A MULTI-PURPOSE (COMPUTER) SYSTEM SIMULATION (MPSS) MODEL AND ITS
CALIBRATION AGAINST MEASUREMENTS OF THE MONITOR AND CONTROL DISPLAY
SYSTEM (MACDS) AT THE NATIONAIL AERONAUTICS AND SPACE ADMINISTRATION
(NASA) GODDARD SPACE FLIGHT CENTER (GSFC)* '

ABSTRACT

A Multi-Purpose System Simulator (MPSS)
model and an associated calibration
analysis are described., MPSS models com-
plex, interconnected computer systems. A
system is defined by hardware, software,
and data flow characteristics. Hardware
entities include central processing units,
extended memory banks, and peripheral
devices. Elements within a system are
linked together by communication lines.
Data blocks processed through the system
are defined by type, entry rate, block
size, and routing through an assigned
sequence of software modules. Software
modules are described by size, priority,
instruction count, and accesses to peri-
pheral devices. Statistics are generated
concerning the utilization of central
processing units, peripheral devices, data
block processing, and software execution.

To establish the credibility of model
results, a series of controlled experi-
ments was made on an existing computer
ensemble. Analogous experiments were then
simulated using MPSS. The model and pro-
typal results correlated highly. Average
data block response times and CPU idle
times over several trials had average
correlation coefficients of 0.97 and 0.95
respectively. All significant discrepan-
cies between model and prototypal results
have been explained.

The model is not capable of simulating the
non-linear behavior of the system imposed
by data load backlog and does not simulate
sequential I/0 accesses to the same device
in the same manner as the actual system.

However, these isolated deficiencies did

not significantly affect the overall sys~
tem performance statistics as generated by

*The work described herein was performed
by Computer Sciences Corporation in
support of the National Aeronautics and

Space Administration, Goddard Space Flight

Center, under Contract NAS5-20640,
Programming and Computing Services for
Central Computing Support.

Fred W. Mill, George N. Krebs, and
Erwin 8. Strauss,

Computer Sciences Corporation,
Silver Spring, Maryland

MPSS. Accordingly, the calibration study
results provide confidence in the fidelity
of the model.

INTRODUCTION

A multi-purpose computer network simulation
model, MPSS, has been developed to evaluate
the performance of existing and hypotheti-
cal multi~computer systems. The model

was developed in response to rapidly
changing data load and computer network
configurations at NASA. With the advent
of the Tracking and Data Relay Satellite
System (TDRSS) supporting future shuttle
missions, an updated computer system is
needed to handle the increasing data load.
With a simultaneous shifting from large
scale computers (e.g., IBM 360 systems) to
networks of interactive minicomputers,
coupled with the requirements of data-
handling reliability in primary and backup
systems, the need for performance evalua-
tion and prediction became apparent. In
developing a simulation tool to address
these needs in an environment where system
requirements and data loads are changing,
and where the computer hardware and soft-
ware state-of~the~art is being updated, a
very general and flexible modeling
capability was desired. The MPSS model
described herein has been designed to
satisfy these requirements.

To gain confidence in the accuracy of the
model to simulate prototypal computer net-
work systems, an extensive calibration
study has been performed comparing model
results against an existing NASA data
acquisition and display system. The sys=-
tem performance measurements for the
calibration study were obtained under care-
fully controlled experimental conditions
for a variety of data block types. The
calibration study correlations between
system measurements and MPSS simulated
results showed good overall agreement,
while at the same time pinpointing specific
limitations of the model.

Winter Simulation Conference 281

MULTI-PURPOSE SYSTEM SIMULATOR (MPSS) ... Continued

MODEL OVERVIEW

The MPSS model was developed to evaluate
the relative performance of proposed com-
petitive computer systems and to indicate
areas for enhancement in existing ox
proposed systems. Each computer system is
composed of a hardware configuration with
an associated software design for the
computing units. The model is capable of
simulating the operation of defined sys-
tems and of producing measures of perfor-
mance for various data loads as results.
‘These measures can then be compared among
proposed competitive systems to isolate
that system which best satisfies a given
set of requirements.

