SIMULATION OF EFFECTS OF UNCERTAINTY IN LARGE LINEAR MODELS

ABSTRACT

Leontief Input Output (I-0) models contain large
numbers of parameters which must be estimated.
These models are widely used in energy and economic
analyses without mention of the fact that relative-
ly large estimation errors can cause large errors
in model outputs. This paper discusses a simula-
tion performed on a 90 sector I-0 energy model in
an attempt to statistically quantify the effects of
these estimation errors on the entire Leontief in-

verse (I—A)-l, the vector of total output X, and
the vector of total primary energy intensities ¢
(i.e. the total out of ground energy embodied in a
unit of output of each sector). Bias relative to
published values, variance measures and their rela-
tion to error bounds and the sensitivity of the
results to assumptions on estimation errors are
‘discussed.

In particular, the sample means uy are virtually all
within 2% of their respective published values. It

is further shown that 3o/u (where 02 is the unbias-
ed estimate of the variance of an element of the
result set) is less than 20% in most cases. Con-

fidence intervals on p and ¢ are small enough that
the above results would not change substantially if
the sample statistics were replaced by the popula-
tion means and standard deviations.

These results are further shown to be quite stable
with respect to assumptions on estimation error
statistics since doubling the estimation uncertain-
ty only increased the output uncertainty by a factor
of two. PFinally, the stochastic error bounds on
model outputs derived here are shown to be signifi-
cantly lower than previously available worst case
bounds which assumed no error cancellation.

1.0 INTRODUCTION

This paper describes a stochastic parametric sensi-
tivity analysis of a detailed structural model of
the U.S. economic system, in which model parameters
were derived from physical observations of the sys-
tem. Use of such models is becoming increasingly
prevalent for mid-to long-range studies and policy
analyses in government planning at all levels. Re~
source scarcity, foreign policy contingencies and
other factors have made rapid structural change the
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object of analysis, not something one can assume
away. Effective use of such models requires an
understanding of the effects of parametric change
and uncertainty.

We are concerned here with a linear static Input-
Output model of the U.S. economy. Its parameters
are derived from data on interindustry transactions
compiled by the U.S. Department of Commerce {19Tka
and b). Due to funding limitations, measurement
lags and the size and complexity of the economic
system, these parameters are seven years out of
date when published. Parametric uncertainty there-
fore can arise from two sources: observation of
the system during the base year and structural
changes during the seven year lag period. Esti-
mates of uncertainty in the base year parameters
were compiled by Bullard (1976).

The effect of parametric uncertainty on model out-
puts has been discussed by Sebald (1974) and Bullard
and Sebald (1975). These papers gquantified the
maximum error tolerances that would result from the
worst-case distribution of paremetric errors. For
this model, it was found that the process of matrix
inversion could magnify input errors by more than
600%. Since worst-case distributions are not like-
ly to occur, a methodology that could quantify the
extent to which parametric errors cancel one anoth-
er would provide much more realistic results.

The Monte Carlo simulation analysis described here
was designed to answer that question. Base year
interindustry transactions were characterized as
random veriables and the model parameters were de-
rived from them. The results from each simulation
were used to update a set of sufficient statistics
to yield unbiased estimates of means, variances and
some covariances. The simulations were performed
to evaluate both the effect of doubling error tol-
erances on inputs and the effect of changing the
structure of the model to enhance its usefulness
for predictive work.

Section 2 describes the preparation of the data
base and estimation of uncertainty on base year
transactions. BSection 3 details the simulation
methodology, and the criteria for determining "ac-
ceptability” of simulated parameters. Section b
presents the results of all simulations, and dis~
cusses the effects of aggregation, magnitude of in-
put uncertainty and other variables.
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Simulation of Effects of Uncertainty . . . {cont.)

2.0 DATA BASE PREPARATION

2.1 THE MODEL

The linear static input-output model of the U.S.
economic system is described in detail by Bullard
and Herendeen (1975). It is based on the theory
developed by Leontief (1941), and relies largely on
data assembled by the U.S. Department of Commerce,
Bureau of Economic Analysis (BEA). Data are ex-
pressed in constant dollars, which act as a surro-
gate for physical units. In this particular model
however, the inputs of energy to all sectors are
expressed in physical units, to account for the
fact that energy is sold to different users at dif-
ferent prices.

