A SIMUILATION PROCEDURE FOR ESTIMATING

BIAS IN W£LL DIVERSIFIED PORTFOLIOS

ABSTRACT

The existence of a selection bias in applications
of the portfolio selection models have previously
been identified. The importance of this biaé, in
terms of the magnitude of its potential impact on
portfolio selection, has never been demonstrated.
Monte Carlo approaches are used in this paper in
order to demonstrate that selection bias is more
than a mere mathematical curiosity; the effects of
this bias are very significant. Other insights are
provided by the simulations. The point is made
that these insights would be impossible to achieve
without simulation.

I. BACKGROUND AND PURPOSE

In a related paper [4] the authors show analyti-
cally that, in models which follow the Markowitz
traditien [7], the mere exisitence of random error
in estimation is sufficient to introduce selection
bias in applications. In application of the market
model [9], for example, "those securities entering
the first or high-beta portfolio would tend to have
positive measurement errors in their B!, and would
induce positive bias in...the estimated portfolio
risk coefficient" [1, p. 85].

In the companion paper [4] the authors establish,
on purely theoretical grounds, the cause of selec-
tion bias, and the direction of its effects. These
theoretical results were developed analytically and
offered as explanation in part for a bias observed
in some empirical work by Blum [2, pp. 7-8]. Blum
studied the performance, over time of portfolios
comprised of securities having similar estimated
beta coefficients. ¥For portfolios comprised of
securities having the lowest beta estimates, a rise
in the portfolio beta estimates one period later
was invariably observed. Blum's empirical design,
unfortunately, was neither rich nor flexible

enough to provide any insight regarding the magni-
tude, consistency, or importance of the bias that
he observed. A simulation approach would have had
a clear advantage in this regard [5, p. 198].

In the present work, the authors re~examine various
forms of bias which have previously been identified
[1], [2]. By resort to Monte Carlo methods, a
much richer framework for analysis is provided than
any previously available [2], [4]. The purely
theoretical [4], and the purely empiriecal [1], [2]
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results previously reported are varified here and
placed in sharper focus. The efficacy of existing
approaches for achieving efficient diversification
is called into question.

II. PORTFULIO SELECTION MODELS:
AN IDEALIZED REPRESENTATION

Let n securities be considered for possible inclu-
sion in an investment portfolio. A particular
portfolio may be identified by a vector x whose
ith element (i=1,2,...,n) represents the propor-
tion of that portfolio which is invested in secur-
ity i. Similarly, the expected returns are re-
presented by means of a vector u, and the vari-
ances and covariances by a variance-covariance
matrix I,

Where rates of return are perfectly correlated:

pij = Uij (Uicj)—l

1.00 for all ij

diversification cannot be achieved. But where

rates of return are less than perfectly correlated:
Pij < 1.00 for some 1ij

then, to the extent that such interrelationships

can be known, this knowledge can be exploited to

achieve diversification. Assuming that u and I

consist of known constants, the portfolio selec-
tion problem can be set up as follows

Minimize ¢ =

|94

'Lx-Aru'x

Subject to: Z?_ %, =1 n

x; >0 i=1,2,...,n

where A is a constant, the coefficient of risk
aversion, which measures the rate at which the
investor is willing to exchange expectation for
risk at the margin.

In an applications framework, the covariance
approach (1) has been called laborious [7, p. 96~
97]; questions have been raised [10] regarding the
practicality of calling upon one's friendly
analyist for, in effect, a nondiffuse prior [9] on
each of {[3n + n?]/2} distinct inputs required for
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application of (1).l Markowitz suggested [7,

p. 100], and Sharpe later popularized [10] a sim~
plified model which requires fewer inputs than the
covariance approach featured in (1). This simpli-
fication is made possible by assuming that the
rates of return on '"various securities are related
- only through common relationships with some basic
underlying factor" [10, p. 281l]. According to the
market model formulation,

Tir = of + Birmt + ept (2)
where

ri; = the rate of return in period t on
security i

Tyt = the rate of return in period t on a
market portfolio

&y = the rate of return on security i where
rmt=0
B4 = the slope of a line showing the extent

to which the rate of return on security
i is affected by rp¢

€4¢ = & normal random deviate, with zero mean
and variance Var(rj) = Q4

The rate of return on a portfolio of risky assets
can be viewed as the result of

1. a series of investments in n basic securi-
ties,
and |
2. an investment in the index [10].

