¥ ERRCR

1890.83 % ERROR
138.70
9.
9.92] 8%
DELTA T DELTA T
Figure L5. Third Order Taylor Integration Error, Figure L6. Fourth Order Taylor Integration Error,
Damped Solutions. Damped Solutions.

*— Slope at (X.)t.)

Average Slope
[X = £(X,t)

/'S(ope at (X,,t,)

< At —

t

o

Figure L7. Corrected Euler Method

779

Software and Applications Modeling:

An Example from Instructional Techniques

Abimbola Salako
Computer Science Department
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

ABSTRACT

The need for understanding, characterizing,
and modeling of application systems arises in
performance studies, tuning of computer systems,
and in the design of application responsive sys-
tems. However, very little progress has been
made in the characterization and modeling of
application systems. The work reported here is
aimed at developing a model of Computer Assisted
Instruction (CAI) application. We propose a
functional model of instructional programs that
describes different program types by a set of
primitive building blocks representing applica-
tion process states, Then, the apparent differ-
ences among the program types are explained in
the light of this model. Starting with the prim-
itive building blocks, it is shown how, by appro-
priate choice of parameter values, programs of
varying descriptions can be generated. We also
discuss procedures for the generation of syn-
thetic programs (for simulation modeling) from
the proposed model.

INTRODUCTION

The computing literature is replete with
performance studies directed either at selection
of equipment or at system tuning, while there
have been very few reports in which performance
is used as a basic framework for the design of
a complete computing system. This may be attri-
buted to the fact that most systems cater to a
wide range of applications requiring differing
and often conflicting criteria and levels of per-
formance. However, when we consider systems that
cater to a restricted class of applications such
as a computer assisted instructional system (CAI)
or an airline reservation system, a high level of
performance can be achieved by designing the sys-
tem in a bottom-up fashion rather than the con-
ventional top-down approach. In the bottom-up
approach, the software, operating system, and the
hardware are custom designed to meet the demands
and performance requirements of the application.
Of course, the success of this approach will
depend on how well the application area is under-
stood and how accurately it can be characterized.
The work reported here is the outgrowth of a
simulation-based study of the design of a CAI
system using the bottom-up approach. While the
study was concerned with the design of the total

system, the discussion in this paper is restricted

to the modeling of the application system and the
interested reader is directed to see Salako [8].

The characterization of the application is a

necessary prerequisite for describing the workload

in terms of the demands it imposes on the comput-
ing system. Furthermore, with a well defined and
well characterized application, the task of gen-
erating synthetic workloads becomes trivial and
the same application model can be used to develop
a standard benchmark.

Before proceeding further, it is necessary

to place this work in correct perspective with
related work. Lucas [5] identified three ob-
jectives of performance study, namely: system
selection, system modification or tuning, and
system design. This work falls into the third
category. While most systems are concerned with
performance after implementation, this work
tackles performance right from the design spec-
ification stage. The target system being a
query-type system, the concept of workload can
no longer be used in the restricted sense but
must include the user (at the terminal console)
whose rate of interaction affects the loading of
the system. Thus, the requirements for workload
characterization as outlined by Ferrari [3]
apply to this broader definition of workload
which we refer to here synonymously as the ap-
plication system. One major distinction between
this work and those involved with synthetic
workload generation (e.g. Lucas [5], Sreenivasan
and Kleinman [9], Oliver et al [7], and Strauss
[10]) is that this model is based on a theoreti-
cal abstraction of the application as opposed to
being developed through direct system monitoring
or through the analysis of accounting data.

In the next section, we provide a cursory
discussion of CAI application and while skipping
the details of our analysis, we propose a formal
model from which a functional model is derived.
The parameterization of this model is then dis-
cussed in the following section, and the rest of
the paper is devoted to a discussion of the pro-
cedures for parameter value assignment and gen-
eration of synthetic workloads.

