THE RESPONSE EQUATION METHOD:
A NEW ROLE FOR SIMULATION OF ENVIRONMENTAL SYSTEMS

Robert Willis
Cornell University, Ithaca, New York

Management of complex environmental systems described
by linear, or non-linear partial diffeérential equations is
typically accomplished by simulation of the response of
the environmental system to alternative planning strate-
gies. The equations describing the physical, chemical
and/or hydrologic processes occurring within the environ-
mental system are transformed using numerical techniques
into systems of linear equations. Following verification
of the historical state variable regime the equations may
be solved routinely for given boundary and initial condi-
tions and most importantly, given management decisions.
That is the response of the system, i.e., the variation in
the state variables of the system, is determined as a con-
sequence of the assumed management decisions. For differ-
ing combinations of management alternatives, the simula-
tion must be performed again. Clearly for a large number
of alternative strategies, the efficacy of a particular
strategy may be difficult to determine especially in view
of the possible interactions between the state variables
of the envirommental system. Purely economic considera-
tions often preclude the examination of all the possible
combinations of planning alternatives.

In the past, some of these problems have been obvi-
ated by using a mixture of mathematical programming and
simulation. In the planning and design of surface water
systems, an optimization model is formulated to act as a
preliminary screening model for selection of management
alternatives which best meet the objectives defined within
the optimization model. The solutions of the model, the
optimal planning strategies, are then simulated to see if
they do not represent, in a local sense, optimal manage-
ment of the envirormental system. In many cases however,
the mathematical programming model is a simplified repre-
sentation of the environmental system. The optimal plan-
ning strategies may or may not simulate the response of
the system when other more complicating physical or hydro-
logic processes are considered.

A new techriique, the response equation method, is
presented to address these problems in the management of
point and non-point sources of pollution in surface and
groundwater systems. The technique begins with the par-
tial differential equations describing the mass trans-
port of contaminants within surface or groundwater sys-
tems. The equations are transformed using numerical
techniques. The resulting system of equations is then im-
bedded in the constraint set of the management model: all
of the assumed physical processes taking place within the
system are implicit within the optimization model. The
solution of the programming problem, the optimal manage-
ment decisions, are then predicated upon the actual re-
sponse of the envirormental system. lMore importantly
however is the fact that all the possible management deci-
sions are considered within the optimization model, in
contrast to strictly a simulation approach which at best
can consider a limited number of management alternatives.

The Management Model .

The management or planning problem for an environmen-
tal system is to maximize or minimize an objective func-
tion f(u,¢) whose value depends upon the management deci-
sions, u, and possibly the state variables of the system,
¢. The function can represent benefits, costs, or purely
physical objectives such as minimizing the devmtlc?n§ from
desired states of the system. The decisions are limited by
a constraint set, X, which defines the feasibl.e ranges of
the decision alternmatives, environmental quality con-
straints, and possibly budgetary limitations. Mathemati-
cally the problem may be formulated as®

*We 1imit the discussion to single objecti\{e planr:d.r}g prob-
lems. The fornulation for multiple objective optimization
is conceptually similar.
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min £(u,¢) (1)
ueX

) The relationship between the state, ¢, and decision
variables of the system is described in general by a sys-
tem of partial differential equations, r*eflecti_ngv conserva-
tion qf mass, energy, or momentum within the system. Con-
sidering the mass transport of constituents within surface
and groundwaters the governing equation may be written,

L{¢}=0 2)
C(¢) =0on $

where we assume L is a linear, differential operator, & is
the boundary of the system on which C is satisfied, and ¢
is the dependent variable, the state variable of the sys-
tem. In many management models, the system's partial
differential equations are simplified to such an extent,
that analytical solutions are often obtained expressing the
state variables of the system as a function of the possible
management decisions. Often however, such equations bare
little semblance to the complex physical processes actually
occurring within the environmental system.

