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INTRODUCTION

A good design of a pipeline system not only relies on
the pressure drop calculations, but also on the estimation
of flowing gas temperatures as well. Through extensive
investigations of gas pipeline performance by the Pipe-
line Research Committee of American Gas Association
(referred as AGA hereafter) over a nine year period
of time, a set of flow equations has been developed
for accurate determination of the flow behavior of
steady-state gas pipelines. These equations were de-
veloped under the following assumptions:

1. Isothermal flow
2. Constant compressibility factor
3. Negligible kinetic energy change

In order to obtain accurate calculation of pres-
sure drop or flow rate, properly averaged temperature
and pressure must be estimated. Usually, the temperature
profile along pipelines is not well known in the design
stage. How to arrive at the best average condition is
the most essential, yet probably the most difficult part
in applying the AGA developed equations. It would
totally rely on the engineer's judgement and the values
once estimated will remain unjustified unless a proper
heat transfer calculation coupled with flow equations
is applied. The temperature effect on the gas properties
and overall pipeline performance is complicated and
interrelated as shown in Figure 1.

The flowing gas temperature can affect the de-
sign of a pipeline system as follows:

1. The accuracy of the pressure drop or flow
rate calculation depends on the estimation
of the average temperature or the entire
temperature profile along the pipeline. In
certain case the deviation may be as high as
30%.

2. In pipeline system design, the flowing gas
temperatures are often subjected to economical
and/or physical constraints of the operating
system, especially for a large project where
the range of flowing gas temperatures must
be optimized. A good example is the proposed
Arctic gas pipeline. Walker and Stuchly
reported that for the large part of the Arctic
gas pipeline, the flowing gas temperature
must be maintained below 32° F to maximize
the economical and environmental benefits.

3. The gas temperature is a prime factor which
must be considered in determining the cooling
requirements for compressor stations or the
duty for heating or cooling to maintain the
flowing gas temperatures in a desirable range.

A comprehensive computer program was thus developed
to calculate the pressure and temperature profiles along
the pipelines. The program performs a rigorous heat
transfer calculations, as well as enthalpy evaluation
which includes the Joule-Thomson effect. The effect of
changes in elevation and kinetic energy were also taken
into account. Although the discussion here focuses on
the natural gas pipeline system, the program is applicable
to other compressible flow piping systems as well.
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MATHEMATICAL MODEL

The energy balance equation for fluid flowing in
pipes can be expressed by
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Differentiating Equation (1) with respect to a
differential pipe length, dX, yields
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The enthalpy of the gas is a function of temperature,

pressure and composition. For a given gas mixture, the
partial derivative of enthalpy can be written as
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Substituting Equation (3) into Equation (2) and after

rearrangement we obtain
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In oder to evaluate dV/dX we need to express the
change of velocity in terms of density variation. From
the continuity equation

m
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Thus, for a given mass flow rate,m, the velocity
change can be expressed as
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For a real gas the density of gas is calculated by

P
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Differentiating f’with respect to temperature and
pressure yields
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The mechanical energy balance equation can be
written as
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Again, differentiating Equation (10) with respect to
a differentiel pipe length,dX, results
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The terms inside the bracket in the right hand side
of Equation (11) represent the head losses due to changes
in elevation and kinetic energy and external work done
on the system respectively. The last term accounts for
the head loss due to friction which is expressed by the
Fanning equation as
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Substituting Equation (6) into Equations (4) and (11)
and solving for dP/dX and dT/dX we finally obtain
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and

where
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Evaluating the rate of heat transfer and the partial
derivatives of enthalpy and compressibility factor at each
increment, Equations (13) and (14) can be integrated
simultaneously to give temperature and pressure profiles
along the pipeline.

HEAT TRANSFER

The rate of heat transfer between the flowing gas and
the outside surrounding medium per unit length of pipe
is calculated by
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The overall heat transfer coefficient, U, based on
the pipe inside area is given by
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and the shape factor S is given( ) by

R =

where 1 is the distance from the surface of the ground to
the axis of the buried pipe and do, is the outside diameter
of the pipe including insulations.

