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ABSTRACT

The potential function is approximated in the one
dimensional Schrbddinger equation by a step function with
an arbitrary, finite number of steps. In each step the
resulting differential equation has constant coefficients
and is integrated exactly in terms of the trigonometric or
hyperbolic functions. The solutions are then matched at
the interface of each layer. The eigenfunction is then
constructed over the entire domain. This numerical method
has certain unique features: (a) the potential function
does not have to be known analytically, (b) for a given
fixed number of steps in the potential approximation, all
the eigenfunctions and eigenvalues have the same absolute
accuracy, (c) any number of eigenvalues and eigenfunctions
can be obtained in a single computer run without any need
to guess initial eigenvalues, (d) for a given fixed number
of steps in the potential approximation we could obtain the
whole infinite spectrum of eigenvalues and eigenfunctions,
(e) very low computation time on the computer.

INTRODUCTION

This work represents the implementation and testing of
a numerical algorithm which solves the Schr8dinger equation
for a step potential function with an arbitrary but finite
number of steps.

In each step the resulting differential equation has
constant coefficients and is integrated exactly in terms of
trigonometric or hyperbolic functions. The solutions are
then matched at the interface of each layer, and the eigen-
function is then constructed over the entire domain.

The only input into the computer program is a numerical
table of the potential. No initial estimates of the eigen-—
values are necessary. The computer program in a single
pass will output any desired number of eigenvalues and the
corresponding eigenfunctions and their nodes. Computation
time is roughly equal for the eigenvalues as for the eigen-
functions.

In this numerical method the potential is approximated
by a step function, but once the approximate Schrddinger
equation is set up, it is solved exactly. What this
implies is that all eigenvalues and eigenfunctions are all
of the same accuracy. The reason for this is that all the
eigenfunctions are exact solutions to a given Schrddinger
equation (i.e., they are written down explicitly in terms
of trigonometric and hyperbolic functions). The numerical
results obtained substantiate this expectation. In more
conventional methods such as Rayleigh-Ritz [1], the higher
eigenvalues and eigenfunctions are not as accurate as the
fundamental eigenvalue and eigenfunction, making it neces-
sary to progressively increase the number of mesh points
in order to compute higher eigenvalues and eigenfunctions.

STATEMENT OF THE PROBLEM

We restrict the problem to the one dimensional
Schrddinger equation written in dimensionless form as
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da y -V(x)y +Ey =0, (&)
2
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y() = y@) =0, ()

where V(x) is the potential function and E is the energy
eigenvalue. For central field problems and for bound
states

(a) V(x) is infinite at the origin x = 0,
(b) V(x) has a negative minimum value for some x = a,
(c) V(x) approaches zero asymptotically as x - o,

The boundary conditions (2) are rigorous for a poten-—
tial well problem with infinitely high walls; for a central
field problem it is necessary to approximate the right
boundary condition such that the eigenfunctions remain fin-
ite for x by taking suitably large L in (2) [2). This is a
good approximation since for large enough L, the eigenfunc-
tions approach infinitely small values.

ANALYTICAL ASPECTS

We begin by approximating an analytical potential V(x)
such as the above, if available, by a step function in a
well defined way which need not be specified now, in the
following way:

V1 0<x < Xy

V(x) =

n n-1 < x < x = L . (3)

Our approximate problem (3) can approach the exact
problem as closely as we desire, solely by picking the
desired step widths h [3}. The analytical form of the
potential need not be known in order to apply the approxi-
mation (3). Once a given number of steps is chosen, the
approximate problem is solved exactly in terms of elemen-
tary trigonometric and hyperbolic functions.

In each layer i, the approximate problem becomes

d2

=T (E - Vi)y =0, i=1,2,...,n . %)

We shall define

_ 2
a; = E - Vi , bi [ai| (5)

so that the solution to (4) is
y = AiF(bix) + BiG(bix) , 1i=23,...,n -1, (6)

where F and G are given in Table I, and Ai and Bi are inte-
gration constants.