Once a system is selected, the model can be
used to monitor the projected performance
of the evolving software and/or hardware
structure. If areas of data throughput
congestion are identified, alternative
software redesigns can be tested to assure
the alleviation of the congestion in the
problem area and to ensure that the re-
design does not cause a problem in another
area. If a hardware component, rather
than a software element, appears to be the
problem, the model can be used to evaluate
the performance expected by replacing the
problem component with alternative sub-
stitutes. The performance parameters
measured by the model include CPU proc-
essing and complementary idle times, data
block backlogs, data block response times,
individual software module response times,
communication line usage, and statistics
on peripheral device utilization and con-
tention. These statistics are summarized
in Table 1.

A salient feature of MPSS is its ability
to simulate a multi-CPU network involving
external data entry as well as data trans-
mission among the various CPUs, extended
memory banks, and peripheral devices that
comprise a system hardware configuration.
The model input consists of CPU, memory
bank, peripheral device, and device com-
munication line hardware characteristics
and linkages, simulated data block types
and rates (constant, periodic, or Poisson
probabilistic options), and associated
executable sequences of software modules
for each data block type. Fox each type
of simulated software module, specifica-
tions of its number of effective
instructions, priority, and detailed
peripheral utilization are declared.

282 December 6 ~ 8 1976

Table 1. MPSS Measures of Performance

5o [

DESCRIPTIVE PARAMETERS
PEREORMANCE T STANDARD
MEASURE
TOTAL | PERCENTAGE | AVERAGE | DEVIATION
cPy
PROCESSING TIME X
08 TIME MPLICIT) X
IDLE TIME X X
INTER-BLOCK LAG/LEAD ’ X X
TIME
PERIPHERAL DEVICES
INPUT TIME X X
OUTPUT TIME X X
QUEUED DATA X x
QUEUE WAIT TIME X X
QUEUE >.0 X
COMMUNICATION BUSSES
UTILIZATION X
CYCLE STEAL TIME X
COMMUNICATION LINES
TIME BUSY X
DATA BLOCKS
NUMBER ENTERED X
NUMBER PROCESSED X
NUMBER OF 1/0 ACCESSES| X
PROCESS RESPONSE TIME X X
SORTWARE MODULES
PROCESS RESPONSE TIME X X
CALLS PER SECOND X

ROLE OF RANDOM NUMBERS

Although MPSS is primarily a deterministic
model, random phenomena are introduced in
four aspects: (1) sporadic arrival of
external data blocks, (2) time displacement
between block arrivals, (3) interrupt time
between I/0 accesses, and (4) selection of
a particular peripheral device at each
interrupt when multiple devices are
assigned for I/0 during execution of a
software module. Random numbers between
zero and one are selected sequentially from
a uniform distribution. A particular

"sequence is specified by an input seed

number.

MODEL ENTITIES, ATTRIBUTES, AND OPERATIONAL
CHARACTERISTICS

Model hardware componénts are first dis-
cussed. Next, data block treatment is
described, followed by a discussion of
required software parameters. Lastly,
details of the MPSS operational logic are
delineated.

HARDWARE ATTRIBUTES

Central Processing Units (CPUs)

A multi-CPU configuration of diverse types
may be structured. From one to ten CPUs
of differing or identical types may be
prescribed in a single scenario. Central
processing units are characterized by
processing power, in millions of instruc-
tions per second (MIPS); linkages to other
CPUs, memory banks, or peripheral devices;
executive control option; and input data
acceptance method.

A CPU can be linked to other CPUs in either
a load sharing or a master/slave arrange-
ment. Intercomputer communication links
allow data to be exchanged between the
linked computers or data to be internally
generated within a computer. Data are sent
in accordance with the specifications of
the software module currently under execu-
tion by the sending CPU. Load sharing is
effected by allowing a linked idle com-
puter to process software modules that may
be executed in parallel to those being
performed by the prime CPU. Such modules
would have to reside at a commonly access-
ible location. Load sharing does not
necessarily require the interchange of

data blocks.