THE APPLICATION SYSTEM

The CAI application system is composed of
three subsystems, namely: the designer, the
author, and the student. The designer component
provides the tools for the author to convert his
instructional specifications into computer pro-
grams, and those required by the student to
learn his lessons. Software provided by the
designer include:

1. the information management software
which is responsible for collecting
and analyzing student response and
history records, and for maintaining
the curriculum and lesson materials,

2. software for building, editing,
compiling, testing, and executing
lesson files, and

3. service routines for timing and termi-
nal communication, and general software
for managing system resources and inter-
facing hardware functions with software
requirements.

The information management supsystem col-
lects student performance and curriculum data
necessary for monitoring student's progress,

diagnosing his problems, and tailoring the lesson
to suit his distinctive characteristics. There
are three classes of student information files
that must be built and maintained by the sub-
system:

a. permanent data file containing student's
background records, aptitude, intelli-
gence, maturity, I.Q., interest and
personality,

b. short-term history file for each subject
area containing the records of student
performances in related courses,

c. active data file containing each stu-
dent's learning path, response latency,
response log, success and error record,
as well as terminal records.

The second class of data collected relates
to the curriculum materials and teaching strat-
egies. This information is employed in improving
selection of curriculum material, course se-
guencing, and lesson presentation methodology.
Typically, the information collected may be used
to measure the effects of such instructional
variables as: reinforcement, prompting, cueing,
branching variables, question and response for-
mats, and frame or step size. All the data col-
lected must be reformatted, reduced, and analyzed
to generate a summary to be used in decisions on
subsequent programs or to generate reports which
may be accessed by the lesson author, teacher, or
curriculum designer.

The most important software package that must
be provided is an author language with a compiler
or interpreter for both on-line conversational
mode and batch processing mode. This language
must provide facilities for algorithmic computa-
tion, list processing, and simulation. It must
also provide full answer processing facilities
including timing, response pre-editing, syntactic
analysis; answer matching such as: phonetic,
numeric, algebraic, percentage, keyword, exact,
and selected character string match; also, provi-
sions must be made for unanticipated responses,
Zinn [12]) provides further details on required
capabilities of instructional languages.

The designer subsystem represents the largest
portion of the application system since the func-
tions performed by the author and student suh-
systems use the services provided by the former.
The function of the author subsystem involves
building, editing, and updating of curriculum
and lesson files as well as testing the lessons.
The major files required for this function are
curriculum files, course catalog, table of con-
tents, index, and files for the actual lessons.
On the other hand, the student subsystem's func-
tion is limited to the execution of the instruc-
tional programs.

Since the author and student subsystems
define the pattern of requests for system ser-
vices, the designer subsystem provides the tools
for implementing these requests. Consequently,
the workload characteristics are completely
specified by the two lower subsystems which will
henceforth be referred to as the application
system. What characteristics does this applica-
tion system possess? Is there a general struc-
tural pattern to these characteristics? The
following paragraphs attempt to answer these
questions.

CAI Programs

An analysis of existing instructional pro-
grams (e.g. Bitzer [1], Feingold [2],
Meadow [6], and Wexler [11]) will show that

782

there are three factors that account for their
differences, namely: the method by which the
instructional content presented to the student
is obtained, the decision algorithm by which
subsequent instructional steps are selected,
and the level of interaction afforded the stu-
dent by the system. Table 1 lists the alterna-
tives available within each of these factors.