Table I
Solutions of Equation (4)
ay <0 .o ay >0
(Forbidden Region) i (Allowed Region)
F(bix) cosh(bix) 1 cos(bix)
-1 . -1
G(bix) bi 31nh(bix) X bi sin(bix)



These solutions exhibit the well-known fact that the
Schr8dinger equation solutions are oscillatory within the
region defined by the two classical turning points a; =
E - Vi = 0 and exponential elsewhere. It is interesting
to note here that other approximations, namely the
W.K.B.J. approximation, fail in the neighborhood of turning
points and require special consideration [4].

Now applying boundary conditions (2) to the solutioms,
for regions 1 and n, we obtain

y = B)G(bx) , y = BG[b (x - L)) @)

since in neither region 1 or n is the function F equal to
zero, which in turn implies that Ay} = Ay = 0. The function
G is defined in Table I, and B] and B, are integration
constants,

We are now left with the straightforward task of deter-
mining the integration constants Ay and Bj. This is done
by matching the solutions (6) and its derivatives at the
interfaces, namely

y (8)

= L [
Vi T4 0 Vi T Vi

The general equations for matching the solutions and
its derivatives at the ith interface are

( x,) + B, x.)

Bi+l i 1+1G(bi+1 i

) +

AiF(bixi) + BiG(bixi) = A F

1 ] = 1 '
AjFT(bgxy) + BGT(ux,) = Ay F (b %) + B G (by%y) -

)

The matching process is performed at all interfaces
giving a homogeneous system involving 2n - 2 equations and
2n - 2 unknowns (A4, i = 2,3,...,n = 13 Bj, 1 =1,2,3,...,
n). In order to solve for non-trivial solution of the
unknowns we must require that the determinant of the coef-
ficients be identically zero. That is,

[a] =
G(blxl) - F(ble) - G(ble)
G'(blxl) - F'(ble) - G‘(ble)

Fbyxy) G(byx)) = Flbyx,) = Glbyx,

F'(byx,) G (byx,) - F'(byx,) - G' (byx,) =0
e y*ng) Gy ) = Glb Gx g - L))
F'(bn-lxn-l) G'(bn—lxn—l) - G'[bn(xn—l - L]

(10)

where the primes indicate differentiation.

The zeros of this determinant equation are the eigen-
values of the approximate problem, (1), (2) and (3). For
each eigenvalue, there is a non-trivial solution for Aj and
Bj which in turn defines its corresponding eigenfunction.
From this point on, |A| will be looked upon as a function
of a real variable E, namely f(E) = |A|.

At this point we shall point out differences between
this method and those obtained by the variational methods,
in particular the Rayleigh-Ritz method [1]. In the latter
variational method one obtains a homogeneous system in
which E is a dependent variable, that is, an algebraic
system. If the algebraic system is of order n, one can
only obtain n eigenvalues and eigenfunctions. Moreover,
there is no definite guarantee that the values of E
obtained in this method will be the exact values, as there
is no rigorous establishment of convergence in the Rayleigh-
Ritz method. On the other hand, the homogeneous system
that we derived is a transcendental system. The merits of
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this system are obvious. The determinant Eq. (10) is a
transcendental equation and will always have an infinite
number of real roots (zeros). As will be seen later, one
can easily define an iterative process whereby we can span
a definite energy range, thereby driving the determinant
equation to zero at the real eigenvalues encountered in
that range. As with any trancendental system, the accuracy
desired is only limited by a practical consideration,
namely, computational time. The fact that all the roots
are real is guaranteed by the fact that (1), (2) and approx-
imation (3) form a Sturm~Liouville system [5].

THE NUMERICAL METHOD

In this section we shall deal primarily with the alge-
braic manipulations necessary to implement a numerical solu-
tion of Eq. (10). We will first cover the matrix algebra
analysis and then discuss the computation of the eigenfunc~
tions.

The Eigenvalue Equation

Equation (10), from now on, will be referred to as the
eigenvalue equation. We have already stated that the deter-
minant equation will have an infinite number of real roots
that are the bound state eigenvalues for the approximate
problem (1), (2) and (3). At this point we will shift the
elements in the last column to the second column and group
the elements in 2 x 2 sub-matrices as follows

|a] = A A, O 0
0 By, Ay, 0
: : =0.3ay
0 0 0 A2,n-2 Ppo2 -1
n—l,lo 0 0 An-l,n-l
where (G(b x.) o
_ 11
Ay = )
L}
G'(byx)) 0
0 -G[b_(x - L]
Ap1,1 T nond (11a)
3 el ) -
0 -6'[b (x _, - 1))
. F(bjxi) G(bjxi)
1j .