The governing equation of the model is

(I-A) X = ¢ (2.1-1)
where X is an N-order vector of gross domestic out-
puts for each sector, Y is the vector of domestic
final demands for the output of each sector, and A
is the matrix of parameters describing the techno-
logy of producing goods and services during the
base year. A typical element Aij represents the

amount of input from sector i required directly by
sector j to produce one unit of its output. These
parameters are derived from base year observations
of interindustry transactions, Tij’ (amount of out-

put from sector i sold directly to sector j):

Aij

T, .
—%l (2.1-2)
3

In turn, these interindustry transactions are de-
fined as the sum

M = DA + MDT + TF (2.1-3)

where DAij is the amount of product i sold directly
to sector j, MDTij represents the transportation or
trade margin i on all inputs to sector j, and TFij

represents the amount of product j produced as a
secondary output by sector i.

2.2 THE DATA

Estimates of all elements of the above matrices are
collected and assembled by BEA at the 484 sector
level of detail. Before publication however, they
are aggregated to about 360 sectors. BEA personnel
responsible for this compilation were interviewed;
their subjective estimates of uncertainty on all
base year transactions were obtained by Bullard

(1976).

Before proceeding with the Monte Carlo simulation,

®
these data were aggregated to 90 sectors. This
degree of aggregation was chosen to reduce computing
costs while adhering closely to the most widely
distributed and used version of the BEA input-

Names of sectors are given in Table 1.
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*
output tables.

Aggregating an input-output data base in a nontriv-
ial operation since it must be done prior to the
operation in (2.1-3). After aggregating the three
matrices independently, zeroing the diagonal of TF,
and summing to obtain T, X and A are computed
using egs. (2.1-1) and (2.1-2).

3.0 METHODOLOGY

3.1 POINT OF VIEW FOR STOCHASTIC ERROR ANALYSIS

There are several ways to interpret this problem,
and the point of view affects both the methodology
and the interpretation of results. One way is to
act as a simulator of BEA's activities from data
collection through matrix inversion. In an alterna-
tive viewpoint, the analyst attempts an a priori de-
termination of the effect of mathematical transfor-
mation on uncertain observations. In either case,
this information enables the analyst to assess the
usefulness of the data for modeling purposes. We
have adopted the latter point of view.

Within this framework, the analyst receives measure-~

*¥
ments of the economic system assoeciated with each
interindustry transaction as well as total output
and value added. Actually, each of these signals
from an industry is the sum of many signals from in-
dividual establishments. The signals appear to be
uncorrelated; that is to say, the analyst's only in-
formation on their correlations comes from account-’
ing identities requiring income to equal outgo.

Each set of measurements is processed by BEA, re-
sulting in upper and lower bounds and a ‘'published
value" representing their best estimate of the most
likely true value of the parameter. We then charac-
terize BEA's knowledge of the transactions as ran-
dom variables. The resulting distributions drive a
Monte Carlo analysis, the important outputs of

¥ The BEA tables are published at the 83 sector
level of detail, while the 90 sector model used here
retains more detail in the transportation and energy
sectors of the economy. '

*#1411 measurements correspond to the model base year.
Due to the size and complexity of the econoumic sys-
tem, frequent measurement is economically prohibi-
tive so virthally no time series data are available.

***Although we have adopted the point of view of
attempting to determine the effect of mathematical
transformations on uncertain observations, we have
attempted to carefully model the parametric correla-
tions induced by control total constraints. In
particular, each parameter is first sampled indepen-
dently and steps are taken to assure that external
balance conditions are satisfied. Although it is
unrealistic to completely simulate BEA's activities,
many of which sre judgemental, undocumented and not
reproducible, in this case we have attempted to fol-
low their procedures where possible. Specific in-
stances of non compliance are detailed in section
3.3.



vhich comprise a solution set S. For each element
of S, second order statistics are generated and
compared with the deterministic results obtained by
BEA and by Bullard and Sebald (1975).