Extended Memory Banks

Extended memory banks (EMBs) provide
additional core capacity for individual
CPUs and a common memory repository for
multiple CPUs that are ganged to it. Up
to ten EMBs may be declared, each of which
can be dedicated to a particular CPU or
shared by several CPUs. EMBs are accessed
in a non-interrupt manner in the model,
i.e., a task does not relinquish the CPU
when awaiting data or programs that are
being transmitted from an EMB. However,

the involved operating system (0S) and wait

times are added to the CPU elapsed time
clock. EMBs can be attached to CPUs to
extend memory capacity and to share soft-
ware modules and/or data block input.
Inter-computer communication via an EMB
causes a data block sent by a CPU to be
chronologically merged with all other blocks
scheduled for execution. A particular
receiving computer would not be indicated
to process the sent block; it would be
processed by the first available computer
attached to the EMB. By default, a
receiving CPU is implied if the EMB is
uniquely attached to it.

Peripheral Devices

Up to thirty peripheral devices represent-
ing mass storage units, interface devices,
and/or display devices may be connected to
the CPUs via communication lines. Devices
‘'may be attached to one or more of the CPUs.
Peripheral access is governed by software

specification. Each software module
specifies the normalized frequency that
each device is accessed, whether input or
output, and the associated amount of data
to be transferred. The number of actual
input/output accesses (if not exactly one)
to peripheral devices induced by an execu-
ting module is probabilistically timed. A
negative exponential distribution is used
to determine the average time betweén
interrupts. At each interrupt a peripheral
access table is referenced in accordance
with module specifications. The device to
be accessed and the accompanying amount of
data to be transmitted are selected from
this table. If, in addition, at each
randomly selected I/0 interrupt, more than
one device can be chosen for I/0, the
device is randomly selected according to
its normalized frequency in the table.
Added to the data transfer time (number of
words times transfer rate in words per
second) is a delay parameter, called the
latency, for each device access.

Communication Lines

Communication lines are modeled to serve

as conduits for data between CPUs, nemory
banks, and peripheral devices. Lines are
defined by their linkage (number of devices
and/or CPUs sharing a line), flow direction
(one way or two way), and average trans-
mission time per request. A CPU may also
communicate with its attached memory bank
and peripheral devices via a communications
bus, e.g., a Digital Equipment Corporation
UNIBUS. In this instance, all data must

be transmitted through the bus. During

any time interval, only a data transfer .
between two devices (the CPU and EMB are
consideréd as devices) can be accommodated.
Thus contention (including CPU instruction
cycle-stealing) for the communications bus
can occur. Because of this potential for
contention, the model dynamically computes
the time required to transmit data between
pairs of devices. Accordingly, each device
is assigned a priority for transferring
data on the bus. Transmission time is
partitioned into two components: (1) the
contention-£free electrical transmission
time, and (2) the time awaiting access when
the bus is busy. An expected value algori-
thm was developed to compute the wait time
for the bus. The values of the parameters
in this algorithm are automatically modified
during the course of a model run to reflect
historical usage of the bus. Contention
statistics reflect the frequency that old
requests are awalting processing when new
requests are entered.

DATA BLOCK SPECIFICATIONS

Data Block Types

Up to 50 district data block types can be
declared. They include both external types

Winter Simulation Conference 283

v

MULTI-PURPOSE SYSTEM SIMULATOR (MPSS) ... Continued

with specified arrival rates or internally
generated types. The latter are generated
upon completion of specified software
modules and are transmitted either to a
different CPU or back to the sending CPU
for subsequent processing. All data types
have a specified software sequence uniquely
assigned through which each data block
must be processed.

External data can be simulated to arrive
at the system from external sources in
three distinct modes:

1. Constant Rate: A specified number of
data blocks arrive uniformly each '
second.

2., Periodic Rate: data blocks arrive in
recurring cycles of pulses. The num-
ber of blocks in each pulse is
specified. A pseudo data type, whose
sole function is to periodically
stimulate other types of data, in-
directly permits data of arbitrary
periods to be simulated.

3. Sporadic Rate: data blocks arrive in
probabilistic bursts. An average
rate per burst is specified; the actual
number of blocks in each burst is com-~
puted via the Poisson distribution,
using a random number generator and
the average rate specification.

Entry of a type of data block can be de-
fined to occur only if stimulated by the
entrance of another type. Under this con-
diction, the stimulated data type is
dormant until energized for a specified
time interval by the stimulating data type.

SOFTWARE SPECIFICATIONS

Software Modules

Up to 150 software modules can be declared.
A module can represent a portion of a sub-
routine, a complete program, or any
graduated element between these extremes.
A module can simulate an OS service or an
element of an applications program.