F'(bjxi) G'(bjxi)

The sub-matrices in the first and last row of first
column of determinant correspond to the first and last
regions specified by b; and b and the first and last inter-
faces specified by xj and xp-] — L. All other sub-matrices
of determinant are of the same form and refer to a single
region specified by by, 1 = 2,3,...,n -1 and a single in-
terface specified by %3, 1 =1,2,...,n - 1.

Post multiplying the last column by —A;il n-14n-1,1
and adding the result to the first column we obtain a
determinant with the last row containing all zeros except
the last element. Expanding about the last row we have this
element times a new determinant similar in form to (11) but
smaller. This procedure is repeated, each time expanding
about the last row until (11) finally reduces to

|A] x|a S1% e x|a

IAn—l,n~llx|An—2,n—2| l n-3,n- 22|
1

x “1a-1fa-1,1l =0 -

_l -
+ eee
lag, + 4585 A 12)
From Eq. (1la) and Table I it is evident that
[Ai] =1, 4 =2,3,...,n - 1.

Therefore, Eq. (12) reduces to



-1
|

Acl,om1fno1nl S0 - A

-1
Al = layy + A58,
We have, thus, reduced the evaluation of the deter-
minant of a (2n - 2) x (2n - 2) matrix to that of a
2 x 2 matrix.

Consider a bound state eigenvalue corresponding to an
eigenfunction with two turning points. 1In the classically
forbidden regions, the eigenfunction behaves exponentially,
that is ay = E - V4 < 0.

By Table I, the eigenfunctions in these forbidden
regions are expressed in terms of hyperbolic functions,
reflecting their exponential behaviour. At this point it
is necessary to point out that we would run into formi-
dable numerical problems if we were to evaluate Eq. (13)
directly because in the classically forbidden region the
eigenfunction might be several orders of magnitude smaller
than in the allowed region. In numerical methods these
problems are known as scaling problems [6] or as asymptotic
problems. The reasons can be understood by further exam-
ination of Eq. (13). Consider the nonsingular matrix in
(13) furthest to the right of the turning point.

cosh b sinh(b

Mo

n-1%n-2 n-1"n-2

A o o= . (14)
=20l \p  sinh b

n-1 n-1%p-2 €SP

n-1"n-2

In quantum mechanics problems, the arguments of the
hyperbolic functions in (14) can grow quite big, say in
the neighborhood of 100. We would be in trouble because
sinh 100 = cosh 100 = e100/2,

When numerically multiplying the 2 x 2 matrices in
(13), while evaluating the determinant A = f(E), differ-
ences such as sinh 100 - cosh 100 must be evaluated numer-
ically and the computer returns them as zero. That is, the
direct evaluation of A = f(E) gives the result A = f(E) =
0, for E in the range of interest. We can remedy this prob-
lem by grouping the matrices in (41) except the two singu-
lar Aj; and Ay-3,) whose arguments are bjx; and by (xp-1 =
L), respectively.

For the classically forbidden region outside the
turning points we find from Eq. (lla) and Table I

-1_.
. cosh(bi(xi - Xi—l)) —bi 51nh(b1(xi xi_l))
A A = o
i-1,1i i1 : _ -
-bis1nh(bi(xi xi_l)) cosh(bi(xi xi_l))
(15)
And for the allowed region inside the turning points
-1
cos (b, (x; = %, 1)) ~by sin(b, (x; = %x;_;))
A At
1-1,1°14 o _
’ bysin(b, (x; - %, 1)) cos(by (ey = x5 1))
(15a)

This simple manipulation has, thus, eliminated in one
stroke all the scaling difficulties connected with the
eigenvalue equation, because the arguments of the hyper-
bolic functions have been reduced by at least two orders
of magnitude.