We exploit this interpretation and define

Bp = 22 x;By ©)

to be the weighted average response of r pt o Tpss
where

Tpe = the rate of return in period t on port-
folio p
BP = the slope of a line showing the extent

to which the rate of return on security
i is affected by rp¢

The expected return and variance for any portfolio
p can be written [10]:

E(rpe) = zg=lxla. + BoE (rne) ()
Var(rpe) = Ii. % Var(rl) + B Var (rpe) (5)

Thus, the objective function in (1) may be replaced
by

¢ = {Z?= x% Vari(ry) + B% Var (rpe) )
6

- Az} + BPE(rmt)}

i=1%1%

An efficient algorithm for solving the market model
formulation of the general portfolio selection
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problem is discussed in [10].

The market model provides more than a computation-
al alternative to (1) [5]. According to an analo~
gue [10, p. 282], portfolio risk can be dicoto-
mized into two components:

1. a systematic component, 52 Var(rmt)
and

2. a non-systematic component Var(r )

1—lxl
According to theory [11], for properly diversified
portfolios, all but the systematic component of
risk will have been diversified away. In this
paper we present evidence to the contrary, and in
support of an entirely different proposition.

A further simplification of the portfolio selec-—
tion problem is possible if the existence of a
riskless asset is assumed [10, pp. 285-6].2

Assuming that investors can borrow or lend at the
same risk-free rate [10, p. 287], then, with just
one exception, every point on a Markowitz effici-
ent frontier [7] will be dominated by at least one
point which lies on the locus of a straight line
which is tangent to that frontier. The single
exception; quite obviously, is provided by the
point of tangency itself. ‘Such a point identifies
a unique collection of risky assets which we

label S in honor of Sharpe [10]. 3 The existence
of a collection of risky assets which is efficient,
unique, and invariant to investor utility, provides
a simplification which we exploit in the Monte
Carlo approach which follows.

IIT. MONTE CARLO APPROACH

Present approaches for selecting portfolios
according to the mean-variance criteria do not
account for the effect of error in estimation.

In a related work it is argued that ''the mere
existence of an error component in the estimation
functions for individual securities causes syste-
matic bias in estimating characteristics of port-
folios that are selected according to them' [4].
In this section a simulation model is described;
the results of a preliminary appllcation are des-
cribed in the next section.

An analytic process is one which begins with data
collection, and culminates when a decision is
made. The object in this simulation is to repli-
cate the analytic process for selecting portfolios
which are efficient according to the mean-variance
efficiency criteria [7]. The market model frame-
work of Equation (2) is used [10]. In order to
replicate the estimation functions for the market
model parameters, a4, Bj, and Qi, we exploit the
fact that the market model Equation (2) sets out

a regression structure, Regression estimators
have well known and tractable distributions [6,
pp. 16-211:

By ~ N{By, Var(fy)} )
Q; v (Qi/m)x3_5 (®



~

& = E(fy,) - BE(Tye) )

when n = length of history, and the tilde distin-
guishes an estimator from a parameter. The ex-
pectation E(fmt) and variance Var(¥pe) are treated
as constants by the model, but the expectation

E(Z50) ~ N(ug,Qi/n) (10)

is a normal deviate. It follows from (9), and is

otherwise well known [6, p. 21], that & and B are
jointly distributed, bivariate normal random vari-
ables. Monte Carlo methods are used to generate

6 and B directly.

In order that the simulations be held within real-
istic bounds, the black box (i.e., simulation)
parameters of (7), (8) and (10) are obtained by
means of standard estimation procedures applied to
actual data. A total of 108 observations on
monthly rate of return were obtained for each of
760 securities, starting with February 1964. The
black box parameters were estimated on the basis
of the first 72 observations; the remaining 36
observations are held aside for the ex-post evalu-
ations which may be undertaken at a later time.
Values for the index were obtained by calculating
rates of return on the geometric mean return for
the 760 stocks.

