STATISTICS IN SIMULATION: HOW TO DESLGN FOR SELECTING THE BEST ALTERNATIVE

ABSTRACT

In many simulation studies the experimenter
(the person rumning the simulation) has under con-
sideration several (two or more) proposed proce-
dures (e.g., for running a real-world system), and
is simulating in order to determine which is the
best procedure (with regard to certain specified
criteria of “goodness"). Such an experimenter does
not wish basically to test hypotheses, or construct
confidence intervals, or perform regression analy-
ses (though these may be appropriate minor parts of
his analysis); he does wish basically to select the
best of several procedures, and the major part of
his analysis should therefore be directed towards
this goal.

It is precisely for this problem that ranking-
and-selection procédures were developed. These
procedures set sample size (in simulation this
means run-length) explicitly so as to guarantee
that the probability that "the procedure actually
selected by the experimenter is the best procedure"
is suitably large.

In this paper we first review the background
ideas of ranking-and-selection and contrast them to
other approaches to multi-population problems
(which, while sometimes appropriate in such areas
as social science experimentation, are almost
wholly inappropriate for use in statistical design
and analysis of simulation experiments). Recom-
mended procedures for several common situations are
then outlined in detail. References where further
theoretical details may be obtained are provided,
along with information on current developments in
the area. It is intended that the motivation and
technical detail given be sufficient for intelli-
gent application in many common situations (though
other situations will still require supplementary
consultation).

I. BACKGROUND OF MULTI-POPULATION PROBLEMS

Statistics for many years concerned itself to
a large extent with problems in which the basic
observations came from one source or population
(one-population problems). Two-population prob-
lems were well-known (if wmsolved, for example
the Behrens-Fisher problem), bubt for the most part
it was a one-population world until some time in
the 1950's when R. E. Bechhofer, by pioneering work
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(see reference (1) for the first published accownt
of this work, a major event in statistical thought)
in ranking-and-selection, brought the subject to
full light of day with a context other than the
type described by saying (as in classical ANOVA)
"We have k populations, bub would like to test the
hypothesis that we really only have one," The
relevance of the pioneering ranking-and-selection
work to statistical design and analysis of simula-
tion experiments was soon recognized by workers in
the field. For example, on p. 53 of {3), Conway
stated in 1963 that "...the analysis of variance
seems a completely inappropriate approach to these
problems. It is centered upon the test of the
hypothesis that all of the alternatives are equi-
valent. Yet the alternatives are actually dif-
ferent and it is reasonable to expect some dif-
ference in performance, however slight. Thus, the
failure to reject the null hypothesis only indi-
cates that the test was not sufficiently powerful
to detect the difference - e.g., a longer run
would have to be employed. Moreover, even when
the investigator rejects the hypothesis, it is
highly likely that he is more interested in iden-
tifying the best alternative than in simply con-
cluding that the alternatives are not equivalent.
Recently proposed ranking{-snd-selection] proce-
dures...seem more appropriate to the problem than
the conventional analysis of variance tech-
niques...."” This recognition has continued to the
present day, as is exemplified by the fact that in
Kleijnen's (9) treatise on statistieal aspects of
simulation 77 pages (out of 390 which are non-
introductory) are dévoted to ranking-and-selection
procedures (which are also often called "multiple
ranking procedures" by Kleijnen and others).
Nevertheless it was true, as pointed out by Conway
(3) in 1963, that "...the investigstor is still
going to have difficulty satisfying the assumptions
(normality, common variance, independence) +that the
statistician will require."” However in recent
years this difficulty has also largely been re~
moved. While in Section II below we will introduce
the ranking-and-selection area with an example
using the traditional assumptions (normality, com-
mon variance, and independence of observations) for
simplicity, in Section III work of recent years al-
lows us to recommend procedures given recently for
much more general situations.
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II. RANKING-AND-SELECTION