Table 1

Differences in Instructional Programs

1. Method of Obtaining Instructional Content:

a) Selective
b) Generative

2. Method of Controlling Instructional Sequence

a) by student
b) by system

3. Branching Modes

a) Linear
b) Non-linear

4. Response Formats

a) Constructed
b) Fixed format

5. Teaching Logics

a) tutorial

b) drill and practice

¢) gaming and simulation
d) inquiry

e) problem solving

In a selective program, all the instruc-
tional steps are pre-programmed and stored in
a secondary storage while the generative program
provides some complex algorithms for generating
the instructional step presented to the student.
The generative method thus demands a high degree
of imaginativeness and generally places a heavy
demand on the computing resources. In student
controlled sequencing, the student determines
what he wants presented to him as opposed to the
system controlled case where the system deter-
mines what is best for the student. Given an
instructional step in a linear program, there
is only one possible successor step; while a
non-linear program provides an array of alter-
natives at each step. The fixed response for-
mats include YES/NO, TRUE/FALSE, and Multiple
Choice and are generally easy to grade compared
to the constructed responses which require ex-
tensive analysis. The instructional logics are
self explanatory except for the inquiry logic
in which the student learns by exploring a solu-
tion space through exchange of information with
the system.

A Formal Model

Since the presentation of a detailed and
logical development of the formal structure of
instructional programs is beyond the scope of
this paper, only the basic definitions will be
given (for additional details, see Salako [8].

An instructional program, PROG is defined
as the triplet:

PROG = {s u_, M}

u' ‘o
where Su is an ordered set of units,
U° € Su is the starting unit, and

M is the memory system.

A unit is defined as the pair, {SF, F} where Sp
is an ordered set of frames and F is a decision
function whose domain FP is the set of parameters
associated with members of S_, and its range,

FR is a set of instructional units which are
members of Su and called the successor units,

A frame is defined as the primitive element of
an instructional program consisting of the
triplet, {c, p, a?

where C is the frame core,
P is a set of parameters, and
a is an activation pointer.
Finally, a lesson is defined as the quadruplet,

{sl UOI Ml -"*}

where S is an ordered set of units such that,
s C Su,

U, es is called the starting unit,

M is the memory system as defined in PROG, and

--* is a transitive operator called the se-
guencing operator.

Programs are composed of an unordered set of
units while lessons are composed of an ordered
set of units which are selected by the sequencing
operator (i.e. the sequencing controller which
may be the system or the student). The memory
system is an information net with a control and
the information maintained can be grouped into
three classes, namely:

i) instructional data base (curricula, course
indexes, dictionaries, tables, and
algorithms) ;

ii) instructional procedures (application
packages and library routines, prototypes,
generative routines, and general pro-
cedure); and

iii) student and instructional records (includ-
ing permanent student history, student
active records, and current performance
records) .

The motivation for the unit definition as an
ordered collection of frames is the concept of a
complete interaction on a single entity of an
instructional material. By this, we mean the
exchange of information between the student and
the system until both are in mutual agreement
that a new piece of material should be presented.
The frame has been defined as the primitive con-
stituent of an instructional program (contrary to
the common usage of this term). The core is the
program codes (like a subroutine or coroutine)
with the activation pointer pointing to the entry
or activation point. The frame parameters fall
into three classes: local parameters (such as
local variables in a subroutine), parameters for
transmitting instructional information between
the frame and the memory, and those for trans-
mitting performance records. Parameters of the
first type are called intrinsic parameters while
the others are called extrinsic parameters.

The Unit Model

The approach taken in modeling the applica-
tion system is to view the operations of its
three components (the designer represented by

783

the application software, the author represented
by the curriculum material, and the student) as
a single entity represented by a process.
Through this approach, it is then possible to
view the different process states as invocations
of certain frame types, the invocation being
effected by the sequencing operator. The defi-
nition of the frame core as a sequence of pro-
gram codes is consistent with the process orien-
tation since the dormant program codes would
invoke the existence of the next process state
upon being activated. Thus, the sequencing from
frame to frame to define a unit is synonymous
with transitions from process state to process
state with a process state being defined by

the application context and operations in the
corresponding frame type. It must be emphasized
that individual frames are of no significance to
the process state except as identified by their
type.

