SIMULATION MODELING AND METHODOLOGY *

Introduction

Simulation is one of the most powerful anal-
ysis tools available to those responsible for the
design and/or operation of complex processes or
systems. It is heavily based upon computer science,

mathematics, probability theory and statistics: yet

the process of simulation modeling and experimenta-
tion remains very much an intuitive art. Simula-
tion is a very general and somewhat i11-defined sub-
ject: For the purpose of this paper, we will de-
fine simulation as, "the nrocess of designing a
comouterized model of a system (or orocess) and con-
ducting experiments with this model for the purpose
either of understanding the behavior of the system
and/or of evaluating various strategies for the
operation of the system.” Thus we will understand
the process of simulation to include both the con-
struction of the model and the analytical use of

the model for studying a problem.

Even though simulation is considered a brute
force approach or court of last resort by those
with extensive mathematical training, numerous sur-
veys have shown that it is the most widely used
technique for operations research or management
science type studies. Simulation is used when one
or more of the following conditions exist:

1. A complete mathematical formulation of the
problem does not exist or analytical meth-
ods of solving the mathematical model have
not yet been developed. Many waiting line
(queueing) models are in this category.

2. Analytical methods are available, but the
simplifying assumptions required for their
application negate much of the true envi-
ronment of the problem.

3. Analytical methods are theoretically avail-
able but the mathematical procedures are so
complex and arduous that simulation pro-
vides a simpler method of solution.

* This paper is a distillation of material appear-
ing in Shannon, Robert E., System Simulation: The
Art and Science, Prentice-Hall, Inc., Englewood,
New Jersey, 1975.
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4., 1t is desired to observe a simulated his-
tory of the process over a period of time
in addition to estimating certain para-
meters.

5. Simulation may be the only possibility be-
cause of the difficulty in conducting
experiments in their actual environment,
e.g., studies of space vehicles in inter-
planetary flight.

6. Time compression may be required for sys-
tems or processes with long time frames.
Simulation affords complete control over
time, since a phenomena may be speeded up
or slowed down at will. Analysis of urban
oroblems is in this category.

The Simulation Process

There are a number of excellent introductory
books dealing with the methodoloay of simulation
[1-71. Assuming that a simulation is to be used to
investigate the properties of a real system, Fig-
ure 1 orovides one view of the simulation process
[71, and the following stages may be distiriguished.

1. System {or process) Definition - Determin-
ing the boundaries, restrictions and mea-
sures of effectiveness to be used in defin-
ing and studying the system (or process).

2. Model Formulation - Reduction or abstrac-
tion of the real system to a block or logi-
cal flow diagram.

3. Data Preparation - Identification of the
data needed by the model and their reduc-
tion to an aporopriate form.

4. Model Translation - Description of the
model in an appropriate language acceptable
to the computer to be used.

5. Validation - Determining that any infer-
ences drawn from the model about the real
system will be correct to some acceptable
level of confidence.

6. Strategic Planning - Designing an experi-

ment that will yield the desired informa-
tion.
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7. Tactical Planning - Determining how each
of the test runs specified in the experi-
mental design is to be executed.

8. Experimentation - Execution of the simu-
Tation to generate the desired data and
to perform sensitivity analyses.

9. Interpretation - Drawing inferences from
the data generated by the simulation.

10. Implementation - Putting the model re-
sults to use.

11. Documentation - Recording the project
activities and results as well as docu-
menting the model and its use.
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Figure 1. Simulation Process

Problem and Model Definition

To find an acceptable or optimal solution to
a problem, one must first know what the problem is.
This analysis begins with the specification of the
system of interest, the environment in which it
exists and operates, the specification of goals of
the system and the purpose of the study.
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In the process of studying a system or process
and converting the resulting knowledge into a math-
ematical model, we must accomplish four tasks:

1. Specification of the purpose of the model.

2. Specification of the components to be
included in the model.

3. Specification of the parameters and vari-
ables associated with the components.

4. Specification of the functional relation-
ships among the components, parameters,
and variables.

Simulation experiments are conducted for a
wide variety of purposes, some of which are:

1. Evaluation - determining how good a pro-
posed system design performs in an abso-
Tute sense when evaluated against specific
criteria.

