR QUIPUT
vOINITIALLIZATIUWN

'YSETUP GUTPUT LOUP bY BLUCK
**READIN DATA BLOCK FOR REPURT
PISEND QUTPUT TO SELECTED PTR

Y1SAVE FINISH TIME FUR TRANSAC

YIFINISHED FREE MEMORY USED