Figure 1 shows the states and state transi-
tions required to define two unit types. States
are indicated by Sj for j = 0,1,2,3,4,x,* and

transitions between states are indicated by
either solid arrows (system controlled sequen-
cing) or broken arrows (student controlled
sequencing). State Sx is the terminal state

for a unit and from this state, branching must
proceed to a new unit. S, represents Sl’ Sl',

or the null state.

Figure l.a Textual Unit State Map

Figure 1.b Problem Unit State Map

Figure l.a shows a Textual Unit in which
the main frame, state S, depicts the presentation
of a basic instructiona} concept or procedural
instruction to the student. Following the pre-
sentation of the material, the student can either
request additional information (S3) or direct

the system to advance to the next unit (Sx).
Instead of the seguencing being controlled by the
student, the system could control the sequencing
as represented by the following state transi-
tions: §; + S, ~ Sy- In this case, all the
student need do is indicate when he is ready for
the next material to be presented.

The Problem Unit, on the other hand, repre-
sents the presentation of a problem (S,') which
must be solved by the student or to which answer
must be provided by the system before exiting
from the unit. This problem may be as simple as
a question requiring Yes-No type of answer or as
complicated as developing or analyzing a model
of a simulation or gaming problem. Following
the presentation of the problem, the student
can request additional information:

52' P e 4 53'; or propose a solution:

s, - Sg4-
student may ask questions of the system or direct
the system to proceed to the next unit. Table 2
contains a description of the states (or framc
types) in the units together with the represen-
tative processing functions performed in those
states.

Once the problem is solved, the

Table 2
Unit States and Representative Functions

Application System Initialization State (SO):

. Loading of instructional data (course content, cur-
ricula, indexes, dictionaries)

. Loading of student records

. Loading of service routines and tables (input recog-
nition routines, formalting and output display routines,
library procedures, response matching routines, etc.

Unit Initialization and Material Generation State (Sl, Sl,):

. Execution of content generation procedure

. Access to lesson files

. Initialization of measurement parameters (both intrisic
and extrinsic parameters for student and instructional
material)

. Output formalting

Response and Request Wait State (SZ’ 82,):

. Initialization of latency measures
. Initialization for response analysis and output display
. Data recording

Information Access State (53, 83,):

. Input recognition and classification
. Search of tables, and various catalogs
. Output formalting and display

Response Analysis State (54):

same as above, and

. response processing using different matching algorithms

. system response generation (cues and hints, reinfore-
ments, etc)

Termination and Sequencing Decision State (Sx):

. Updating of student performance and history files
. Pecording of instructional data
. Branching decision and selection of next unit

MODEL PARAMETERIZATION

Having developed the unit models above, the
next question is, how can we use these models in
a simulation environment? In particular, what
characteristics of these models define the pat-
tern (rates and distributions) of the computer
system resources needed to perform the requisite
instructional tasks?

These characteristics fall into three
classes. The first is the implementation de-
pendent characteristics which account for such
factors as efficiency of coding, degree of code
locality, program length, and ratio of I/0-
related operations to pure computational oper-
ations. Due to the inexact nature of these
factors and the lack of a standard methodology
for measuring them, it is not possible to model
them explicitly though they may be accounted for
indirectly through some of the parameters of the
simulation model. The remaining two character-
istics are the student dependent and the instruc-
tional program dependent characteristics. The

784

following two subsections will discuss these in
more detail.

Student Variables

In our discussion of the unit model above,
it was mentioned that state to state transitions
can be effected by either the student or the
system. The student controls this transition
through his input at his console. The faster
the rate of such input, the faster the change
in state and therefore the heavier the demand
on the system resources. Since in a typical
system there would be several student consoles,
an increase in the interaction rate from the
consoles will impose heavier demand on the comp-
utational capability of the system. Thus student
variables define the system workload (request
rate and distributions). Student factors affect-
ing the workload can be broken down into two
classes: those affecting request arrival rate
and those affecting the service rate (based on
request type and their demand on system re-
sources). Variables affecting the request rate
are the student reading rate, typing rate, and
think time.