The Response Equation Method

The response equation method begins with the partial
differential equations characterizing the environmental
system. The equations are transformed using finite differ-
ences, finite elements, or in absence of a variational
principle, the method of weighted residuals (the Galerkin
method). Restricting our attention to parabolic partial
differential equations which describe contaminant trans-
port in surface and groundwaters, the Galerkin procedure
begins by assuming that a solution to equation (2) may be
represented by
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where N. are lLagrangian shape, basis or coordinate func-
tions which are assumed to be linearly independent and to
satisfy the boundary conditions of the system. The in are
undetermined coefficients which are equal to the value of
the dependent variable at selected node points within the
system. Since we are approximating the solution of the
equation by a finite series, there will be associated with
the approximation a non-zero residual. The Galerkin method
minimizes the residual by requiring the orthogonality of
the basis functions and the differential operator L over
the domain D

n
J LTy 3?].} NgdD = 0, ¥; W)
p 71

Using Green's theorem for evaluation of second-order and
higher derivatives in order to avoid the imposition of
continuity conditions between adjacent elements, the or-
thogonality conditions produces a set of first-order ordin-
ary differential equations or
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The matrices A and B are dependent upon the parameters of
the environmental system and the basis function (triangu-
lar, isoparametric, Hermitian). The components of the f
vector contain the boundary conditions of the system.
The g vector however depends implicitly upon the management
decisions, u. Generally the vector will contain the

point and non-point sources of contaminants introduced to
the system. The management problem is concerned with the
control of the contaminant sources so as to maintain envir-
onmental quality standards from a public health, economic,
or aesthetic point of view.



The response equations of the system, equation (5),
may be directly imbedded within the constraint set of the
mathematical model. If the problem is a steady-state man-
agement problem then we have
B +f+g(w= (6)
which forms a set of linear equality constraints. In this
case we may solve for the state variablesin terms of the
management clec15:|.ons directly through performing the matrix
inversion, ¢ = -B~1 (f + g (W).0Orwemay consider the state
variables as an augmented set of decision variables which
are determined as a by-product of the optimization proce-
dure (1, 15, 16).

In the dynamic case, the response equations may be im-
bedded within the constraint equations by discretizing the
time derivatives using fully implicit numerical techniques.
The response equations, the equality constraints, are then
written for each time step over the planning period. The
mathematical programming problem that involves an optimi-
zation over all of the discrete planning intervals.

However, it is also possible to obtain an analytical
relationship between the state and decision variables of
the system. The response equation, equation (5), is a linear
system of first-order ordinary-differential equations.  The
general solution of the system is given by(3).
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The exponential terms may be evaluated using the Cayley-
Hamilton Theorem, or

= Mg+ by -alf -alg(u))
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where the M matrix is composed of the elgenvectors of D
and Ay is a diagonal matrix with the elements [ e?kt].

A\'s are the eigenvalues of D.

The

Equation (8) expresses the temporal variation of the
state variables of the system as a linear function of the
management decisions, u. When decisions are made over a
sequence of  planning periods, equation (8) may be used
recursively to generate the relationships between the state
variables of the system and any previous management deci-
sions. For example, ¢, is the initial state vector of the
system. In each succeedmg pla.nm.ng period, ¢, depends upon
the decisions made in the previous planning pem.ods Defin-
J.ng the length of a plamning period as 7 and u' as the deci-
sions made at the beginning of period t, then we have at the
end of any planning period
¢ (0 = Mt e L ot
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$(1) becomes the initial conditions for the t+l planning
period.

A similar expression car be written for all t up to
Tpax» the total length of the planning horizon. The equa-
tions may then be substituted directly into the management
model to eliminate the model's explicit dependence upon the
state variables, ¢. Either approach leads to a management
model predlcated upon the response characteristics of the
environmental system. The discretized approach however is
the more general; for problems with complex objective func-
tions the substitution of equation (8), may obviate the
simplifications introduced by the analytical solution ap-
proach.

“%Alternatively, the entire management problem may be re-
formulated as a problem in optimal control where the re-
sponse equations now become the equations of motion of the
system and the objective function becomes a functional whose
value depends upon the state and decision variables (7).
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Following the discretized approach, the management
problem may then be rewritten as

Tnax

mJ.an
t=1

W, ¢f (10a)

< -1
A(L:;i }+BgE + £+ g =0, kel TR, T

(10b)
PR (10c)
¢j ey , ¥k
k T
b, u >0, ¥k, 1 (10d)

where 1 is the length of each planning period, and T,

the length of planning horizon, and At is the discretized
time step within each planning period, and f_ is the sys-
tem objective for each planning period. The constraint
set  is defined by response equations, the non-negativity
of the state and decision variables, and the set x, rep-
resenting all points within the system where environmental
quality standards are to be maintained.

Equations (10a-10d) define the mathematical program-
ming problem for optimal management or control of the en-
vironmental system subject to point and non-point contami-
nant loadings. Note that the constraint equation encom-
passes all of the physical, biochemical relationships pre-
sent in the governing system equation (for example disper-
sion, molecular diffusion, biochemical reations).