In order to introduce the area of ranking-and-
selection, let us talk in terms of a simple explic-
it problem, that of choosing (i.e., selecting) the
job shop precedence rule which yields the highest
output on the average. (This particular example is
chosen only for ease of reference, and we could as
easily talk of selecting the queue discipline which
yields the highest output on the average, or the
investment strategy which yields the highest return
on the average. The reader is encouraged is think
of an example pertinent to his field and rephrase
the considerations given below in terms of that

example. )

To be specific, suppose that it is desired to
select that one of 10 job shop precedence rules
which has the highest average oubput per period.
If we run the shop with rule one for one period,

we will observe some output, say xll' However, in

a second period, still using rule one, we will ob-
serve a different oubput, say X12 Similarly we
obtain output Xl3 in a third period,...,output
xlN in an Nth periocd. Thus, in each period the
output using rule one differs.

However, it is reasonable to assume that it
varies about some value, say Hqys in the sense that

if we average the output per period using rule one
over many periods the mumber so obtained will be

close to Hye To take into account the variability
in output, assume that X,
lity distribution, has mean value #y, and has vari-

obeys a normal probabpi-

ance 02. Similarly for Xl2"""XlN' Then, if one

period's output doesn't affect another's,

_ o ate o oK
% - n X12N w

will obey a normal probability distribution with

and variance ua/N, i.e. its variabi-

mean value 1.11

1lity from My is decreased and (if N is large) we ex~

expect Xl as ul-

Now, considerations like the gbove hold for
each of the 10 rules. Thus, we may observe the
oubputs over N periods of each of the 10 rules and
obtain average outputs Xl P X2, ey xlO' Since

we expect these to be close to the mean values
“’1’”2" ey ulo of the 10 rules, we select the rule

yielding the largest average as having the highest
output (see Table 1).
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TABLE 1
Rule 1 Rule 2 veo Rule 10
Period 1 X]_'I. Period 1 X21 - Period 1 XIO,l '
Pericd 2 X12 Period 2 X22 Périod 2 X10,2
Period N b Period N Xﬂ\T Period N X].O N
X1 X2 X]_o
Xi = oubput in period

J J using rule 1. (1)

Select rule yielding max(Xl,Xa, ves ,Xlo).

However, it will be hard to distinguish the
best rule (i.e., the one with the highest mean
output) when the mean cutputs of the other rules
are very close to the largest one, since although
Xl’ Xe, vees X].O will be close to ul, Hps ooy Wyg
the values Bys Hos eoes Bog are also close to each

other. (E.g., although we may be 95% sure that
‘Xl-p'll < 0.5, lxe"l»’?‘ <0.5 ..., ‘Xlo'l-llo‘ <0.5,
if in reality u,=t,=... =u9=233.uo and b, ,=233.10

we may fail to pick the best rule, that with mean
output ulo, since Xl’ 53 sees XQ as well as Xlo
will be close to Ho* This can be remedied by

ralsing the sample size N so that we are, e.g.,

95% sure that ]xl-ul! <o.01, [Xmul <0001, ...,

rilo-plo‘ < 0.01.) Thus, if N isn't large enough,
the probability of selecting the best rule may be

unaccepbably small; here "large enough” depends on

the closeness of Hys Mos ees Mg (see I1llustration

1, where 1y <...< ”’[10] denote the mean outputs

in numerical order from smallest to largest).
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If it is the case, however, that ”’[9] is very
close to ”[10] then we may not care whether we
select the rule with mean output ”[10] or the rule
with mean oubput Mg {which is almost as good).