2. Comparison - comparing competitive systems
designed to carry out a specified function,
or comparing several proposed operating
policies or procedures.

3. Prediction - estimating the performance of
the system under some projected set of
conditions.

4; Sensitivity analysis - determining which
of many factors are the most significant
in affecting overall system performance.

5. Optimization - determining exactly which
combination of factor levels will produce
the best overall response of the system.

6. Functional relations - establishing the
nature of the relationships among one or
more significant factors and the system's
response.

This 1list is not exhaustive and merely suggests
the most common goals or purposes; the explicit pur
pose of the model has significant implications for
the whole model building and experimentation pro-
cess. For example, if the model's goal is to
evaluate a proposed or existing system in an abso-
Tute sense, this imposes a heavy burden upon the
accuracy of the model and demands a high degree of
isomorphism. On the other hand, if the goal is the
relative comparison of two or more systems or oper-
ating procedures, the model may be valid in a re-
lative sense even though the absolute magnitude of
responses varies widely from that which would be
encountered in the real world.

After we have specified {at least tentatively)
the specific goal or purpose for which the model is
to be constructed, we begin to identify the perti-
nent components. This process entails itemizing
all the components of the system that contribute to
the effectiveness or ineffectiveness of its oper-
ation. Once a compiete list of the components of a
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system is specified, we next determine whether

each component should be included in our model.
This is easier said than done, since at this stage
of model development it is not always clear whether
a component is significant to the overall goal.

One of the key questions to be answered is whether
a particular component is to be considered part of
the model or part of the environment.

One pertinent consideration in deciding which
components are to be included and which excluded is
the question of how many variables are to be in-
cluded in the model. In general, we have little
difficulty in deciding upon the endogenous or out-
put variables. If we have done a good job in
specifying the goals or purposes of the study, the
required output variables are fairly obvious. The
real difficulty arises in determining which input
and status variables produce the effects observed
and which can be manipulated to produce the effects
desired. We are also faced with conflicting objec-
tives: on one hand, we try to make the model as
simple as possible for ease of understanding, ease
of formulation, and computational efficiency; on
the other hand, we try to make the model as accu-
rate as possible. Consequently, we need to simpli-
fy reality but only to the point where there is no
significant loss of accuracy.

Once we have decided which components and
variables we shall include in our model, we must
then determine the functional relationships among
them and the values of the parameters to be used.
Again, formidable problems confront us. First, it
may be difficult {if not impossible) to quantify or
measure certain variables that are important to the
behavior of the system. Second, the relationships
between components and variables may not be clear.
Third, the data and information we need may not be
available, or perhaps not exist in the form we
need. Thus, decisions regarding the data to be
used and their validity, form, and goodness of fit
to theoretical distributions and past performance,
are all critical to the success of the simulation
experiment, and far from being academic points.

Having specified the goals and objectives of
the study and defined the system, we next reduce
the real system to a logical flow diagram or static
model. We wish to construct a model of the real
system that neither oversimplifies the system to
the point where the model becomes trivial (or
worse, misleading) nor carries so much detail that
it becomes clumsy and prohibitively expensive. The
danger is that the model may tend to be too de-
tailed and include elements which contribute little
or nothing to the understanding of the problem.

The tendency is nearly always to simulate too
much detail rather than too little. Thus, one
should always design the model around the questions
to be answered rather than imitate the real system
exactly. Pareto's law says that in every group or
collection there exists a vital few and a trivial
many. Nothing really significant happens unless
it happens to the vital few. The tendency among
systems analysts has too often been to transfer all
the detailed difficulties in the real situation in-
to the model, hoping that the computer would solve
their problems. This approach is unsatisfactory
not only because of the increased difficulty of

- type of timekeeping.

programming the model and the additional cost of
Tonger experimental runs, but also because the
truly significant aspects and relationships may get
Tost in all the trivial details. Therefore, the
mode? must include only those aspects of the system
relevant to the study objectives.

Programming Languages

Early effort in a simulation study is con-
cerned with defining the system to be modeled and
describing it in terms of logic flow diagrams and
functional relationships. But eventually one is
faced with the problem of describing the model in
a language acceptable to the computer to be used.
Unfortunately, so many general and special purpose
programming languages have been developed over the
years that it is nearly impossible to decide which
language best fits or is even a near best fit to
any particular application. There were over 170
programming languages in use in the United States
alone in 1872 and new ones are being developed
every day [8].