Modules may be used in more than one soft-
ware sequence and repeated within a
seguence.

Among the attributes describing each module

are:

1l. An identifier of the CPU, extended
memory, or peripheral device of
residence

2. Average number of instructions executed
per call

284 December 6 - 8 1576

-to their scheduled arrival time.

3. Disabled (non-interruptible) or enabled
(interruptible) mode indicator

4. Serial or parallel execution indicator
5. Execution priority factor
6. Average time between I/0 interrupts

7. Pointer to peripheral access table
(see "Peripheral Devices")

8. Indicator for inter-computer communi-
cation.

Software Sequences

For each data block type' (except pseudo-
periodic), a unique set of up to thirty
software modules to be executed sequentially
is specified. It should be noted that a
simulated software module can represent any
logical operation and is not restricted to

a one-~to-one correspondence with an actual
module.

MODEL OPERATION

The model is propagated on a "data block"
basis. Blocks arriving from outside the
system are scheduled in bursts for entry
into the simulated system. The length of
a burst is prescribed by an ‘input value,
nominally one second. - The resultant stack
of scheduled blocks awaiting processing
can be either consolidated into a common
stack accessible by all CPUs, or dispersed
among the CPUs in individual stacks, or a
combination of both. Dispatching of block
processing among the CPUs depends on the
executive control of each CPU and CPU
accessibility to the data block stacks and
task queues. Within a stack, blocks are
queued in chrondlogical order with respect
CPUs under
the control of a single dispatcher and
linked to a common block stack and task
queue will be assigned work on a “"first
available" basis. That is, whichever CPU
is idle or becomes idle first will be
assigned to process the next block or task.
CPUs may also operate..independently, each
with its own dispatcher. By the inter-CPU
data exchange feature, a particular CPU
may serve as a master and the others as
slaves. Off-loading of work from one CPU
to another is also permissible by proper
input definitions.

Primary computer performance is measured by
its capability to maintain real-time opera-
tion. Accordingly, a simulated clock is
associated with each CPU. The clock is
updated as a function of the MIPS value.
The time (tg) required to fetch and execute

an instruction equals (1/MIPS) if the
instruction resides in main memory. If it
resides in an extended memory bank, the

time (tg) includes additionally the time

(tp) required to extract the instruction

and any accompanying data from the memory
bank plus the times (ty) and (t,;) to trans-
fer them across the connecting communication
line and the communications bus respectively,
if one is involved. Mathematically,

+ =

e = L/MIPS + £+ t

L+tu.

When a software module comprising X
instructions is executed in a disabled mode,
the clock is advanced by X * t_ seconds

plus appropriate I/0 wait times and 0S times.
If disabled, the CPU is locked onto the
module at commencement of execution and is
not released until processing of the module
"is complete. The CPU idles during any
period of module induced I/0. If the
module, alternatively, is executing in an
enabled mode, the number of instructions
executed in selected time, At, is At/te.

The elapsed time At represents the
processing time available until an I/0
interrupt occurs. The CPU is released to
process any other available tasks when the
currently executing enabled task requires
I/0.

A simulated task queue with three levels of
priority is implicitly incorporated in

each CPU. Task gqueue operation is modeled
as follows: Each accepted data block
stimulates sequential execution of an
assigned set of software modules. Each
software module designates whether it is

to be executed in a disabled mode or an
enabled mode. If enabled, an execution
priority is also assigned. When an enabled
mode module is to be processed, a task that
corresponds to the data block-software
module couple is set into the task queue of
the appropriate priority. The priority of
the task is that assigned to the software
module., Within each priority gqueue, tasks
are scheduled and taken in a First-In/First
Out (FIFO) manner. Subsequent selection is
always initiated in the highest (no.l)
gqueue. If no tasks are scheduled for this
queue, or all scheduled tasks are awaiting
I/0, selection is initiated in queue 2. 1In
like manner, selection eventually reaches
gqueue 3,

A selected task is executed until one of
three events occurs: (1) all software
instructions have been executed, in which
case the task is removed from the queue;

(2) an I/0 interrupt is caused by the task,
in which case the task is placed at the end
of the queue and its execution cannot be
restarted until the I/0 operation is com—
pleted; or (3) an interrupt is caused by the
arrival of an internal or external data
block, in which case the task is placed at
the end of the queue and its execution
restarted when it has advanced to the front
of the gqueue. A new task is created

whenever an enabled mode software module
is encountered during the processing of a
data block. A task is not formed for dis-
abled mode software modules. When a dis-
abled mode module is encountered, the CPU
is locked onto that module until all
instructions have been executed and any
I/0 operations have been completed. The
model allows enabled and disabled mode
modules to be interspersed in any manner
within the software module seguence for
each type of data block.