Request Arrival Rate -- Quantitatively, the
student reading rate can be estimated at about
260 words per minute, a figure usually given
for the average adult reading rate. Considering
that the typing speed of an average secretary is
about 60 words per minute (or 300 char/min) an
average typing speed of about 20 words per min-
ute will adequately describe a student's typing
rate., On the average, student think time will
be less than ten seconds. Using these figures
and the model reported by Fuchs and Jackson
[4), it is possible to model, with high accuracy,
the interaction rate for students at their con-
soles (i.e. the rate of transition from state to
state in our model).

Request Type -- A student's aptitude, compe-
tence, background, interest, enthusiasm, and
alertness will, in general, dictate the student's
reaction to system actions. Thus, following a
question, the student might give a correct answer,
request the correct answer, request help or re-
quest additional information on the gquestion.

In general, there exists a set of alternative
student actions at each system state. This is
shown by the state transition matrix of Table 3.
For each state Sj, the successor states to Sj
are the matrix entries marked with an X or M
along row Sj’ Therefore, for each state Sj with

more than one successor state, some type of
probability-based switch must be used to select
a successor state. Such a switch must be based
on the profile of the sequence controlling
student. To this end, we have defined a para-
meter called the student learning factor based
on the composit profile of the student.

We thus define with each student context,
a selection matrix with probability P.. in matrix
element, row i, column j such that 1

no. cols
z Piy = 1 ceea (D)
j=o
Pij = 0 if corresponding

entry in Table 3 is
blank

Furthermore, since loops exist in the state
transition map indicating the existence of po-
tentially infinite loops, the probability of
staying within that loop must decrease as the
number of times we have gone through the loop

increases. 1In this case, the probabiltiy is
modified by a factor derived from the learning
factor and the loop count. Instances correspond-
ing to this situation are shown by entries marked
"M" in the transition matrix of Table 3.

Table 3.a

Textual Unit Transition Matrix

SO Sl 82 53 Sx Sl' Null
SO X
Sl X
52 M M
S3 X X
Sx X X X

Table 3.b

Problem Unit Transition Matrix

Sog Sy+ S;» S, S3 S3. S, S _ S Null
So X
Sy X
Sy Mol M
S, M X
Sy X X
Sy %
S, X | x X
Sy X X X |

Instructional Program Variables

While the student variables affect the
rate of change of state as well as the state
transitions (choice of successor state), the
computational resources expended at each of the
states is a function of the characteristics of
the state. These characteristics are defined by
the instructional variables described in Table 1.
Table 4 describes in a rather qualitative way,
the characteristics of the instructional varia-
bles that influence the basic resource demands.
These resources are characterized in terms of
main memory size, processor time, terminal input
and output, and file storage input and output.

Table 4
Characteristics of Instructional Variables

I. Program Types
A. Intrinsic Programs
1. Shorter student performance records (or pos-
sibly none at all) recorded per unit.
Simple algorithms required for implementing
branching decision.
3. Student records not used as branching pararmeter.
B. Extrinsic Programs
1. More detailed student performance records taken.
2. Complex algorithms required for branching
decision.
3. Student records play an important role in
branching decision.

2

785

II. Instructional Logic
A. Tutorial

1. High proliferation of textual type units.

2. Mostly primary unit category with a few remedial
and supplementary units.

3. Low unit looping factor (non-repetitive program
codes) .

4. Very lengthy output to student.

5. Common instructional sequence consists of review
of old material, introduction to new material,
main tutorial sequence consisting of primary
type wnits, practice sequence, and summary and
conclusion.

B. Drill and Practice Logic

1. Primary unit type is the Problem unit with
Textual units appearing mostly in supplementary
and remedial materials.

2. All unit categories may appear with equal prob~
ability with the student performance being the
main controlling factor.

