- Rl

SIMULATION LANGUAGE FEATURES IN 1976: EXISTING AND NEEDED

Introduction

It is now 1976, more than 20 vyears since
computer simulation was first recognized as
an area which had a need £for special
purpose computer languages and languages
features. Many of the signs of maturity
are present in the field: Two annual

simulation conferences, courses in most
major universities, and a number of
standard textbooks and

bibliographies[1,6,4]. In addition, there
have been several surveys of simulation
languages, e.g., [7] and we have no wish to
repeat such a survey here. Rather, we
atempt to describe a set of features that
one should be. able to “expect" any
simulation language to have, and to discuss
a set of features which are still needed -
especially in the growing worlds of
interactive computing and computer graphics
and data bases.

We assume that the reader is familiar with
at least one of the major simulation
language systems, SIMSCRIPT, GPSS, SIMULA,
GASP, or the 1like. Also, we assume that
the reader has an interest in the wvalidity
of his or her simulation results, and hence
that statistical terms and methods will be
referred to without detailed explanation.

Existing Features That We Expect

Discussed below are those features which
the simulation programmer should be able to
expect in any simluation language system.

1. Data
Management.

Structures and Memory
A modern simulation
language c¢an - be expected to
provide data structures and
routines for their manipulation in
forms such that the wuser can
invoke them in a language natural
for describing the model. Normal
array type structures are not
generally sufficient for providing
this. Some form of list
processing is most often used to
handle the memory management.

Louis W. Milier and Howard L. Morgan

Dept of Decision Sciences — Wharton School
University of PA, Philadelphia, PA 19174

Within this class of features, we
require:

Representation of objects
(entities). Since most
simulations deal with some
physical objects, the language

must provide a means of describing

the wvarious «classes or types of
objects with which the model
deals. The programming system

should take care of setting up the
recordsto hold the descriptors of
individual objects within each
class. Normally, the user should
be able to refer to individual
descriptors through names rather
than positional codes.

All of the major systems
distinguish between permanent and
temporary objects. For transient
objects, some means of allocating
and freeing space is provided.

Object grouping, ordering and
relationships. Simulation models
usually involve complex
relationships among objects,
making it essential to be able to

group objects together with
various rankings imposed on the
group, and to be able to relate

objects to the owning object.
Operations performed by simulation
languages tend to do more of this
sort of manipulation automatically
than do algebraic languages.

2, Time Management. The data
structures noted above are used to
describe the static state of the
system being modeled. All
discrete event simulations operate
by having changes of state occur
at discrete point in simulated
time called events. A simulation
language must provide means for
describing various classes of
events and a method for sequencing
individual events. A user model
must contain a timing routine that
is responsible for choosing the

Winter Simulation Comference T5

Simulation Language Features in 1976 (continued)

76

method

next event and causing execution
of the subprogram associated with
each particular class of event.
One of three methods is generally
used for event selection in modern
simulation languages.

Event sequencing operates by
maintaining a time ordered list of
event notices, which are transient
objects created at points where it

is determined that a future event
is to take place.
In activity scanning the emphasis

is on searching clocks and sets of
binary conditions to find the next

event which is ready to take
place. Apart from guestions of
computational control, the former
tends to give the user more

control, but the activity scanning
requires the user to
describe conditions under which an
event can take place only once in

writing in the program. Process
oriented languages combine both
methods. For example, an end- of

processing event may be
by event sequencing,
job has .to wait for a

sequenced
but when a
machine to

become idle (in a job-shop
simulation), the start event comes
about by an activity scanning
routine.

Sampling from Distributions. The
vast majority of simulation models
incorporate sampling from
probability distributions by Honte
Carlo methods. ~Necessary for this
is a well designed and tested
pseudorandom number generator
capable of repeating random number
streams in different runs. The
repeatability requirement is
necessary for debugging and proper
experimental design. Without a
good budilt in generator, users

tend to resort to ad hoc methods
that have serious shortcomings.
Along with pseudorandom
generators, we would expect
routines that supply random
observations from a variety of
common distributiens, as well as
from = empirical distributions

supplied as data.

Capability. A
programming language
must either have an algebraic
basis, or 1links to an algebraic
compiler. The world being
simulated is usually a complicated

Computational
simulation

place =- no matter how well
thought out the design of special
purpose simulation programming

December 6 - 8 1976

In addition to the

systems are, it rarely takes long
for users to call for
computational capabilities which
the designers have not allowed
for. Usually this comes about in
trying to define complex decision
rules or functional behavior.

Data Collection and Statistics.
Obviously a simulation model is
useless without some means for

There are a number
of areas here where the modeler
can be helped: collection of
observations, data reduction and
computation of statistics, and

observing it.

display of results. Data
collection can be performed by
programming in statements

directly, but this adds complexity
and opportunity for error.
Therefore, one expects languages
to permit specification that all
events of a given class caluse
certain items to be collected.
Another approach 1is to allow the
programmer to imake global
declarations, separate from the
procedural statements describing
the model, of what he br she wants
measured.