The model is capable of simulating a dis-
tributive network by allowing component
CPUs to share the data load. Two types of
load sharing are permissible. Arriving
data blocks can be channeled to the least
busy CPU in a "distributive" cluster and/or
data processing can be shared among ganged
CPUs when a software module can be executed
in parallel with adjacent ones in the soft-
ware seqguence. In a distributive cluster
the incoming data blocks arrive at a common
memory bank and each is taken in turn by
the least busy CPU in the cluster. Software
modules can also reside in the extended
memory bank so that data block processing
can be shared.

If load sharing is allowed and a parallel
(processing) module is encountered, the CPU
that received the data block attempts to
off-~load execution of the parallel module
onto a ganged cooperative CPU that is less
utilized or under-utilized. Such off-
loading implies the availability of the
module to the cooperative CPU. When one or
more parallel modules is off-loaded, the
primary CPU commences execution of remaining
modules in the sequence. The least busy.
CPU is one that is idle ox, if none in the
cluster is idle, the one that will become
idle soonest.

The operating system of .a CPU can be treated
explicitly by prescribed software modules,
implicitly via fixed time values, or by a
combination of both methods. If explicit
modules are defined, they are placed -in the
software sequence along with applications
modules. Alternatively, the following
generic 0S services can be considered via
input time parameters:

1. Accept an incoming data block

2. Access main memory per reguest
3. Access extended memory per request -
4. Access a peripheral device per request.
5. Set up a disabled mode task

6. Open and close the task queue per task,
and

7. Handle I/0.

The 0S service time is added to the CPU clock
each time the particular service is invoked.

Winter Simmlation Conference

285

MULTI-PURPOSE SYSTEM SIMULATOR (MPSS)} ... Continued

MODEL SYNOPSIS

MPSS simulates the dynamic operation of a
synthesized computer network. Elemental
features of the model include:

1. A multi-CPU configuration of diverse
types. From one to ten CPUs may be
prescribed in a single scenario. Each
modeled CPU may represent a distinct
type as produced by various vendors,
e.g., IBM 360 series, Univac 642,

DEC PDP-11 series, etc. Two or more
CPUs of the same type are also
permissible. -)

2. Extended memory banks of the same or
distinct types. A given memory bank
can be a dedicated adjunct assigned to
a particular CPU, or thé bank may be
shared by several CPUs.

3. Modeled peripheral devices may re-
present mass storage units and inter-
face and display devices. Any device
can be attached to one or several CPUs.

4. Component systems can be represented
as associated units attached to a
common communications bus, such as
the PDP~1ll series UNIBUS. Direct
dialogue between any two units attached
to the same bus is permissible.

5. Up to 50 distinct data block types can
be declared. Types can be specified
as being generated by a source outside
of the modeled system (exogenous) or
by a source within the modeled system

" (endogenous) . Exogenous types each
have a distinct rate of arriving at
the modeled system. All types have a
specified software sequence uniquely
assigned through which each data block
must be processed.

6. Up to 150 software modules can be-
declared. A module can represent a
portion of a subroutine, a complete
program, or any graduated element
between these extremes. A module can
simulate an OS service or an element
of an applications program. Modules
may be used in more than one software
sequence and repeated within a
sequence.

7. Data load distribution. Arriving
external and generated internal data
blocks may be distributed among speci-
fied CPUs as a function of individual
CPU busyness.

8. Capability to trace each data block
through the system. .

9. Simulation of task gqueue operation and
task dispatching.

286 December 6 - 8 1976

existing operational system.

MODEL CALIBRATION

INTRODUCTION

N . N (
A calibration study was pursued to verify‘ ‘
the model results against independently
determined performance measurements on an
With the
satisfactory agreement (within experimental
and statistical uncertainties) obtained,
increased confidence in model fidelity was
achieved. The Monitor and Control Display
System (MACDS) at the NASA Goddard Space
Flight Center was chosen for the calibra-
tion study for the following reasons-:

1. It is an operational interactive system
incorporating a variety of hardware
and software resources, and it handles
a variety.of data traffic in normal
operations.