(24)

The equations for calculation of inside and outside
wall heat transfer coefficients hiy and hy are available
in References (3) and (4) and will not be listed here.

FRICTION FACTORS

Among the current available pipeline flow equationms,
the most often used are: General, Panhandle A, Panhandle
B (New Panhandle), and Weymouth equations. These equations
are expressed in integrated forms (5, 6) as follows:
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A careful examination of each equation reveals that
the only difference between each is the method of evalua-
tion of the friction factor.

For the General equation, the friction factors are
calculated according to two equations developed by the
Pipeline Research Committee of AGA and we will refer to
these equations as the AGA equations. One of these
equations pertains to partially turbulent flow which is
based on Prandtl's smooth-pipe law modified with a drag
factor. The other is for fully turbulent flow which is
based on Nikuradse's rough-pipe law, using an effective
roughness instead of an absolute roughness. The friction
factor is expressed in terms of the transmission factor,

ijf » which is an index of gas carrying capacity of a



pipeline under given conditions, and is directly pro-
portional to the flow rate.

For partially turbulent flow, the transmission factor
is calculated as
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In Equation (29) a drag factor, Ff, is introduced to
account for the resistances resulting from drag-inducing
elements such as bends, valves, fittings and weld beads.
If the drag factor equals to unity, Equation (29) reduces
to the smooth pipe law and the friction factor 1s a funct-
ion of Reynolds number only. The drag factors range from
0.900 to 0.985 with an average of 0.96(5).

For fully turbulent flow, the transmission factor
is calculated according to
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Note that Equation (30) requires an effective or
operating roughness, , instead of the absolute rough-
ness, which is commonly used for liquid flow calculations.
The effective roughness represents the composite frictional
resistance resulting from all the flow-disturbing ele-
ments, such as pipe wall, bends, fittings, weld beads
and deposits, etc. Therefore, the magnitude of the
effective roughness should be higher than the normal
absolute roughness found in the literature. The approxi-
mate range of the effective roughness for natural gas
pipelines is from 450 to 1850 micro-inches for bare steel
pipe, and from 200 to 500 micro-inches for lined pipes
or sandblasted or pig-burnished pipes .

The type of flow or flow regime in given pipe con-
ditions can be determined by calculating a transition
Reynolds number (Re)T. Equating Equation (29) to (30)
and solving for Re, the transition Reynolds number can
be obtained as
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No equation was provided for the transition flow in
AGA equations. In actual gas pipe flow, the transition
from partially to fully turbulent flow was reported to
be rather abrupt, as opposed to the wide smooth tramsition
shown in the Moody diagram. In fact, the range of the
Reynolds numbers in transition regime is so narrow that it
would only cause a maximum deviation of about one percent
by applying Equations (29) and (30) when compared with
smoothed curves. For practical purposes, Equation (29)
and (30) are accurate enough for engineering design.

For the Panhandle A and B equations, the transmission
factors are correlated as a function of Reynolds number
alone which may be expressed as
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An efficiency, n, which is defined as the ratio of
the actual flow rate to the predicted flow rate, is
employed in each Panhandle equation. It's effect is
somewhat equivalent to AGA's drag factor in partially
turbulent flow and effective roughness in fully turbulent
flow, but with less significance of physical meaning.

The Panhandle A equation is a resemblance to the
smooth-pipe law and the Panhandle B equation is an
approximation to the rough-pipe law. Figure 2 shows
comparisons between the Panhandle equations and AGA
equations with various efficiencies and a drag factor
of 0.96. Normally, the natural gas flow in pipelines
will fall into the range plotted. As can be seen, the
Panhandle A equation, with an efficiency of 1.0 approxi-
mates the smooth pipe law. It approaches the AGA
partially turbulent flow equation with an efficiency
of about 0.94. Using the proper efficiency, the Panhandle
A equation can be used satisfactorily for partially tur-
bulent flow. It becomes totally inadequate for the
fully turbulent flow, and tends to predict pressure drops
which are too low.