3.2 SAMPLING RANDOM VARIABLES

A1l of the basic data (transactions, industry out-
put, final demands) are characterized as random
variables having either normal or lognormal distri-
butions. Small magnitude entries truncated to
zero by BEA are modeled with a "folded normal" ran-
dom variable, which is simply the absolute value of
a normal random variable with mean O.
are modeled using either normal or lognormal random
variables with the former used in those cases where
the published value is relatively accurate. In
situations where the data is less well known, BEA
personnel tended to use a multiplicative factor to
bound their estimates rather than an additive error
bound. A lognormal distribution is appropriate in
such a case because of its property of multiplica-
tive symmetry about the median. That is, if Xo is
the median of a lognormal random variable X, then
Prob. (X > XgD) = Prob. (X < Xg/D) for any factor D.
For example, if an analyst states that his estimate
has probability o of being correct within a factor
of D, then a lognormal random variable with o =
Prob. (Xg/D < X < XgD) will be used to model the
situation.

The following conditions are satisfied by all para-
.metric random variables in the situation:

1) The sample is drawn from a folded normal,
normal or lognormal populatiodn,

2) The distributions are truncated to prevent
samples that are absurd (e.g., negative
transactions). Truncation eliminates sem-
ples in the upper and lower 0.15% tails in
the normal and lognormal cases and in the
upper 0.3% tail in the folded normal case.
This corresponds to the percentage of pro-
ability outside 3 standard deviations from
the mean in a normal population.

3) The expected value of the sampled result
is equal to the published value, M, of the
entry in question (except in the folded
normal case where the published value is
zero).

4) Before truncation, the random variable X
from which we sample has a confidence in-
terval defined by a parameter b, § or D.

a. Folded Normal Case

Prob (X <b) = .997

(i.e., b amounts to 3 standard devia-
tions of the underlying normal random
variable.

b. Normal Case

Prob (uy - Suy < wy + Suy) = .997

¥ 1In a few cases a negative entry in the data is
modeled by the negative of a lognormal random vari-
able (which necessarily takes only positive values).
This set of circumstances is handled so much like
the usual lognormal case that it is not discussed
separarately in what follows.

Non-zero cells

(i.e., & amounts to 3 standard devia-
tions of X expressed as a fraction of
the mean, uy=M)

c. Lognormal Case
Prob (X,/D < X < XD) = .997
In all three cases the sampling procedure is based
on a standard normal random variable® (i.e., mean =

0 and variance = 1). Details are given in Bullard,
et. al. (1976).

3.3 AGGREGATING RANDOM VARIABLES

Based on subjective uncertainty estimates made by
BEA Personnel, probability distributions were de-
fined at the 368 sector level of detail. For these
simulations, data were aggregated to the 90 sector
levels of detail. The means of the aggregated vari-
ables are easily obtained but specification of the
distributions of the aggregate variasbles is a non-
trivial task which was undertaken in the following
vay.

Since all transactions, margins, etc. at the 368
order are in fact aggregates of data obtained in-
itially from individual establishments grouped by

5 or 6 digit Standard Industrial Classification
codes, the original BEA specification of a distri-
bution for these aggregates was a crude assumption
in itself. The basis for specifying the distribu-
tion at the 90 sector level is equally subjective.
For computational convenience and reproduciblity, we
assumed that the variance, V, of each aggregated
element is the sum of the variance of all its con-
stituents. If 3/ is less than 40% of the aggrega-
ted mean, u, assign a normal N{(u,V) distribution to
the variable. If 3/V is greater than 40% of u, a
lognormal distribution is assumed. If u equals
zero, a folded normal distribution is used. It is
felt that the subjective nabure of the disaggrega-
ted uncertainty estimates did not warrant a more
rigorous approach.