The common statistics such as
means, counts, sums, variances,
and histograms should be provided,
both for time dependent and time
independent objects. Finally, a

convenient means for oOrganizing
and displaying results should be
provided. Special features for
this can take the form of
automatic standardized output,
report generators, or simplified
output systems.

above features, which

generally relate to the language, there ate

features which relate to the general
programming environment that one now
expects in a simulation system.

1. Debugging Facilities. Obtaining

an error free program can be more

challenging in simulation work
that other types of programming
because of the complex data

structures involved and because of
the dynamic, stochastic nature of
the execution path of the program.
It is thus crucial to include
run—-time diagnostics such as
checks to see if an object is made
a member of a set prior to its
removal, and to provide a trace of
the flow ofprogram control.

2. File access systems. More and
more simulations require large
amounts of parameter data to start
up. Often this data is contained
in files stored on the same
machine. A simple I/0 interface
to the host machine file system is
expected.

3. Partial Compilation. Since
simulations often grow large and
complex, the ability to change a
single module without requiring
recompilation of the entire system
is importnat and usually provided.

The above set of features should be, and is
found to varying degrees in the major
simulation language systems. What we wish
to direct our attention to now are those
featuress which are not always found in
these systems.

Features which are needed

we have discussed the need for better
debugging facilities for simulation
programs than 1is often provided with
standard systems. Yet in the use of online
interactive systems, .simulations have been
somewhat tardy in providing the user with
the power of interactive debugging. WIth
the notable exception of GPSS-Norden, one
does not usually see source language
interactions between_ the simulation modeler
.and the running program.

The second major area where improvements
are needed is in the statistics area. For
the past several years, there have benn
repeated discussions in the literature of
the troubles with the standard random
number generators provided by certain
manufacturers. There has been less
discussion, however, of the troubles caused
by the collection of data and the forming
of statistics which are misleading and
biased. Fishman{2] and Iglehart[3] have
been reporting recently on better
techniques for generating random numbers,
and for gathering and analyzing simulation
statistics. The language builders owe it
to the simulation community to place these
features within the reach of the average
user.

Over the years, a number of techniques for
variance reduction have been described.
Again, the technique of antithetic variates
is the only one which is available directly
in a 1language system. This and other
techniques, such as importance sampling,
should be included as standard language
features.

The major requirement for modern simulation
language systems is an ability to integrate
the simulation modeling effort with the
rest of the organization's database. 1In
those cases where the simulation output is
needed to schedule a plant, or direct
operations, cumbersome special purpose
links between the simulation outputs and
the normal organization's database input
have had to be developed. Since many of
the concepts of modern data base technology
are quite similar to those of simulation
data structures, it should be a simple
matter to permit direct access to databases
both for obtaining simulation paramters and
for depositing results. Unfortunately,
this is not yet so.

Finally, except for some simple uses in
plotting data directly from simulation
statistics, there has been little
imaginative use of computer graphics as an
input/output tool for simulations.
Interfaces to graphics languages might
permit modelers to provide more meaningful
displays to the managers for whom the
results are intended. For example, showing
the actual buildup of queues in traffic
simulations through a pictorial
representation would have more impact than
reading the tables of numbers, or even
looking at a plot against time. Also,
input via graphics has been grossly
underestimated. The special purpose
graphics input for traffic simulations{5]
which one of us used in a batch mode 8
years ago' would be a natural means of
getting input with todays interactive
graphics devices.

Summary and Conclusions

Simulation languages have come quite far
over the past 20 years. If the goal of the
language designers is to - enable
non-specialists to write efficient,
effective simulations, with reasonable
statistical properties, there is still work
to pbe done. We hope that this work will
succeed so that over the next few years our
"great expectations" list can be fulfilled.

Winter Simulation Conference T7

Simulation Language Features in 1976 (continued)

References

1. Fishman, G. Concepts and Methods in
Discrete Event Digital Simulation.
John Wiley and Sons, 1973.

2. Fishman, G. "Some Test Results on the
SIMSCRIPT 11.5 and SIMPL/I
Psuedorandom Number Generators,"
Technical Report 76-11, University of
North Carolina.

3. Iglehart, D. "Simulating stable
stochastic systems VI gquantile
estimation," Control Analysis

Corporation Report 86-15.

4. Meier, R., Newell and Pazer,
Simulation in Business and Economics,
Prentice~Hall 1vé69.

5. Morgan, H. “"UTS-I: A Macro Systen
for Traffic Network Simulation," Proc.
AFIPS SJCC 1l970.

6. Naylor, T., Balintfy, et. al.
Computer Simulation Techniques. John
Wwiley and Sons, 1966,

7. Teichroew, D. and d. Lubin,
"Computer Simulation Discussion of the
Technique and Comparison of
Languages," Comn. ACM 9 (October
1966).

78 December 6 - 8 1976