This section is concluded with a description of the
numerical method used to find the roots of the determinant
Eq. (13), whose matrices have been grouped as shown in (15)
and (15a). These roots are approximations to the eigen-
values for the bound states. It will be useful to think
of A in (13) as a function of real variable, f(E) = |A|,
whose zeros will be determined numerically. The eigenvalue
search is facilitated by the fact that all eigenvalues are
bounded from below by the minimum of the potential [7]

Ey > Vmine

In (asymptotic) quantum mechanics problems with deep
potential wells, the fundamental energy eigenvalue, Eq,
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approaches asymptotically the potential minimum (8]
Eo * Vpin-

A computer subroutine EIGEN was written that computes
the function f(E) in a predetermined number of integral
points 1n a range

<E<V

vmin - 4 (16)

right

where Vright is chosen arbitrarily and is to be sufficiently
to the right of Vp;, depending on how many eigenvalues are
desired. Integral values for Vpin and Vright are chosen.
EIGEN computes f(E) for all integral values of E in the
range (16). Whenever a change in sign of the function f(E)
at two successive (integral) values of E, it will store
those two values, and proceeds until it encounters another
sign change, whereupon, it will store the two successive
(integral) values of E at which the sign change occurs, and
so on. This process is continued until the entire range
(16) of E is scanned.

Having stored all integral intervals of E for which a
sign change for f(E) occurred, the subroutine EIGEN will
then subdivide these intervals into ten increments of 0.1
and re-scan each of the intervals for a change in sign of
the function f(E) at two successive points. Each one of
these integral intervals will contain two successive points
for which the function f(E) will change in sign. This
latter set of pairs of successive points is stored by EIGEN.
Again this last set of intervals is subdivided into ten
parts of 0.0l and the process is repeated.

It should now be obvious that this process can be con-
tinued indefinitely until the desired accuracy of the
eigenvalues is reached. For example, if four iterations
are performed, the location of the eigenvalues is ascer-
tained with three decimal accuracy (see the computer output
for further examples). The search is terminated when the
range (16) is scanned completely or when a predetermined
number of eigenvalues has been found.

Computation of the Eigenfunctions

It has been found convenient to rewrite our system as

N - ~

4118 T ARG =0
N N

B2%y ~ Ay3% =0

: an

- - -

An—2,n-2cn—2 - An—2,nvlcn—1 =0
T 0

= -
Ap-1,1% Am1,n-1%0-1 T
where A;; are the 2 x 2 matrices given by (1lla) and ?i are
the following 2 x 1 vectors:

= ,i=2,3,...,n=1. (18)

The components of the vectors"r.*1 are the coefficients
of the eigenfunctions in the boundary regions 1 and n. The
first equation in (17) represents the first two equations
in our system, which on performing the matrix multiplication,
reduce to

Blc(blxl) —AZF(blxl) - BZG(ble) } 0 w5)
Blc(blxl) —AZF(blxl) - BZG(ble) 0

The components of the vectors ?}, i # 1, are the coef-
ficients of the eigenfunctions in the inner regions. Once
the eigenvalues have been determined, the matrices Aij are
explicitly determined. A direct numerical solution of (17)
would fail because we would encounter scaling problems of a



nature mentioned before in the computation of the eigen-
value equation.

It is obvious that we can now write system (17) in
terms of the vector @; as follows:

.
C

_ -1 Y
2 T ALAE

N -1, -1
- A
By = AhohA T
2 -l cee a7L -+ 2
R I AohTy (20)

The last equatlon in (20), for m = n - 1, determine
-1 in terme of ¢ C1, and the last equation of (17) also
express Th-1 in terms of T;.

This cannot be readily done because of, again, scaling
(asymptotic) problems. That is, numerical errors would
accumulate and propagate if (17) were solved from top to
bottom; that is the same as starting with an arbitrary
value of the eigenfunction at the left boundary and inte-
grating all the way to the right boundary. To avoid this
difficulty, the solution of (17) as given by (20) is
stopped at m = n/2, i.e., the midpoint of the domain,
which is always taken at the minimum (x = a) of the poten-
tial function. In symmetric potential problems this is
all that is needed, since the eigenfunction is either
symmetric or antisymmetric about this point (x = a). For
central field problems with asymmetric potentials, after
computing the eigenfunction from the left to the midpoint,
(17) is solved via (20) from the bottom till the midpoint,
i.e., the eigenfunction is now computed from the right
inward to the midpoint, and then both pieces of the eigen-
function are matched at the center. The eigenfunctions
so computed on either side of the point x = a are the same
except that they differ by a constant factor, i.e., their
derivatives match at the midpoint.