3.4 'CONSTRUCTINGTHE "TRANSACTIONS ‘MATRIX

The relationship between the matrices of transac-
tions, (T), final demand {FD), imports (M) and
gross domestic outputs (GDO) is given by

10

N
jzl Tig "L, D, - M, = DO, (3.h4-1)
These random variables are sampled from normal or
lognormal distributions as described gbove. Each
element in the first row (i=l) is sampled first in-
dependently, just as BEA analysts receive these
values from apparently independent sources. Since
eq. (3.4-1) is an external balance condition that

is not satisfied in general, we force this condition
to be satisfied in much the same manner as BEA does.
The lognormally distributed variables in the row

are generally those obtained from unreliable sources
or computed using surrogate variables. Therefore
these values are scaled proportionately to satisfy

¥ fThe standard normal random number generator used
was the International Mathematical Statistical Lib~
rary routine GGNRF. Tests of randomness and nor-
mality were performed for verification purposes and
are described by Bullard et al. (1976).
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Simulation of Effects of Uncertainty . . . (cont.)

eq. (3.4-1)."

Proceeding in this manner through N rows, a com~
plete data set is constructed satisfying row con-
straints. The rows are not independent, however,
because the value of all outputs (GDO) of a sector
must equal the value of all commodity inputs (from
the other N sectors) plus "value added" (a term, VA,
accounting for wages, taxes, and profit). VA is
measured independently by federal agencies and pro-
vides BEA analysts with another external condition
to satisfy. Their method for satisfying this was
too complex to model, so a simpler check had to be
devised for this Monte Carlo study.

The method employed is based on BEA's response to
the following question: "If the criterion for ter-
minating the iterative process of balancing the I-0
table were based on uncertainty of the VA values,
how much could be tolerated?" The answer indicated
that out of 90 sectors, at least 88 must be within
+20% of the "true" value.*** If the condition was
not met, the matrix was rejected. This condition
was never violated in the actual simulation.

Next, the terms in eq. (3.4-1) are used to compute
the coefficients

T,
A = ol
ij ~ @0,

and the Leontief inverse matrix (IsA)—l is finally
calculated. Aside from checking the eigenvalues of
A, there is no a priori check that can be perfgrmed
to guarantee positivity of the inverse matrix.
Therefore, each matrix was checked after inversion.
Again, the simulation was completed without this
condition being violated.

*In fact, BEA analysts actually estimate many of
these uncertain values by computing the difference
between GDO and the sum of the well known (normally
distributed) variables and allocating proportional
to some surrogate varisbles (e.g. employment).

**In the 1967 input-output study, consistency be-
tween row and column sums was assured by assigning
responsibility for individual sectors to different
analysts and after each independently estimated
initial row values, the resulting columns were pre-
sented to each analyst for independent verification.
After many iterations and some undocumented judge-
ment decisions, the "published" values were agreed
upon.
®R%

Philip M. Ritz (1976) Interindustry Economics
Branch, Bureau of Economic Analysis, U.S. Depart-
ment of Commerce, personal communication.

*If all variables were expressed in current-year
dollars, some a priori test are available. In the
general case such as this one, where the energy
sector outputs are expressed in physical units, no
such tests exist.
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3.5 RESULTS SAVED FOR ANALYSIS

Our attention was focused on the means, variances
and confidence intervals for the elements of (I-A)™
and selected subsets and linear combinations thereof.
To calculate these, it was necessary to save a set
of sufficient statistics on disk after each itera-
tion. The running sum and the sum of the squares
for each element of the following set of results,

s, was saved.

1. The entire (I--A)"1 matrix;

1

2. The total primary energy intensity vector,
€; and

3. The sector output vector, X.

The total primary energy intensity vector is a
linear combination of the energy rows of (I—A)-l,
and a typical element e, represents the amount of
basic energy resources §equired directly and indis
rectly to produce one Enit of output from sector J
for finsl consumption. The sector outputs X are

computed from the simulated (1-2)"! matrix using the
base year domestic final demands as weighting fac-
tors:

-1 J1o0 ‘
X, _§ (-ngy (1 ¥ - M) (3.5-1)

This is done because I-0 models are frequently em-
ployed to estimate total sector outputs correspond-
ing to a specified final bill of goods, and a signi-
ficant amount of additional error cancellation may
be achieved.