Many writers find it convenient to classify
simulation models into two major categories: 1)
continucus change models or 2) discrete change
models. Continuous change models use fixed incre-
ment time advance mechanisms and are appropriate
when the analyst considers the system he is study-
ing as consisting of a continuous flow of informa-
tion or items counted in the aggregate rather than
as individual items. In discrete change models,
the analyst is interested in what happens to
individual items in the system. Most discrete
change models. therefore, utilize the next event
Some problems are clearly
described best by one type or the other, whereas
either type might be used for other problems. With
a few exceptions 1ike GASP IV, simulation languages
are restricted to either continuous or discrete
change models.

In the most general sense, there are three
computer techniques available for simulation;
digital, analog and hybrid. One possible classi-
fication scheme is depicted in Figure 2. There
are several versions and dialects of many of these
languages and therefore only generic or family
names have been used instead of listing all the
various versions.

Since a number of papers dealing with specific
languages are being presented at this conference,
we will defer any further discussion of languages.
Chapter 3 of reference 7 provides further insight
and guidance in selecting an appropriate Tanguage.

Validation

Validation is the process of bringing to an
acceptable level the user's confidence that any
inference about a system derived from the simula-
tion is correct. It is impossible to prove that
any simulator is a correct or "true" model of the
real system. Fortunately, we are seldom concerned
with proving the "truth" of a model. Instead, we
are mostly concerned with validating the insights
we have gained or will gain from the simulation.
Thus, it is the operational utility of the model
and not the truth of its structure that usually

Winter Simulation Conference 11



MODELING AND METHODOLOGY....Continued
SIMULATION
TECHNIQUES
ANALOG DIGITAL HYBRID
CONTINUOUS DISCRETE
CHANGE
LANGUAGES Lﬁgégigzs
l ' | GASP IV ENERAL
DIRECT .BLOCK I:NGﬁ E
EQUATION ORTENTED i
DIFFERENTIAL| | DIFFERENTIAL | PIFFERENCE ACTIVITY
EVENT PR
EQUATIONS EQUATTONS EQUATIONS ORIENTED ORIENTED oxxggg;g rnAgiggrxo‘
gigégo ‘ gggﬁg DYNAMO ¢ IMSCRIPT SIMULA GPSS A
SP ASP II oPs
ggg;sys ‘ §§§§°2§§p FORSIM-IV MCOM SOL noss
$/360 csMP |} coBLoc v TRAN TMpAc
MADBLOC MILT
Figure 2. Programming Languages

concerns us.

validation of the model is extremely impor-
tant, because simulators look real and both model-
ers and users find them easy to believe. Unfor-
tunately, simulators often conceal their assump-
tions from the casual observer and sometimes even
from the modeler. Therefore, if validation and
evaluation are not carried out carefully and
thoroughly, erroneous results may be accepted with
disastrous consequences.

There is no such thing as the "test" for va-
1idity. Rather, the experimenter must conduct a
series of tests throughout the process of develop-
ing the model in order to build up his confidence.
Three tests may be used to validate a model. First,
we must ascertain that the model has face validity.
For example, is it possible for the model to give
absurd answers if parameters are carried to ex-
treme values? We must also ask if the results of
the model appear to be reasonable.

The second method of validation is the test-
ing of assumptions and the third is the testing of
input-output transformations. These latter two
may entail the use of statistical tests of means
and variances, analysis of variance, regression,
factor analysis, spectral analysis, auto-correla-
tion, chi-square, and nonparametric tests. Since
each of these statistical tests make assumptions
about the underlying process, the use of each
raises questions of validity. Some statistical
tests require fewer assumptions than others, but
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in general the power of the test decreases as the
assumptions are relaxed.