3. Unit looping factor may be rather high espe-
cially in mathematically oriented subject areas
and language drills.

4. Length of output to the student is generally
controlled by the question and response format
enmployed.

5. Typical instructional sequence is a main
secuence followed by review.

C. Games and Simulation

1. The basic unit type is the Problem unit which
actually represents a request for input para-
meters to the model being simulated.

2. The prevalent unit category is the Primary unit
while both Remedial and Supplementary units may
be completely absent.

3. Textual type units serve to describe the model
and its parameters.

4. Unit looping factor is generally high.

5. Cammonly, no student records are required for
branching decision since branching is controlled
by the parameter values supplied by the student
as well as the pattern of student recuests.

6. Performance records may or may not be taken.

7. Length of output to the student usually depends
on the complexity of the model.

D. Inquiry and Dialogue

1. Branching or unit selection is jointly controlled
by system and student but may be solely con-
trolled by student.

2. Common unit category is the supplementary unit.

3. There is a high reference rate to course and
curriculum index which may be core-resident or
paged in from file memory.

4. Units are generally not in a particular seguence
since selection of units is often controlled by
the student.

5. When branching is done by the system, it is
usually extrinsically controlled.

6. This teaching logic reguires a highly organized
data base.

III. Question and Response Format
A. Yes/MNo and True/False
1. Simple procedure required for response processing.
2. Length of question may be of the same order as
that of constructed response-type auestion but
much less that "multiple choice" type cquestions.
3. Expected input length is generally of a fixed
length.
B. Multiple Choice
1. Simple procedure required for response processing.
2. Output length (question length)may be a factor
of two to four times longer than Yes/lo or con-
structed response-type questions.
3. Input is generally of a fixed length.
C. Constructed Response
1. Very complex procedure required for response
analysis.
2. Length of input is generally variable though
usually delimited by a given maximum value.

PARAMETER VALUE ASSIGNMENT

We established above that the application
system is composed of the designer, the author,
and the student subsystems. The designer sub-
system is represented by the various programming
software and service routines that must be ac-
cessed by the other two subsystems. The author
subsystem provides the instructional programs
and thus its effect on the application system is
characterized by the instructional variables.
The student subsystem, on the other hand, is
modeled by parameters that describe his reactions
at the student console. 1In order to generate
the application system synthetically, we must
assign values that reflect the resource demand
represented by these parameters.

We have further indicated that the effects
of designer variables are not directly modeled.
Student variables mostly affect the demand rate
and values have been given for the reading rate,
typing or input rate, and the think time. 1In-
stances of student learning factor can be
generated with a given mean and standard devia-
tion to reflect different mixes of student popu-
lation. What is left then, is to account for the
effect of the instructional variables which we
have shown to influence the basic resource re-
quirements.

Since resource demands will of necessity be
system dependent and any values assigned must be
based on a specific instructional program imple-
mented on a specific system (e.g. obtained
through monitoring), the abstract or theoretical
nature of this model precludes any meaningful
value assignments, Therefore, the approach
taken is to develop weighting factors represent-
ing the relative resource demands that would be
experienced due to the effect of each of the
parameters, These weights are obtained by
viewing the resource demand levels as lying
at discrete points or intervals of a continous
spectrum. Through an analysis of each variable,
it is then possible to place the resource demand
corresponding to the variable along the spectrum.
Using resource demand spectrum of lengths two
and three in conjunction with the variables
given in Table 4, the resource weight table of
table 5 was generated. The table can be used
as follows: assuming a mean value for a resource
demand, then the equivalent resource demand for a
unit with a particular characteristic is obtained
by multiplying the mean by the wieght in the
resource row entry corresponding to the column
containing the variable.