In order to ascertain the nature of the distribution
of typical random variables, each simulated value
was saved for source results. The variasbles saved 1
were X, €, and the electricity sector row of (1-8)"
Goodness of fit tests performed on these variables
are described in Section L,

Finally, since most applications of the particular
models examined are in the area of energy policy
analysis, it was decided to save sufficient stat-
isties for recovering covariances of the energy sec-
tor rows of (I-A)-1l. Since all possible linear com-
binations were not of interest - only row and column
combinations - storage requirements were consider-
ably reduced. It was sufficient to save the running
sums of products of all pairs of entires appearing
together in such linear combinations. If other
combinations are_ever needed, they will be recover-
able from (I-A)“l matrices saved on an archive tape.

With this set of results it is possible to estimate
the total energy requirements to meet arbitrarily

£

The energy rows utilized are those corresponding
to coal, crude oil and gas, and the fossil fuel
equivalent of hydro and nuclear electricity:

_ -1 -1 -1
ey = (I-A)lj + (I-A)2j + 0.6 (I-A)hj



specified final demands, and to compute linear com-
binations of energy intensities similar to the
"total primary" one described earlier.

3.6 STOPPING RULE

One of the major difficulties associated with Monte
Carlo simulation is knowing how many runs will be
required to attain reasonable confidence intervals
on the results of the simulation., There are two
major problem areas. If one is considering whether
or not to use Monte Carlo techniques, an estimate
of the required number of runs is crucial to deter-
mination of simulation costs. It may be, for ex-
ample, that reasonable confidence intervals may
require a prohibitively expensive number of runs.
The second problem arises after the decision has
been made to use Monte Carlo methods. One needs to
know when enough runs have been made.

In the first problem area, present practice dicta-
tes running several small scale simulations of a
similar nature to the one of interest in order to
be able to extrapolate the number of runs in the
smaller cases to the probable runs needed in the
larger. In the second area, good statistical prac-
tice dictates that before taking any samples, one
must determine how to stop sampling in a way that
doesn't bias results. Executing additional runs if
the resulting confidence intervals are too large is
considered unwisé since one runs the risk of bias-
ing the simulation results by stopping when the de-
sired outcome occurs.

A method was developed for determining, based on a
very small number of runs, the proper number of
total runs the simulation should require. The
method elucidates the cost/benefit tradoff between
the cost of additional runs and the benefits of in-
creased accuracy. Since this method is based on
just the first few runs, biasing of the simulation
will not occur. Since it is based on a very small
number of runs, the method is a cost effective way
to decide whether a Monte Carlo analysis is econo-
mically feasible. A detalled description is given
by Bohrer and Sebald (1976).

4.0 ANALYSIS OF RESULTS

The basic results of the simulation will be given
for the 90 order I-0 matrix. This includes in-
formation on bias relative to published values,
variance measures and their relation to error
bounds, the sensitivity of the results to uncertain-
ties on the variances of the underlying BEA data
and the effects of aggregating to 30 sectors, As a
prelude, we begin by discussing the goodness of fit
tests which were required to verify some distribu-
tional assumptions inherent in the simulation.

t.1 GOODNESS OF FIT

The methodology for the goodness of fit tests was
developed by Stephens (1976), who describes a test
for normality based on the Cramer-von Mises statis-
tic which may be employed when the population mean
and standard deviation are not known. Stephens'’
test compares a given sample distribution function
to a normal distribution with mean and standard de-
viations given by the sample mean and sample

standard deviation. Included in Stephens' paper is
a table of significance levels for the statistic
given the hypothesis that the random varisble being
tested is normal. Thus, a test of normality may be
made by calculating the value of Stephens' statistic
for a given sample and comparing it to the tabulated
values which characterize normal behavior.

The first series of tests using this method was made
to test the normality of the Z random varigbles de-
fined by averaging every ten consecutive sample
points obtained for the entries in the simulation
results, 1In all, 270 of these random variables were
tested, one for each entry in the electric utility

sector row of (I—A)_l, the total primary energy
vector, £, and the total output vector, X. Table k-
1 shows the upper tail percentage points calculated
by Stephens along with the observed percentages of
the Z random variables which fell into the various
categories.