The Panhandle B equation, on the contrary, predicts
low pressure drops in the partially turbulent flow
regime. Unlike the AGA's fully turbulent flow equation
which includes the effect of pipe relative roughness,the
efficiencies in the Panhandle B equation must be varied
to accommodate the use of different interiors of pipes
for given pipe size and flow conditions. With an effici-
ency of about 0.82, it approximates the AGA's fully tur-
bulent flow equation with a relative roughmness of 0.0001.
The Panhandle B equation was originally intended for
use with a range of Reynolds numbers from 4 x 106 to
40 x 106(7)., The normal range of efficiencies for the
Panhandle equations is from 0.75 to 0.98.

The simplest flow equation is the Weymouth equation,
where the transmission factors are calculated as a
function of pipe inside diameters only. With an effici-
ency of 1.0, the Weymouth equation for a 20 inch pipe,
approximates the AGA fully turbulent flow equation with
a relative roughness of 0.0001, as shown in Figure 2.
Depending on the flow range, the efficiencies for the
Weymouth equation can be from 0.9 to 1.2.

Note that all friction factors discussed here are
the Fanning friction factors which are one-fourth the
magnitude of the Darcy friction factors.

PHYSICAL PROPERTIES ESTIMATION

The accuracy of the temperature calculation depends
largely on the evaluation of enthalpies of the gas mixture.
Curl-Pitzer enthalpy (8,9) was used for the natural gas
system. The partial derivatives of enthalpies with re-
spect to temperature and pressure were evaluated numeri-
cally. It is a good practice to check the program by
running an adiabatic flow problem for a pure component,
to insure the enthalpy calculations and mathematical
equations are formulated properly. Figure 3 shows the
adiabatic temperature changes for methane. It checks
very well when compared with an enthalpy diagram for
methane.

The compressibility factor, Z, has a significant
effect on the system pressure drop calculation. It may
be evaluated from several equations of state, corres-
ponding state correlations, or input in forms of tabular
data or polynomials. The most reliable compressibility



factors are determined by laboratory test for the gas
being considered of the probable temperature and pressure
ranges. AGA's publication "Supercompressibility Factors
for Natural Gas'", Vols. 1-7(10) are probably the most
extensive correlations currently available. The super-
compressibility factor is defined as J 1/2. The data are
correlated with gas gravity, and COy, and N2 contents, or
gas gravity, heating value, and CO2 content, over wide
ranges of temperature and pressure levels.

Two equations of state were considered for calcu-
lating the compressibility factor, Z. One is the Beattie-
Bridgeman equation of state(1l) and the other is an
equation of state which correlates the Standing-Katz
Z-factor chart by Yarborough and Ha11(12). The compressi-
bility factors calculated from the Yarborough and Hall
correlation will be referred as Standing-Katz Z-factors
The Standing-Katz Z-factor is a function of reduced pres-
sure, Pr, and reduced temperature, Tr,while the Beattie-
Bridgeman Z-factor calculation requires a third parameter,
critical compressibility factor,Zc.

In general, the Standing-Katz Z-factors check more
closely with the generalized corresponding state Z-
factor chart, as expected. However, the Beattie-Bridgeman
Z-factors were found to be more accurate when compared
with AGA supercompressibility factors 13, 1 in this
study. It was reported that the supercompressibility
factors from the existing corresponding state correlations
were not satisfactory for accurate flow calculations.
Both Beattie-Bridgeman and Standing-Katz Z-factors seem
lower than the AGA Z-factors.

Figure 4 shows pressure drops calculated using
Equation (25) and AGA Z-factors (X-axis) comparing with
that using Equation (14) and Beattie-Bridgeman Z-factors
(Y-axis) for isothermal flows. AGA friction factors were
used in both equations. The AGA Z-factors were evaluated
at average pressure determined by
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The average deviation of the absolute error of pres-
sure drop is 0.967% with Beattie-Bridgeman Z-factors and
2.72% with Standing-Katz Z-factors. The maximum deviation
is 2.78% with Beattie-Bridgeman Z-factors. The Standing-
Katz Z-factors show as high as 10% deviation for a 956
psi pressure drop line. The ranges of data covered are
given in Figure 4. For the compressibility factors, the
average deviations are 0.2% and 1.27% for the Beattie-
Bridgeman and Standing-Katz Z-factors respectively.