2. Performance measures could be straight-
forwardly obtained, as the software
designers and system operators were
in-house and could create a controlled
experimental environment to measure
performance parameters compatible with
the model output.

3. It was a system where current interest
existed in monitoring performance
versus anticipated data load variations,
and in evaluating the expected perfor-
mance of a MACDS backup system with
reconfigured hardware.

MACDS consists of a PDP-11/40 switching
computer and a linked PDP-11/40 display
computer, to which 46 digital television
displays and associated keyboards are
currently connected. The display data are
transmitted to the screens via a pair of
Data Disc vector and character generators
(VCGs) with associated refresh disks. An
additional RK11l disk used for data base

-displays (normally multi-paged) is included

in the data system. A schematic diagram
of the system is shown in Figure 1.

Input frem a UNIVAC 642B and two IBM 360
hosts is routed via the switching computer
to the display computer for processing, and
subsequently via peripherals for display or
to data base storage. In addition, a
variety of operator input is possible via
typed keyboard commands from each of the

46 keyboards.

EXPERIMENT DETAILS

The calibration study concentrated on three
types of data block processing which

tested the basic capabilities of the model
and were amenable to straightforward experi-
mental control.

HOST COMPUTERS

1BM S/360

SWITCHING

DX11-B COMPUTER
PDP-11/40
DX11-8 CENTRAL DAT1
SWITCHING
COMPUTER

OPERATING

SYSTEM (CSCOS)
DR11-8 l »

UNIVAC 6428

DATA CONVERSION MACDS

SUBSYSTEM TERMINAL
TERMINALS
VECTOR AND
CHARACTER
DISPLAY
GENERATOR
DISPLAY
COMPUTER —» -
PDP-11/40 -,
A
‘_J @
DIGITALTV

EXECUTIVE |«

KEYBOARDS

{DTEX) VECTOR AND

l¢— CHARACTER
DISPLAY

GENERATOR

ssesenves
ssssenses

—» TERMINALS

GREENWICH
MEAN TIME
RECORDER

Figure 1.

MACDS System

In the first type of processing, typed
character input (with subsequent echoing

to a display screen) was experimentally
controlled by using the keyboard repeat key
which generated a steady stream of a known
number of characters per second (approxi-
mately ten) from each keyboard in the
experiment. A primary reason for looking
at the character echoing subsystem was the
1/30th second disc rotation time required
to transfer each character data block to
the display screen. An entire disk revolu-
tion is required for the transfer of the
data bits for each character because of the
existing unbuffered software for keyboard
character echoes sent via the wvector and
character generators. Data for display of
an entire screen, if buffered, would also
require only 1/30th second (one disc
rotation). In addition to single character
echoing, this subsystem processed a pulse
of 46 data blocks (one for each terminal)
every 60 seconds to display the Greenwich
Mean Time (GMT). Again, the inclusion or
exclusion of the GMT data blocks was easily
controlled experimentally.

In the second type of data block processing,
scenarios simulating the sending of display
data from a host computer were exercised.
Variations were made in data rates and in
the number of display screens to which the
above display data blocks were sent. Model
results were again compared to controlled
MACDS results. In the third type of
processing, system response to display data
sent to the RK1l disk data base was simu-
lated via the model and compared to proto-
typal system response in counterpart
experiments. As a final calibration test,
all three of the above data types were
combined simultaneously at nominal data
rates and comparisons made between corres-
ponding simulated and prototypal system
performance.

To facilitate control of the prototypal
experiments, a special IBM 360 host com-
puter program was written to generate
display and add-to~data-base blocks at
known rates. Character echo control was
achieved by locking out the MACDS keyboards
until command activation, and by sub- ’
sequent use of the repeat keys. The display
computer software kept track of processing
times to 1/10000th second accuracy, and
special subroutines were written for the
display computer to tabulate statistics on
the system performance.

Two measures of performance were compared.
The percentage of CPU idle time during the
course of each experiment was obtained.

The wall-clock time required to totally
process each display and add-to-data-base
block was measured. The times and their
squares were summed to obtain the mean data
block response times and associated standard
deviations. Peripheral device performance
is implicitly imbedded in these statistics.