Fishman and Kiviat [9] divide the evaluation
of simulations into three categorjes: (1) verifi-
cation--insuring that the model behaves the way an
experimenter intends; (2) validation--testing the
agreement between the vehavior of the model and
that of the real system; and {3) problem analysis--
the drawing of statisitcally significant inferences
from the data generated by the computer simulation.
Often a large number of actions are necessary to
carry out this evaluation, ranging from testing the
model stage-by-stage on a desk calculator before
assembling the stages into a machine program, to
conducting field experiments. However, the testing
itself suffers from the standard problems of empi-
rical research: (1) small samples owing to high
cost of data; (2) data that are too aggregated; and
(3) data of questionable validity.

The question of validation is thus two-faced:
determining that the model behaves in the same
fashion as the real life system; validating that
the inferences drawn from the experiments with the
model are valid or correct. In concept, both these
points resolve themselves to the standard decision
problem of balancing the cost of each action against
the value of the increased information and the con-
sequences of erroneous conclusions.

Validation and analysis of a simulation study
is a continuous process that begins from the start
of the study. Confidence is built into the model



as the study proceeds. It is not something done
solely at the end. The greatest possible validity
is achieved by:

1. Using common sense and logic throughout
the study.

2. Taking maximum advantage of the knowledge
and insight of those most familiar with
the system under study.

3. Empirically testing by the use of appro-
priate statistical techniques all of the
assumptions, hypothesis, etc. that pos-
sibly can be tested.

4, Paying close attention to details, check-
ing and rechecking each step of the model
building process.

5. Assuring that the model performs the way
it was intended by using test cases etc.
during the debugging phase.

6. Comparing the input-output transformation
of the model and the real world system
(wherever possible).

7. Running field tests or peripheral research
where feasible.

8. Performing sensitivity analysis on input
variables, parameters, etc.

9. Checking carefully the predictions of the
model-and actual results achieved with the
real world system.

Strategic Planning

We have defined simulation as being experi-
mentation via a model to gain information about a
real world system, It then follows that we must
concern ourselves with the strategic planning of
how to design an experiment that will yield the
desired information. The design of experiments is
a topic whose relevance to simulation has long been
acknowledged but rarely applied in practice. The
design of a computer simulation experiment is
essentially a plan for purchasing a quantity of
information which may be acquired at varying
prices depending upon the manner in which the data
are obtained. ‘Since the first publication in 1935
of R. A. Fisher's book, The Design of Experiments,
a great number of books and papers on experimental
design have appeared and the use of designed ex~
periments has found wide spread application. The
purpose of using these designs is twofold: (1)
they are economical in terms of reducing the num-
ber of experimental trials required and, (2) they
provide a structure for the investigator's learn-
ing process. The running of a simulation experi-
ment is the process of exercising or running the
model so as to observe and analyze the resulting
information to obtain the desired answers. The
experimental design identifies a particular
approach for gathering the information needed to
allow valid inferences to be drawn.

The development of experimental design tech-
niques which are most suitable for computer

simulation experiments has been virtually ignored,
probably due to the fact that most analysts are
unaware of the fact that conventional techniques
are often not completely suitable for simulation.
Previous surveys of the state of the art are given
by Naylor, Burdick and Sasser [9], and Hunter and
Naylor [10]. Odom and Shannon [11] present a
series of nomographs which can be useful to the
analyst in making the design trade offs required
to keep the experimentation costs within available
resources.

Depending upon the specific purpose of the
experimenter, there are several different types of
analysis which may be required. Among the movre com-
mon are:

1. Comparison of means and variances of
alternatives.

2. Determining the importance or effect of
different variables and their 1imitations.

3. Searching for the optimal values of a set
of variables.

Designs to accomplish the first type of analy-
sis are generally called single-factor experiments
and are fairly straightforward, with the major con-
cerns of the experimenter being such matters as
sample size, starting conditions, and the presence
or absence of autocorrelation. The second type of
analysis is one toward which most textbooks on
design and analysis of experiments are directed.
These designs primarily utilize analysis of vari-
ance and regression techniques for the interpreta-
tion of the results. The third type of analysis
usually requires search techniques of experimenta-
tion.

Tactical Planning

In general, tactical planning involves ques-
tions of efficiency and deals with the determination
of how each of the test runs specified in the ex-
perimental design is to be executed. Primarily,
tactical planning is concerned with the resolution
of two problem areas: (1) starting conditions, as
they affect reaching equilibrium, and (2) the need
to reduce the variance of the answer as far as pos-
sible while minimizing the required sample sizes.