In some cases we may only care about our chances
of selecting the best rule when ”[10] - u[9] >0.1,

in which case we wish to be 90% sure that we make
a “Correct Selection" (abbreviated "CS"); i.e. we
desire



Prob{CsS} > 0,90 if > 0.1.
In general, this desired statement is of the form

P-[9] > b¥, (2)

whgrg,.,b* and P¥. are pre-set by the experimenter

(e.g., 8% = 0,1 and P¥ = 0.90). Note that &% must
be positive (a requirement with &* < 0 is meaning-
less since Hpjgy = Y91 > 0 always, by the defini-

Prob{cs} > P* if & = Br107 =

tion of Mr1o7 88 the largest of Bys Hys e ulo)

and that 0.10 < P* <1 (P*¥ < 1 since we can never
be absolutely certain that the best rule yielded
the largest of Xl’ 02 sees X10 -- there is always

a chance, however small, that another rule 4id;

P% > 0.10, since we can be assured of a 10% chance
of correct rule selection by picking one of the
rules at random). It is clear that the Prob{cs]
is minimized when rules other than the best have
mean outputs as large as possible. When we "care"
(i.e., when %1107~ Mo > &%) this means the

Prob{cS} is a minimwm when Mgy =«- =H
”[10] — &%, which is therefore called the leagt-

favorable configuration (IFC). Since available
tables (1) allow us to choose N so that Prob{cs}
is at least P¥ when the LFC u[l] C “[9] =

“[10] — &% is the case, we can choose N so as to
achieve (2).

This example suggests certain conclusions
about selection procedures. First, they are pre-
cise; that is, the selection approach can give us
a rational basis for choosing N (the number of
periods to be observed) and tell us (e.g.) how the
Prob{cs} varies as we change N, and how large the
Prob{cs} is if in fact Mppp = oo =¥y =

“[10] — & for some value & other than 6%. Con-

trast this to a typical old-style approach: test-
ing the hypothesis that the 10 mean outputs are
equal (perhaps by running an Analysis of Variance
on an elsborately-designed experiment) and then
selecting the rule yielding the largest sample
mean as having the largest mean output if

the test accepts the hypothesis that they're un-
equal (while saying "there's no difference" if the
test accepts the hypothesis they're equal). Not
only does such an approach make little sense be-,
cause we know they're not equal and should thus
always seleck, but it .offers no rational (with re-
gard to the problem for which it is being used),
precise grounds for choice of N. Note that this
does not mean that one should neglect to use care-
ful design choice if the selection approach is ap-
propriate to his problem (see p. 25 of (1) for
further details).

Second, selection procedures are practical in
two ways. First, they are applicable to problems
often arising in practice, and second, they are
Peasible because quantities such as necessary sam-
ple sizes N have been tabled or can be compubed.
This may be contrasted to the situation in other
branches of statistics where some quantities are
almost impossible to compute.

The essential problem formulation of 1954 is
thus that we have:

opulations (sources of observations)
}l PO n (k > 2) with respective unknown
means ul sres ,uk for their observations, and

whose observations obey a normal probability
distribubtion with a common known variance

0'2 about their respective means; a goal of
selecting the population associated with
u[k] = max(ul, ves ,uk); a probability require-~

ment that Prob{Cs} > P¥ (1/k < P¥ < 1) if
Ll[k] - ”[k-l] > &¥ —(6* >0); and a Procedure
of selecting the populetion yielding )_(MAX =

max(il, i2’ }_Ck).

While the above example assumed normality of
observations, common variance of output per period
for each rule, and independence of observations
across periods {all scmewhat difficult to justify),
the procedures given in Section ITI weaken these
assunptions to an extent sufficient to make this
approach feasible in a significant number of simu-
lation studies.