EXPERIMENT VERSUS MPSS RESULTS

The following ten distinct experiments were
performed:

1. 20 character echoes per second to one
VCG, and a GMT update every 60 seconds
to 23 terminals on each of the two VCGs.

2. 30 character echoes per second to one
VCG with no GMT updates.

3. 20 character echos per second to one
VCG with no GMT updates.

4. Five host-send-to~-terminal data blocks
per second to one VCG.

Winter Simulation Conference 287

MULTI-PURPOSE SYSTEM SIMULATOR (MPSS) ... Continued

5. One forced message data block every
four seconds for display to twenty ter-
minals, all connected to one VCG.

6. Two add-to~data base updates per
second.

7. Four add-to~data-base updates per
second.

8. Five host-send-to-terminal data blocks
per second plus one forced message per
four seconds to twenty terminals (both
to one VCG), plus two add-to-data-base
updates per second, plus a GMT update
every sixty seconds to both VCGs.

9. The same as 8 above, plus seven char-
acter echoes per second to one VCG.

10. Same as 9 above, except four add-to-
data-base updates per second instead
of two per second.

The experiments were executed pairwise on
the MACDS system and via MPSS. The experi-
mental results are summarized in Tables 2
through 5. In all of the experiments, the
percentage of time the CPU was idle was
compared. These results are summarized in
Figure 2. The worst difference occurred

in experiment eight in which the model
showed 7% more idle time than the display
computer (86.51% vs. 79.57%). In experi-
ments one through three the difference did
not exceed 0.5%. For these three experi-
ments the correlation coefficient was .9995.

Table 2. Percentage of Time CPU Was Idle

EXPERIMENT # MACDS ’ MPSS
1 92.34 92.21
2 9247 92,24
3 89.64 89.29
4 90.13 94.61
5 95.06 96.94
6 92,72 95.06
7 87.68 ‘ 89.98
8 79.57 86.51
9 79.21 84.11

10 73.74 79.91

CORRELATION COEFFICIENT = 0.9516

Table 3. Average Host-Send-to-Terminal

Data Block Response Time (msec)

EXPERIMENT # MACDS MPSS
5 80.1 873

8 643.7 4778

9 '665.5 860.3

10 638.2 875.7

CORRELATION COEFFICIENT = 0.9439

96 -

92 -

7 STRAIGHT LINES ARE BEST FITS J0
P -

3 LINEAR RELATIONSHIP
H

Yy = mx
WHERE y; = MPSS%IDLE
x EXPERIMENT % IDLE

88 I~

PERFECT FIT LINE
CORRELATION

MPSS CPU {DLE TIME (%)

COEFFICIENT * r = 1,000
L. = m = 1.000
INTERCEPT b 0
80 [~
z CORRELATION RESULTS SUMMARY
EXPERIMENTS L o.m b
76 b - 1,2,3 | 09995 1.06 ~574
——- 4 THAOUGH 10 # 0.9861- 0785 25
ALL 10 08516 0.704 287
72 [} 1 1 H 1]
68 2 76 1] ‘84 88 92 96 300

EXPERIMENT CPU IDLE TIME (%)

Figure 2. % CPU Idle - MPSS and Experiment

Comparisons

Table 4. Average Add-to-Data Base Data
Block Response Time {msec)

EXPERIMENT # MACDS MPSS
6 228.7 2504
7 260.5 269.0
8. 2416 256.0
9 243.6 255.8
10 267.2 27189

CORRELATION COEFFICIENT = 0.9886

Table 5. Average Forced Message Data

Block Response Time (msec)

In experiments four through ten, the aver-
age difference in CPU idle time percentage

288 December 6 - 8 1976

EXPERIMENT # MACDS MPSS
646.3 1070

7228 1282

10 720.6 1317

CORRELATION COEFFICIENT =0.9878

was 4%. The correlation coefficient in
this case was .986l. The overall value of
the correlation coefficient for all ten
experiments was .9516. This lower value
occurs because the display computer showed
consistently higher idle time in the first
three experlments and consistently lower
idle time in experiments four through ten.