In order that the number of simulation trials re-
quired to produce meaningful results be held to a
manageable level, the existence of a risk-free
asset is assumed. In each simulation trial, there-
fore, only one collection of risky assets, a proper
subset of the universe of 760 securities, is
efficient. This portfolio was identified by the
symbol § in the previous section.®

The processes described by Equation (7), (8), (9)
and (10) are easy to simulate by simple modifica-
tion of any standardized normal random numbexr
generator. Programs of this sort are available at
virtually any computer center. To generate a Chi-
square random variable, it facilitates matters when
a Chi-square program is available. Failing this,
however, it should be noted that the sum of n
standard normal deviates squared defines a Chi-
square random variable.

Given a set of black box parameters, 100 repeti-
tions for joint estimation of o4 and B4 were per-

formed for each of the 760 securities in the uni-
verse, and for each security 100 independent repe-
titions of the process for generating Qi were per-
formed. The simulated random variables, &i’ Ei,
and Qi: i=1,2,...,760, were set up, sequentially,
in blocks. The blocks were stored as files on an
auxiliary storage device. As a check on the system
the expectations E(&i), E(Ei) and E(Qi) were cal-
culated by averaging over the 100 simulated ob-
servations on each random variable in storage. The
system showed excellent convergence. All the data
inputs used in the simulation experiments that
follow are on file, and are consistent with the
data requirements that govern any regression
structure [6].°

Black box parameters, which are consistent with the
regression structure outlined by Equation (2), were

obtained by standard statistical methods applied
to 72 monthly observations on rate of return for
each of 760 securities. A model was created to
simulate this joint estimation process, using the
black box parameters as inputs (i.e., to serve as
expectations). With each application of this
Monte Carlo process, a sample history comsisting
of six years of monthly observations on rate of
return is, in effect, regenerated. The joint
estimation process is run over and over again.

The results of 100 replications of the estimation
process are on file in the form of estimations 61,
B, and Qi for each of 760 securities. The result
of each such replication may serve as inputs for
an application of the market model (2), just as

a set of actual estimations might do. To limit
the time and cost of this preliminary investiga-
tion, only 11 replications of the following experi-
ment are performed; the results are presented
below as preliminary results.

The effect of random estimation error on mean
variance efficient portfolios is to be studied.

The market model of Equation (2) is invoked, and
the existence of a risk free rate is assumed. The
risk free rate is set at rg = 0.0065 on a monthly
basis, which is equivalent to an annual rate of

r¢ = 0.075. For each of 1l simulated sample
histories, the efficient frontier of portfolios
consisting of risky assets is identified by solving

Minimize ¢ = Var(rpt) - kE(rPt)
. . n . o=
Subject to: Zi=1x1 1 7)
X > 0

A single point on each simulated efficient frontier
is identified by finding the tangent of the line
in E-V space [10] which passes through rg = .00625.

Note, this approach is independent of any assump-
tions about investor utility beyond that required
for him to be risk averse. The results of these
preliminary simulation results are presented in
Table 1.

Iv. EXPERIMENTAL RESULTS

In Table 1 various characteristics of efficient
portfolios are described. A portfolio which is
obtained on the basis of the black box parameters
is said to be in '"parameter space;" those which
are obtained on the basis of simulated sample
statisties are said to exist in "sample space.”
The results of 11 simulation trials are shown by
rows 1 through 11 of the table; these portfolios
were obtained in sample space. Expectations are
formed by averaging over the 11 sample results for
each characteristic. These expectations are dis-
played near the bottom of the table. The charac-
teristics of the portfolios obtained on the basis
of black box parameters are shown in the row
labeled "parameter space."

In the companion paper [4] it was demonstrated
analytically that mere random error in estimation
would be sufficient to cause systematic bias. As
a result of such Lias, portfolios selected in
accord with the mean-variance efficiency criteria
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would appear more desirable ex-ante than ex-post.
Any difference (shown in the table) between the
characteristics of efficient portfolios in sample
space (rows 1 through 11 of the table) and that
obtained in parameter space is the result of ran-
dom sampling error, which is impossible to

avoid in practice. The effects of such error,
should be very closely approximated by these
simulations.®

Referring to the table we see that for each effi-
eient portfolio obtained in sample space, the
expected rate of return shown in parameter space
is overstated and the total risk is understated.
On average, moreover, the degree of misstatement
is In excess of 100 percent for both characteris-
tics. Little wonder, therefore, that naive appli-
cation of these approaches result, more than
occasionally, in dissatisfied clients. The selec-
tion bias identified by [1l] and explained by [4]
is no mere mathematieal curiousity; the effects of
this bias are very significant. Further insight
is provided by the 51mulation results shown in
Table 1.