The matching of the eigenvalues is done by multiplying
each piece by its reciprocal value at x = a, so that both
pieces also have the same midpoint value, that is

y(x) (x) , 0<x<a, (21)

1
y @ L

y(x) ;~%§7 VR0 s, agx <. (22)
R

Equation (20) will now be written

o - > a

C2 T A% Y TANS

P = -1, o

€37 AygVy s V3 =AM T

o ]_) S -1 -1

€y T A3y M A33“23A22A12A11 1° @3
2 - -1 =~ -1

-
m Am-l,mvm > Vm T Am—l,m—l m-2,m-1 ST

where from Eq. (14) and Table I we find for the classically
forbidden region

-1 ., i
cosh[bi(xi - xi—l)] bi 51nh[bi()\i xi—l)]
-1
Aighioi,n T

> i - -
b151nh[bi(xi "i-l)] cosh(bi(xi xi-l)]
(24)

and for the allowed region
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-1

cos bi(xi - xi-l) b,

A, A, = .

ii7i-1,1 -b, sin b (x, - x
i id

(25)

Notice that the arguments of the hyperbolic functions
in (24) are two orders of magnitude smaller than if the
matrices were computed individually.

The vectors'?i in (23) are evaluated by grouping the
matrices in pairs as shown in (24) and (25) except the
last matrix Aj; where the arguments of the hyperbolic func-
tions are byxj. As indicated before, the vectors vl involve
only one arbitrary integration constant Bj. But we are
still in numerical trouble since the inverse matrices A;j
at the left in (23) still involve large arguments and
therefore these inverse matrices are numerically unstable.
The computation of the coefficients 61 still present numer-
ical difficulties.

We can circumvent this problem since we do not need to
compute the vectors of the coefficients %i per se. After
the 2 x 1 vectors ?i in (23) have been computed they will
be of the form

v, = s, 1 =2,,..,m . (26)

From Eqs. (6), (18) and (23) we have the following
expression for the eigenfunctions in vector form or
notation:

yeo =2, - T,

1 N 27)
- = PR, -
yoo = AL ¥ T, 1=23,.0-1
where f(x) is the vector function
R F(bix)
f(x) = . (28)
G(bix)

Now using Eqs. (7), (26) and (28) we obtain the follow-
ing expression for the inner product in (27)

vy = v, G (bi in l)F(bix) - viZG(bixi_l)F(bix)
- vy F (bixi 1)G(b x) + v, F(b X )G(b x) .
i=2,3,...,n-1, (29)

which reduces, in the classically forbidden region, to

- _ _ -1
y(x) = vilcosh bi(xi Xx) bi v,

12s:th bi(xi_1 -x) ,

-1
i=2,3,...,n -1, (30)

and in the allowed region, to

-1
y(x) = v, 608 b (x 1 Xx) - bi Vi, sin bi(xi-l - x) ,

i=2,3,...,n=-1.(01)

In Eqs. (30) and (31) vy) and vy, are components of
the vector v1 as defined in (23) and (26).

Using the elementary addition formulas has allowed us
to analytically perform the inner product in (27), thus
eliminating the need to evaluate hyperbolic functions with
very large arguments. It can readily be seen that in the
computation of the eigenfunctions in (30) and (31), it is



only necessary to evaluate the vectors Vi in (23) and not
the coefficients ?i. The computation of the vectors Vi
does not present any numerical problems.

NUMERICAL RESULTS
In this section we will describe some of the results
obtained with the computer subroutine EIGEN. First we

dealt with a central field quantum mechanics problem, the
radial Schrddinger Eq. (1) with Morse's potential [9],

V) =D - exp(- atx - x )N’ =D, (32)

where

a = 0,711248 , X, =1.9975 , D = 188.4355 . (33)
The boundary conditions (2) used are
y(0) = y(10) = 0 . (34)

The second problem covered was that of Mathieu's
equation [10], where

V(x) = 2q cos 2x . (35)
The boundary conditions (2) used are in this case
y(0) = y(m) =0 . (36)

Although Mathieu's equation is not a true quantum
mechanics problem, Eqs. (1), (34) and (35) can be thought
of as the bound states of a particle in a box of length w
and infinitely high walls with the potential inside the
box given by (35).