TEMPERATURE EFFECT

The changes in flowing gas temperatures in a pipe-
line are proportional to the rate of heat transfer be-
tween the flowing gas and the outside surrounding
medium, the gas specific heat, and the Joule-Thomson
effect. The rate of heat transfer relates to the gas
flow rate, pipe insulation, and the type and condition
of the surrounding medium which can be calculated by Equa-
tion (18). The gas specific heat and Joule-Thomson effect
can be evaluated numerically from the enthalpy changes
with respect to temperature and pressure. For most natural
gas systems, the adiabatic temperature change can be rough-
ly evaluated using an enthalpy diagram for methane for an
estimated pressure drop. However, the overall change of
temperature must be obtained by integrating Equations (13)
and (14) simultaneously.

Figure 5 shows the possible calculated temperature
profiles of a natural gas pipeline, 160 miles long, buried
underground with two different materials of insulation,
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and ground temperatures of 60°F and 10°F. The temperature
drop due to the Joule-Thomson effect contributes from one-
third to two-thirds of the overall temperature drop de-
pending on the insulation and the ground temperature.
Table 1 gives the pressure drops for the pipeline with

the various temperature profiles shown in Figure 5. As
can be expected, the isothermal flow at the inlet temp-
erature of 120°F, results in the highest pressure drop.
The deviations range from 11% to 31.7% as compared with
the one that has the largest temperature drop (Curve 6).

If the temperature profile is known the pressure
drop can be accurately determined by applying AGA equations
with a weighted average temperature calculated by the one
of the following equations:

Ty = Tiz + T23 + 7;3':4 + 0t Than (35

where Ti; is the temperature at the midpoint of the in-
terval between i and j, or
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where the average temperature at each interval is taken
as the arithmetic average of the temperatures at the
beginning and end of each equally divided interval.

Table 2 shows the pressure drops resulting from iso-
thermal flow calculations for various average temperatures
assuming the actual temperature profile represented by
Curve 6 in Figure 5. The average temperature, calculated
by Equation (35) or (36), gives almost the same pressure
drop as the one using rigorous temperature calculations.
Using an arithmetic average temperature, results in a
4.4% higher pressure drop. As indicated in Reference 5
the arithmetic average temperature is good for a small
temperature change (less than 20°F). For a larger tempera-
ture change Equation (35) or (36) should be used.

TABLE 1
Temperature Pressure Pressure
Profile Drop, Drop
Curve PSI Ratio Remark
1 974.5 1.318 Isothermal Flow
2 911.6 1.233 Adiabatic Flow
3 866.2 1.172 Normal Flow
4 821.2 1.111 Normal Flow
5 824.5 1.116 Normal Flow
6 739.1 1.00 Normal Flow
Gas gravity = 0.693

Pipe inside diameter = 28 inches
Pipe length = 160 miles

Gas flow rate = 1050 MMSCF/D
Inlet pressure = 2400 psia

Inlet temperature = 120°F

Depth of pipe buried = 3 feet
TABLE 2
Isothermal Flow Method of Pressure
Temperature,’F  Calculation Drop, PSI % Deviation
120 Assumed 974.5 31.8
90 Assumed 854.1 15.6
77.36 Arithmetic 771.9 4.4
mean
71.02 Eqn. (35) 743.0 0.5
70.86 Eqn. (36) 742.3 0.4
65 Assumed 716.0 -3.1
Rigorous calculation (Curve 6) 739.0 0.0



Gas density, LB/FT3
Gas viscosity, LB/(HR) (FT)
Pipe effective roughness, FT
Pipe flow efficiency

CONCLUSION

For design of a compressible flow pipcline system,
the pressure drops or flow rates, can be accuratcly
determined by applying the AGA flow equations, provided
that reasonably accurate average temperature and pressure
are used. Both the compressibility factors and flowing
gas temperatures have profound impact on the overall
pipeline performance. The compressibility factors cal-
culated from Beattie-Bridgeman equation of state were
shown to be accurate for natural gas systems in the
temperature and pressure ranges studied. The temperature
profile along a pipeline can best be determined by rigor-
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