According to often stated gospel, where equilbrium
is assumed, all but the systematic component of
risk will have been diversified away by efficient
portfolios. Assuming équilibrium conditions, of
course, every efficient portfolio will consist of
a proportionate share df the same collection of
risky assets -- the market portfolio. Clearly, to
assume general equilibrium is more restrictive
than not to assume it. These results underscore
the need for better justification than now exists
for normative application of the Capital Asset
Pricing logic [11].

Referring to that block of the table which is de-
voted to risk, we see that for a universe as

large as 760 stocks efficient diversification will
not, in general, result in the elimination of non-
systematic risk. The non-systematic component of
risk accounts for approximately 24 percent of total
risk in this parameter Space, and rises to nearly
40 percent, on averagé, in sample space. What
explains this rise and what is its consequence?

From Equation (2) we see that the constants a4 and
Bi are treated as independent constants by the
market model. From Equation (9), however, it is
clear that the regression estimates oj and By are
not independent; they are jointly distributed and
thus tied together by an error structure. The
regression estimator Qi by contrast is independent-
1y distributed. Moreover, the process described by
Equation (8) is fairly symmetric and peeked where
there are 70.degrees of freedom or more, as in the
present case. We see from the table that both
systematic and non-systematic components of risk
will be understated. Because of the joint rela-
tionship between & and B, however, and the model's
thirst for high alpha and low beta, the systematic
component of risk will be more seriously understat-
ed than the non-systematic component. Faced with

a higher proportion of non-systematic risk in
sample space than in parameter space, what should
the program (7) do? The answer is obvious: the
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higher is the proportion of non-systematic risk to
total risk, the greater is the potential advantage
of Markowitz diversification [7]. The model (7)
attempts to run down the non-systematic risk by
bringing in more stocks. Notice, efficient port-
folios are significantly larger in sample space
than in parameter space. Moral: selection bias
results not only in overstatement of expectation
and in understatement of risk, but in superfluous
diversification as well.

TABLE 1
No. of Risk
Securities

Simula- in Expected| Syste—| Non—
tion No.|Portfolio Return [matic | System.| Total

1 45 4.41 .46 ) 1.55 [3.01

2 46 3.89 1.59] 1.14 }2.73

3 51 4,01 1.66 | 1.44 |3.10

4 51 | 3.61 | 1.77 | 1.25 |3.02

5 57 3.94 2.56 | 1.38 [3.94

6 38 4.17 1.96 | 1.27 |3.23

7 49 3.98 2,51} 1.18 13.69

8 51. 3.88 1.54 | 1.25 }2.79
9 48 3.98 | 1.91 | 1.24 |3.15

10 43 3.82 2.31 } 1.06 |3.37

11 45 1 4.45 2.57 { 1.38 .13.95
Expecta-—
tion 47.63 4,01 1.99 | 1.28 |3.27
Para-
meter 1
Space 39 1,72 5.26 1 L.66 }6.92

FOOTNOTES

1The question that should be raised, of course,

has to do with the practicality of calling upon
security analysts to quantify their information,

or to absorb quantitative 1nformatlon presented

to them. The real importance of the "simplified"
model which follows does not hinge on the fact
that it requires only (3n + 2) distinct inputs [5].

2ye wish to emphasize to the reader that the capi-
tal asset pricing model is not invoked in this
paper.

3No general equilibrium conditions are implied.
Assuming the existence of a riskless rate, the
point $ along any efficient frontier is invariant



to investor utility [10].

“Note that portfolio S is not a market portfolio
in that, in the absence of any general equilibrium
assumptions, it is in general not comprised of a
weighted average of every stock in the universe.

SA minor point is worth noting. A data bank suffi-
cient for 100 simulation trials was set up on auxi-
liary storage. The data need not have been created
in this way, the system might have been programmed
to generate the data as needed. This would not be
cost effective, however. The cost of auxiliary
storage is small and the cost of access is moder-
ate. Random number generation,by contrast, is

very expensive.

6Notice, moreover, that there is absolutely no way
to approximate these effects without resort to
simulation.
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