OBSERVED PERCENTAGE | 16.0 {12.22 | 6.29 |3.33 |1.L48
NORMAL PERCENTAGE 15.0 {10.0 |5.0 |2.5 {1l.0
STEPHENS' STATISTIC .001 .1oM 126 .148] .178

Table 4-1. A Comparison of Observed and Theoretical
Upper Tail Percentage Points for Good-
ness of Fit Tests on the Random Variables

Z.

For example, Stephens predicts that 10% of all nor-
mal samples will achieve sample statistics larger
than .10k4; we observed 12.2% above that mark. Even
if the 270 random variable being tested are inter-
dependent, the expected value of the observed per-
centages should equal the theoretical percentages
if the normality hypothesis is satisfied. Thus the
results are very reassuring and seem to justify
treating the average variables as normal.

A second series of tests was undertaken to examine
the distributional properties of the raw data for
the same 270 entries. In the absence of averaging
there is little reason to suspect that these random
variables are normal. However, the results were
suprising in that very many of the 270 sample stat-
istics were small and therefore indicate good fit
to a normal distribution curve. Those entries that
displayed decidedly non-normal behavior were virtual-
1y all unimodal but slightly skewed to the right.

It is interesting to conjecture why some entries
seem to be roughly normal while others are not; per-
heps in the process of inversion some elements of

(I—A)—l get & better mix of elements of the A matrix.
At any rate it is useful to know that the entries
are all more or less unimodal and symmetric., If
such is the case then 30 may be conveniently employed
as an error bound on the distance from the mean, p.
While Chebychev's inequality guarantees that u+3c
contains at least 89% of the total probability in

an arbitrary distribution, this percentage rises to
99.7 in the normal case. Presumably the percentage
is also high for any random variable whose density
function is roughly unimodal and symmetric. TFor all
but one of the entries examined here, at least 99%
of the sample points fell within three sample stand-
ard deviations of the sample mean. Thus, 30 may be
thought of as an approximate bound on deviation from
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Simulation of Effects of Uneertainty . . . (cont.)

the mean for the entries in the simmlation results,
even if many of those entries are not very close to
being normal.

4.2 CONFIDENCE INTERVALS

This section discusses the precision of the sample
statistics obtained for various simulation results
in light of the goodness of fit tests just discussed.
Because the Z variables are approximately normal,
standard techniques may be used to derive confidence
intervals for the mean and variance of a Z variable
and hence for the mean and standard deviation of the
associated entry. After 1000 inversions, a 97.5%
upper confidence bound o, on the standard deviation

o of an entry is given by o, =0 *¥1,16, Thus, o is

a fairly good estimate of ¢ for any given entry.

The confidence intervals on the sample means are
even smaller. In more than 90% of the entries in the
inverse the population mean is within 2% of the sam-
ple mean with 95% confidence. All the entries of ¢
and X are accurate to within 1% with 95% confidence.

-4,3 VARIABILITY OF THE ELEMENT IN THE RESULT SET

Histograms of 3¢/u were prepared in order to show
the relative amount of variability in the entries
of the results set. Three such histograms, one for
the whole inverse, one for e and one for X, are dis-
played in Figure L-1. For half of the entries of

the inverse, 3c/u is less than 20% while virtually

all the entries of e and X have 3¢/p less than 20%.
The above discussion of confidence intervals sug-
gests that these. histograms would not change sub-
stantially if the sample statistics were replaced by
the population means and standard deviations. Since
these entries are roughly unimodal and symmetric,
the histograms may then be taken as a good measure
of the variablility in the entries of the various
subsets of the results. The large decrease in vari-
ability from the elements of the inverse to the ele-
ments of X suggests that significant error cancella-
tion occurs as linear combinations of many I-0 coef-
ficients are computed.