As a numerical example, if we have k = 10
rules with o = 5 wnits per period and wish to have
probability of correct selection at least P¥ = 0.95
whenever the average output of the best rule is at
least 6% = 2 units larger than the other oubpubs,
then we will need a sesmple size of at least

ne(P)o”  (3.182)%(5)7

N = (5*)2 = (2)2 =T3.03 (3)

periods, and so would take N = TU periods in the
similation. The factor hk( P*) needed is obtained

from tables originally given by Bechhofer (1) which
are reprinted on p. 347 of (5). Note that it .is
known (4) that a good approximation to the required
N is given by

N = —’-Lc?‘ﬁn{ 1-P%) (%)
1 (5*)2 ’

which in owr example is N, = T4.89. Also note that

. 2 .
as long as we have a common variance o , if we have
correlations within periods (i.e., Xll’ X21, ooy
XlO 1 are correlated) but not across periods (i.e.
2

Xil and Xi2 are uncorrelated), and if all correla-

tions are positive or zero, then the N of equation
(3) is comservative. This was shown in (4) and
partially Justifies the traditional wisdom that
"positive correlation within a block is helpful
in simulation".

ITI. RECOMMENDED SELECTION PRCCEDURES

If we are faced with k > 2 normal populations
with wmknown means ul, vee ,uk and a common known

variance 0'2, then the sample size N calculated from
equation (3) will suffice when the observations are
independent (and, in fact, is sufficient and con-
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servative even if one has positive correlations
within pericds).

More often in simulation the rules to be eval-
uated will have umegual variances ci,. .o ,012{ which

are also wnknown. This problem was solved recent-
1y by Dudewicz and Dalal (6), and the solution has
been applied in simulations for selecting water
resource system alternatives by Vicéus and Schaake
(11) and in accounting system simulations by Iin
(10). This solubion is very appropriate if no
correlations are present. Since correlations
within a population are often present (e.g., due
to lack of frequent regeneration points), a heu-
ristic procedure recently developed and studied by
Dudewicz and Zaino (8) will be given for this more
general problemn,

The recommended Procedure A(’p‘i:si) is as fol-

lows. Take an initial sample of N. = 30 cbserva-
tions using each rule. Calculate

2 n?
M, = mad [ -2 1) (5)

(8%)

(which is the number of observations which would
be needed if we had all correlations py = 0 (zero

correlation), where h depends on k and P¥ and is
given in Table 2 below, extracted from (7)). Cal-
culate

N
N e = .
z (xin xi),(xi’m_l X;)
A - n£ (6)
i= (Xin-xi)

and form the 100(1-a)¥ confidence inmterval for Py
from ’

2 __ Yot 2.2 .
(py=h3) 5——(—”,0 N3 (1-6)¢ l\,0_3(1 o/2)  (7)

with ¢ = .05. (Here tr(q) is the 100q percent

point of Student's-t distribution with r degrees
of freedom.) If this 95) confidence interval con-

tains py = 0, judge the sample size NO as being

adequate for population i. Otherwise calculate
1+p,
_ i
Ny = [Mi(l-p""i>:| (8)

and continue the run wntil we have N,, observa-

2i
tions from TT'i. Finglly calculate Xl’ ‘e ,Xk based

on all available observations and select (as being
best) that population which produced the largest

of Xl’v""xk’

While Procedure A( ﬁi’ si) is heuristic (unlike
the procedure of Dudewicz and Dalal for Py = 0,
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which is entirely rigorously derived), studies
show it should be sufficient to preclude gross er-
rors due to significant correlations. (Work in
progress presently studies properties of Procedure

A(Si,si) in further detail by Monte Carlo, com-~
pares A( 6‘1 ,s?) with procedures based on the regen-

erative methods of Iglehart, and develops a cor-
responding fully rigorous mathematical procedure
by utilizing the Heteroscedastic Method recently
developed by Dudewicz and Bishop (zee (2)).)

TABLE 2
Quantity b Needed in Equation (5)
P¥ = ,95 P = ,99
= 2 2.1;17 3.5
k= 3 2.8 3.81
k= 4 3.03 4,01
k= 5 3.18 A
k= 6 3.30 T hes
k=7 3:39 k33
k= 8 3,46 L ho
k=9 3.53 b, 46
k =10 3.58 4,51
k =15 3.79 .71
k =20 3,92 4,84
k =25 1,03 Lok
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