The primary reasons why these two problems were chosen
are that Morse's potential has well-known analytic solu-
tions [11], and provides a good check for the numerical
solutions of the eigenvalues; and Mathieu's equation has
also been well documented [12] and is a good check for the
numerical results obtained for the nodes of the eigenfunc-
tions.

Schr8dinger's Equation with Morse's Potential

Morse's potential was approximated by a step function
with an equal number of steps m = n/2 in the ranges

0 <x<1.9975 , 1.9975 £ x <10 . (37)
The interface was chosen at the abscissa of the mini-
mum value of the potential

V(1.9975) = Voin = -188.4355 . (38)

This potential varies rapidly in the neighborhood of
its minimum than towards the right boundary, where it is
relatively flat. The n/2 potential steps in the right
range of (37) were taken as follows:

n/4 steps in 1.9975 < x < 4 , n/4 steps in 4 < x <10 .

The step function approximation is
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[v) = W@ + vz, 0 < x <xg s

v, = (V(Xl) + V(XZ))/Z, X <X < x5
Vm = -188.4355 , X1 < x < x = 1.9975;
v = -188.4355, x < x < x H
. s H
V(x) = < 1 ™ o+l (39)
Vb = VO F V00 2 ) <X <,

. .
.

-1 < x < X = 10;

LVn = V) + V)2, x

m=n/2 .

The three step widths used are

0 <x<1.9975, h 1.9975/(n/2) ,

1

1.9975 < x < 4, h, = (4= 1.9975)/(n/4) ,

4 < x <10 , h (10 - 4)/(n/b) .

3

The eigenvalues were obtained by searching for the
roots of the eigenvalue Eq. (10) in the range

-188.0 < E < -108.0 . (40)

The numerical results for the first five eigenvalues,
when the potential is approximated by n = 200 steps,
together with the exact, analytical results are given in
Table II. Table III contains the nodes of these first
five eigenfunctions.

Table II
First Five Eigenvalues of Schridinger's Equation
With Morse's Potential

N E0 El E2 E3 EA

200 -178.777 =-160.264 =-142.763 =-126.275 =110.796

Exact =-178.799 -160.283 -142.760 -126.288 -110.809

Table III

Nodes of Morse's Eigenfunctions

L T T L PR

1 0.000 0.000 0.000 0.000 0.000

2 1.888 0.000 0.000 0.000 0.000

3 1.768 0.000 0.000 0.000 0.000

4 1.688 0.000 0.000 0.000 0.000

Nij means the jth node of the ith eigenfunction.

Mathieu's Equation

The Mathieu's "potential" is approximated as follows:



”vl =v(0) = 2q , 0 <x<x s
= + .
V2 (V(xl) V(xz))/Z » %y < x < Xy 3
Vm = -2q , X1 < x < X = /2
V(x) = Vur+l=—2q’xm<)(<xnﬂ-l;
LVn =V(x_) = 2q , X1 < x < xS

m=n/2 .
The potential has the minimum at the center
Viin = v(n/2) = -2q .

The eigenvalues were obtained by searching for the
roots of the eigenvalue Eq. (10) in the range

-70.0 < E < 30.0 .

(41)

(42)

(43)

The numerical results for q = 40 are given in Tables

IV and V,
results taken from Ince's paper [12].
Table IV

First Five Eigenvalues of Schridinger's Equation
With Mathieu's Potential

N Eq El E2 E3 E4
200 -67.595  =43.342 -20.000 1.736  22.337
Exact =67.606 -43.352 -20.208 1.730 22.332

for n = 200, together with the exact, analytical
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[1]

[2]
(3]

(4]
(5]
(6]
(7]

(8]

[91
(10]

(11]

[12]

Table V

Nodes of Mathieu's Eigenfunctions

I Ny N2 Nig Nig Nis

1 1.563 2.757 3.118 0.000 0.000
2 1.359 1.767 2.882 0.000  0.000
3 1.202 1.563 1.924 3.071 3.118
4 1.060 1.406 1.720 2.066 3.087

Nij means the jth node of the ith eigenfunction.
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