In addi?ion to those discussed above, histograms for
(30, + 1 - p) (30, +p - u)

- > and , Where p = publish-
ed value, were also computed in order to relate p
to the upper and lower bounds on the uncertainty in
an entry. Because y is generally very close,to p
and because ou is only slightly larger than o, these

histograms are very similar to the histograms for
30/u except that the values are all slightly larger.

4.4 BIAS ON ELEMENTS OF THE RESULT SET

In standard statistical language, bias is usually
defined as the difference between the mean of an
estimator and the true value of the quantity to be
estimated. We use the term in a fundamentally dif-
ferent way. to denote the difference between the mean
of the simulation output variables and their cor-
responding published values. The mean values of the
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assumed distributions of each element of the trans-
actions matrix are equal to their respective pub~
lished values. One important result of the simula-
tion is to determine the bias introduced by normali-
zation and inversion in passing from the transactions

matrix to (I-4)7.
Fig. L-2 details histograms of the ratio of sample
mean to published value, yu/p, for three important
and disjoint subsets of the result set, viz the
vectors of total output X and total primary energy
intensity € and the entire inverse (I-A)~". Three
aspects are noteworthy:

1) Nearly all u cluster within 2% of their
published values.

2) Within this cluster, p tends to have a pos-
itive bias more often than a negative one.

3) Essentially none of the p fall below 98%
of their respective published values while,
especially in the inverse, a small number
of u range well above the published value.

The reason for this positive bilas is unclear. The
best explanation may be that transactions reported
by BEA as zero were assigned a small positive value
in the simulation to account for the fact that no
transaction is known to be exactly zero. The large
percentage excess over the published value may re-
sult for the same reason, since an inverse element
may be affected (percentagewise) quite significant-
ly if. its corresponding direct coefficient A,
changes from zero to some finite value. J

4.5 SENSITIVITY OF SIMULATION RESULTS TO ASSUMPTION
ON INPUT UNCERTAINTIES

Since the variances assigned to input quantities
such as the transactions matrix, FD and GDO are only
estimates of the true variances, simulation results
have meaning only if small changes in these assumed
variances, do not cause very large changes in simu-
lation oubtputs. This sensitivity to changes in in-
put variances was investigated by repeating the
simulation with the standard deviations of all nor-
mal quantities doubled and dispersion factors on
lognormal inputs doubled. Three major effects were
noted:

1) The ratio of CI to u, where CI is the
length of the 95% confidence interval for
the mean, was doubled by the factor of two
increase in standard deviation.

2) The ratio of 30 to u doubled on the average
by doubling the input standard deviations.

3) Increasing the input variability made the
biases slightly more negative. This is
thought to be the result of increasing
simulation sensitivity to the larger ele-
ments of the transactions matrix and de-
creasing relative sensitivity to the smal-
ler elements discussed in section L.k,

Since output uncertainties only doubled with a fac~
tor of two increase in input uncertainties, “the
simulation is probebly very stable with regard to



assumptions on input variances.

The absolute magnitudes of these results with doubl-
ed input uncertainties may be useful in assessing
the general viability of I-O results applied far be-
yond the base year (the uncertainty of base year
parameters increases over time). Moreover, if in-
stitutional factors make it unlikely (as some claim)
that govermment can fairly estimate uncertainty of
its own data, then these results show the effect of
a 50% underestimate of the actual uncertainty.

4.6 THE EFFECT OF AGGREGATION

The effect of aggregating the 90 order model to 30
order was analyzed for two reasons:

1) It was felt that although variances at the
30 order were smaller than those of the 90
order due to the aggregation, more error
cancellation should exist at the 90 order
where more input elements combined to form
elements of X, e and (I-A)"™.

2} Since much I-0 work is done at the 360
order, it is of interest to determine
whether the expansion of the simulation
to 360 order would likely require more
than 1000 runs used in the 90 order case.

Aggregation produced effectively no change in the
simulation output uncertalntles

1) The ratio of 30 to ¥ remained virtually
' unchanged by the aggregation. This im-
plies that the two effects mentloned above

virtually cancel one another.

2) The already very small biases of Fig. b4-2
were made slightly more negative by ag~
gregating to the 30 order.