Table S

Resource Demand Ratio for Instructional Variables

PROGRAM SIZE

CPU TIME

TERMINAL INPUT SIZE

TERMINAL OUTPUT SIZE

FILE MEMORY INPUT

FILE MEMORY OUTPUT

786

CONCLUDING REMARKS

Through an analysis of instructional systems,
we have developed an abstract model of the appli-
cation system viewed as a composition of the
designer subsystem represented by the application
software; the author characterized by instruc-
tional variables; and the student, characterized
by parameters that describe his terminal behavior.
While the model is fairly parameterized, we feel
that the parameterization could be further re-
fined, though by our estimation, this would re-
quire a considerable amount of effort. A for-
midable problem in the parameterization process
is that a software system structure is highly
dependent on its production environment. This
makes it almost impossible to parameterize a
software system without identifying it with a
specific system environment.

We are plagued by the same problem in our
attempt to calibrate (or assign values to) the
parameters of the model. Beyond the level of
abstraction, there is nothing like a representa-
tive software and each software system is des-
criptive of the idiosyncracies of its developer.
In an attempt to calibrate the model, we spent
a lot of time trying to analyze three different
instructional software implemented for different
systems. The differences were so vast that the
best we could derive from the exercise was the
contents of table 5 which is far from being sat-
isfactory; and in terms of our efforts, rather
unrewarding.

From the model presented, it is still pos-
sible to generate synthetic workloads; however,
the calibration of such a workload cannot be done
independently of a specific system or a family
of related systems. With this model, it is
possible to describe synthetic modules for in-
structional systems similar to those described
by Lucas [5] but more exact and detailed than
the general modules he specified.

References:

1. Bitzer, D. L., and D. Skapadas, "The Design
of an Economically Viable Large Scale Com-
puter Based Educational System", Computer
Based Educational Research Laboratory Report
No. CERL X-5, University of Illinois,
Urbana, February, 1969.

2. Fe§ngold, S. L., and C. H. Frye, "User's
Guide to PLANIT", System Development Corp.,
Santa Monica, 1966.

3. Ferrari, Domenico, "Workload Characterization
and Selection in Computer Performance
Measurements" IEEE Computer Magazine,
July/August, 1972, pp. 18~24,

4. Fuchs, E., and P. E. Jackson, "Estimates of
Distributions of Random Variables for Certain
Computer Communications Traffic Models",
Communications of the ACM, Vol. 13, No. 12,
December 1970, pp. 752-757.

5. Lucas, Henry C., Jr., "Synthetic Program
Specifications for Performance Evaluation",
Proceedings of the ACM Annual Conference,
August, 1972, pp. 1041-1056.

6. Meadow, C. T., D. W. Waugh, and E. E. Miller,
"CG-1l: A Course Generating Program for
Computer Assisted Instruction", Proceedings
of the 1968 ACM National Conference,
pp. 99-110.

10.

11.

12,

Oliver, Paul, et al, "An Experiment in the
Use of Synthetic Programs for Systgm Bench-
marking", AFIPS Conference ProceedlnqS{ }974
National Computer Conference and Exposition,
Vol. 43, 1974, pp. 431-438.

Salako, Abimbola, "An Approach to the Total
Design of Instructional Systems by Simula-
tion", Proceedings of the ACM Annual Con-
ference, August 1972, pp. 935-949.

Sreenivasan, K., and A. J. Kleinman, "On the
Construction of a Representative Synthetic
Workload", Communications of the ACM,

Vvol. 17, No. 3, March 1974, pp. 127-133.

Strauss, J. C., "A Benchmark Study", AFIPS
Conference Proceedings, Vol. 41, Part II,
1972 Fall Joint Computer Conference,

pp. 1225-1233,

Wexler, J. D., "A Teaching Program that
Generates Simple Arithmetic Problems",
International Journal of Man-Machine
Studies, Vol. 2, No. 1, January 1970.

Zinn, K. L. A Comparative Study of
Languages for Programming Interactive
Use of Computers in Instruction, Final
Report, ONR Contract No. 0014-68-C-0256,
Center foxr Research on Learning and
Teaching, University of Michigan,

Ann Arbor, February 1969.

787