The first problem (i.e., starting conditions
and their effect upon reaching equilibrium) arises
from the artificial nature of model operation. Un-
1ike the real world the model represents, a simu-
lation model operates only periodically. That is,
the experimenter starts the model, obtains his
observations, and shuts it down until the next run.
Each time a run is started, it may take a certain
period of time for the model to reach equilibrium
conditions. representative of the real world system
operations. Thus, the initial period of operation
of the model is distorted owing to the initial
start up conditions. The solution is to (1) ex-
clude data for some initial period from considera-
tion, and (2) choose starting conditions that re-
duce the time required to reach equilibrium. Rea-
sonable starting conditions can reduce but not
eliminate the time required for the simulation
model to approach equilibrium conditions. Therefore
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it 1s still necessary to determine when measure—
ment should begin.

The second part of the tactical planning prob-
Tem deals with the necessity to estimate the pre-
cision of experimental results and the confidence
attributable to the conclusions or inferences
drawn. This immediately brings us face-to-face
with such areas as variability, sample size, and
replication. In any experiment, we try to obtain
as much information as possible from a Timited
amount of exper1mentat1on Several techniques for
reducing the variance of response have been pro-
posed (mostly in connection with survey sampling
procedures ), which can significantly reduce the
required sample size and number of repTlications
of the experiments. The use of very large sampie
sizes can overwhelm virtually all the tactical
problems of simulation but usually at a great cost
in computer and analysis time. The more complex
is the simulation model, the more important is
good tactical planning before running the experi-
ments.

Experimentation and Sensitivity Analysis

Ultimately, after all development and ptan-
ning, we run the model to obtain the desired infor-
mation. At this stage, we begin to find the flaws
and oversights in our planning, and to retrace our
stegs until we achieve our originally established
goals.

Sensitivity analysis is one of the most impor-
tant concepts in simulation modeling. By this we
mean determining the sensitivity of our final ans-
wers to the values of the parameters used. Sensi-
tivity analysis usually consists in systematically
varying the values of the parameters over some
range of interest and observing the effect upon
the response of the model. In almoest any simu-
Tation model, many of the set variables are based
upon highly questionable data. In many cases,
their values may have been determined solely upon
the best guess of experienced personnel or very
cursory analysis of minimal data. It is therefore
© extremely important to determine the degree of
sensitivity of the results to the values used. If
the answer changes greatly with slight variations
in the values of some of these parameters, this
may provide the motivation and justification for
expenditure of more time and money to obtain more
accurate estimates. On the other hand, if the
results do not change over wide fluctuations in
the values of the parameter, no further effort is
needed or justified.

Simulation is ideally suited for sensitivity
analysis because of the experimenter's degree of
control. Unlike experimentation with real world
systems, the simulation modeler has absolute con-
trol over.his model and can vary one parameter at
a time if need be, observing the results upon the
behavior of the model.
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Documentation

The last two elements that must be included in
any simulation project are implementation and docu-
mentation. No simulation project can be considered
successfully completed until it has been accepted,
understood, and used. Management scientists’
greatest failure has been in gaining acceptance and
use of their labors. Rubenstein [12] found one of
the.greatest causes of failure in operations re-
search and management sciences projects tg be the
user's inadequate understanding of results, and
thus a lack of implementation.

Documentation is closely linked to implementa-
tion. Careful and complete documentation of the
development and operation of the model can greatly
increase its useful 1ife and chances of successful
implementation. Good documentation facilitates
medification and ensures that the model can be used
even if the services of the original developers are
no Tonger available. In addition, careful docu-
mentation can help the modeler to learn from his
mistakes and perhaps provide a source of subpro-
grams that can be reused in future projects.

Concluding Remarks

The use of simulation has become very extensive
in every field of science and technology. As might
be expected with such wide-spread use, the state-
of-the-art of simulation methodology is fairly
advanced. A recent survey of the current state-of-
the-art is presented by Shannon [13]. Despite the
high Tevel of activity in simulation and develop-
ments in mathematics, statistics and computer sci-
ence, simulation remains almost as much an art as a
science. The research reported at conferences such
as the present one will help reduce the need for
the art and place simuJation on a firmer scientific
basis.
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