3) Since the ratio ¢,/ is a function only of
the number of simulation runs, it is unaf-
fected by aggregation.

These results give no indication that more than 1000
runs would be needed in the 360 sector case.
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TABLE 1

90 ORDER SECTOR NAMES
1. Coal Mining
2. Crude Petroleum & Natural Gas
3. Petroleum Refining & Related Products
L. Electric Utilities
5. Gas Utilities
6. Livestock & Livestock Products
T. Other Agricultural Products
8. Forestry & Fishery Products
9. Agricultural, Forestry & Fishery Services

10. Iron & Ferroalloy Ores Mining

11. Nonferrous Metal Ores Mining

12. Stone & Clay Mining & Quarrying

13. Chemicals & Fertilizer Mineral Mining

1k, New Construction

15. Maintenance & Repair Construction

16. Ordnance & Accessories

17. Food & Kindred Products °

18. Tabacco Manufactures

19. Broad & Narrow Fabrics, Yarn & Thread Mills

20. Miscellaneous Textile Goods & Floor Coverings

21. Apparel

22. Miscellaneous Fabricated Textile Products

23. Lumber & Wood Products, Except Contalners

2h. Wooden Containers

25. Household Furniture

26. Other Futniture & Fixtures

27. Paper & Allied Products

28. Paperboard Containers & Boxes

29. Printing & Publishing

30. Chemicals & Selected Chemical Products '

31. Plastics & Synthetic Materials

32. Drugs, Cleaning & Toilet Preparations

33. Paints & Allied Products

34, Paving Mixtures & Blocks

35. Asphalt Felts & Coatings

36. Rubber & Misc. Plastics Products

37. Leather Tanning & Industrial Leather Products

38. Footwear & Other Leather Products

39. Glass & Glass Products
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. . (cont.)

Table 1 (continued)

Figure 4-1. Maximum Error Tolerances on Results
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. 40. Stone & Clay Products
k1. Primary Iron & Steel Manufacturing
L2, Primary Nonferrous Metals Manufscturing
43. Metal Containers
i, Heating, Plumbing & Fabr. Structural Metal Prod.
45. Serew Mach. Prod., Bolts, Nuts, etc. & Metal
Stampings
L6. Other Fabricated Metal Products
47, Engines & Turbines
48, Farm Machinery
49, Construction, Mining, 0il Field Mach., Equip.
50. Materials Handling Machinery & Equipment
51. Metalworking Machinery & Equipment
52. Special Industry Machinery & Equipment
53. General Industrial Machinery & Equipment
54, Machine Shop Products
55. Office, Computing & Accounting Machines
56. Service Industry Machines
57. Blec¢. Transmission & Distrib. Equip. & Elec.
Industrial Apparatus
58. Household Appliances
' 59. Electric Lighting & Wiring Equipment
60. Radio, Television & Communication Equipment
61, Electronic Components & Accessories
1 62. Misc. Elec. Machinery, Equipment & Supplies
63. Motor Vehicles & Equipment
64, Aircraft & Parts
65. Other Transportation Equipment
66. Prof., Scientific & Controlling Instru. & Sup-
plies
67. Optical, Ophthalmic, & Photographic Equip &
Supplies
68. Miscellaneous Manufacturing
69. Railroads & related Services
70. Local, Suburban & Interurban Highway Pass. Trans,
Tl. Motor Frieght Transportation & Warehousing
T2. Water Transportation
73. Air Transportation’
Th. Pipe Line Transpdrtation
75. Transportation Services
T76. Communications Except Radio & TV Broadcasting
T7. Radio & TV Broadcasting
78. Water & Sanitary Services
T9. Wholesale & Retail Trade
80. Finance & Insurance
81. Real Estate & Rental
82. Hotels & Lodging Places; Personal & Repair Serv.
83. Business Services :
8, Automobile Repair & Services
85. Amusements
86, Medical, Educ. Services & Nonprofit Organization
87. TPederal Govermment Enterprises '
88. State & Local Govermment Enterprises
89. Business Travel, Entertainment and Gifts
90. Office Supplies
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Figure 4-2. Mean Volue Bias
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