Model and MACDS data Block response times
were compared for the host-send-to-terminal,
forced message, and add-to-data-base blocks
(this statistic was not.available from the
dlsplay computer for character echoes).
Pigures 3 and 4 summarize the results, in-
cluding correlation coefficients. The
add-to-data-base updates showed the least
discrepancy; the model showed an average 5%
longer response time. High positive corre-
lation was indicated By a correlation coef-—
ficent value of .9886. The host-send-to-
terminal response times had pairwise varying

V4 STRAIGHT LINES ARE BEST FITS TO
n

y mx
WHERE y, = RESPONSE TIMES - MPSS

? x, + RESPONSE TIMES - EXPER

n

BERFECT FIT LINE

03 -

06 =

HLSPONSE JIME 151 C) MP'SS

o4 |

SEND
mew—w g FOACEDMESS
02 senD
08437 m 130 » 005
£OACED MESS
£ 09878 m v 303 b - -0888

f L
o3 02 03 04 05 08 a7 08 09

RESPONSE TIME ~ EXPER 1SECt

Figure 4. Send and Forced Message Response
Time - MPSS vs. Experiments

and relatively wide (70% - 80% of the mean
value) standard deviations. 1In all cases,
however, the model and MACDS mean response
times were within each other's standard
deviation. In three cases the model gener-
ated a longer response time than MACDS, and
in one case a shorter time. The minimum
discrepancy was 10% of the MACDS mean value
and the maximum difference was 37%. High
correlation was nevertheless affirmed with

a correlation coefficient value of .9539.
The model has been determined to be 1ncap—
able of simulating forced message processing
in the identical manner as MACDS because of
differing queuing logic for I/0. Total
response time to get the message.to 20 ter- -
minals is about the same but average response
time per terminal is consistently higher

by 65% to 80% in the model. The relative
trend is, accordingly, consistent with a
correlation coefficient of .9878.

STRAIGHT LINE BEST 517 10

s " e
WHERE + AESPONSE TIME MPSS
RESPONSE TIVE EXPER

g30
r

PEREECT BT Ling

L 1000
a2 § 000
07 =

a2~

AU RESPONN SIM (ST MG

S ENPERINENTS VIELD
+ 098EG
——— e 0595

[T

: N x . N)
oz 013 02 025 026 03 023 029 030

ADBH RESPONSE TIME $SEC EXPERINERTS

Figure 3. Add-to-Data-Base (ADBH) Response
Times -~ MPSS vs. Experiments

TINTERPRETATION OF RESULTS

On a relative basis, MPSS is shown to simu-
late the display computer ensemble of MACDS
in a consistent manner. On an absolute
basis, the model shows good fidelity in sim-
ulating CPU utilization and in generating
average data block response times except in
the case of forced messages. The accuracy
of host-send-to~terminal message response
times is uncertain because of the wide
standard deviations generated by both the -
model and MACDS. In addition the model re-~
sources required vary linearly with data
load whereas the MACDS system exhibits the
following non-linear dependencies on data
load and backlog:

1. As data load increases the computer time
required for buffer allocation increases .
significantly due to the time required
to search through memory for adequate
buffer space.- Likewise, queue process-
ing times increase with increasing queue
lengths.

2. As backlogs build up in a particular data
type (e.g., character echoes) data is
merged within existing buffers and both
.the number of buffer allocations reguired
and the overhead for process initiation
and termination decreases significantly.
This decreases the computer time required
to process each data block.

The first non-linear effect is most sig-
nificant in the mixed-data scenarios,
whereas the latter effect predominates
in high data rates of a given type, e.g.,
30 character echoes per second. The
model, in contrast, requires identical
system resources for each data block,
independent of data load and backlogging.

Winter Simulation Conference 289

MULTI-PURPOSE SYéTEM SIMULATOR (MPSS) ... Continued)

CONCLUSION

The model was developed primarily as a tool
to evaluate the performance of existing
computer systems under loading or hardware.
variations and to give projected perfor-
mance measures of proposed alternative sys-—
tems. It is capable of simulating a
real-time multi~-CPU interactive system
having main or extended memories, multiple
peripheral accesses per data block, a data :
block load sharing option among the CPUs,
and interruptible or non-interruptible
software module processing modes. The
positive correlation between simulated

MPSS results and MACDS measurements yields
a high level of confidence in the fidelity
of the model.

290 December 6 - 8 1976