An Example

Consider the management problem of optimal control of
groundwater quality in an unconfined aquifer. Municipal
wastewaters are to be injected to the zone of saturation
of the aquifer following pre-treatment. The groundwater
aquifer is to conjunctively serve as a waste disposal sink
for the municipal wastewaters and as a potential source of
water supply. The planning problem is one of defining the
effluent discharge standards for the groundwater basin to
prevent excessive deterioration of the quality of the na-
tive groundwater. That is water quality constraints are
maintained throughout the aquifer system.

Assuming that the fluid within the aquifer is homogen-
eous, i.e., of constant density and viscosity, and that the
vertical flows within the aquifer are insignificant, the
flow and mass transport equations characterizing the
groundwater system are (4, 8)
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where

T is the transmissivity tensor, L2/7

h is the hydraulic head (L)

D is the dispersion tensor (L2/T)

S is the storage coefficient (L°)

g is the mass average veloc:.ty [L/T]

Qi is the injection rate [L3/T]

ot is the concentration of constituent p injected at site
i (vL3]

n is the porosity (L°)

Q is the set of all injection sites within the basin

§ is the Dirac delta function

cP is the concentration of constituent p (—3)

AP is the concentration of constituent p iR the adsorbed
phase (ﬂa)

kp are the reaction coefficients in the solution and ad-
$>8orbed phases (1/T).



The assumptions are made that biochemical degradation is
represented by a first-order reaction (5, 10, 11), and that
adsorption follows the linear equilibrium adsorption iso-
therm.

Assuning that the injection rates and locations have
been determined in a prior groundwater screening model, the
flow equations may be solved using the Galerkin procedure
(13). From Darcy's law, the mass average velocity may be
determined to calculate the convective mass transport and
the magnitude of hydrodynamic dispersion occuring within
the system (2). Again performing the method of weighted
residual, the covective-dispersion equation becomes,

EP+FI2 +R+M=z0 per (12a)

The transformed equation holds for each constituent within
the aquifer, pel', where T' is the set of all constituents.
The matrix elements are defined as

. aNi aNj 3Nj aqk
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Fij = J n N Ny da (120)
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where %) are the direction cosines associated with boundary
8.

The k, % notation indicates variation in the x and y
variables. n and k* are lumped parameter values reflecting
the effects of adsorption and the kinetic reactions (16).
Note that the components of M, M; depends explicitly upon
the source concentrations entering the groundwater system.

Defining eP; as the percentage removal efficiency of
constituent p (the effluent standards), in planning period
T then we can write

c*j° (1-¢f ) 13)

as the concentration of constituent p entering the ground-
water system. Let CP be the cost of obtaining the effluent
standards e . Defining x as the set of control points
within the aduifer where water quality constraints are to
be maintained, i.e., the groundwater quality is constrained
to less than or equal to the prevailing groundwater quality
standards, &%P, then the planning model may be written as

T

| max .
min | ZCD (el (l4a)
=1 pel:
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B + B -FcPyy + R +M (e = 0 pel, kal,..um,
=1, Tray (14b)
cpj < &P Sey, pel (l4c)
0< cp,l_ <1, pel, ¥t (14d)
S e (1ue)
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The planning model minimizes the sum of the discounted
costs over the entire planning horizon, t=1,...T.(p is
the assumed discount rate). The response equations, equa-
tion (14b), are written over a At increment within each
planmning period. For example, if the length of a planning
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period is T, then there are t/At response equations for
each constituent. Equation (10c) ensures that the ground-
water quality does not degrade to the extent that the wa-
ter supply becomes degraded. Again the state variables,
the constituent concentrations are considered as an aug-
mented set of decision variables. The solution of the
mathematical programming problem gives the optimal efflu-
ent standards, P, to prevent degradation of the subsur-
face environment Ethe results are discussed in 16, 17).

Final Comments

The response equation method is a practical tool for
the management of surface and groundwater quality systems.
The technique has been extended to include conjunctive
ground and surface wastewater treatment and to delineate
the effects on the groundwater environment of the land ap-
plication of municipal wastewaters (15, 16, 17).

The important point however is that in using the re-
sponse equation method, the decision variables enter line-
arly into the response equations. By considering the con-
centrations of the various constituents as an augmented
set of decision variables, the constraint set becomes sep-
arable, and convex. The implications of this should be
quite clear, for there are numerocus algorithms for solu-
tion of mathematical programming problems with convex con-
straint sets. Depending upon the form of the objective
function, i.e., whether the function is concave or convex,
algorithms such as the Frank-Wolfe algorithm(16), Tui's me-
thod (14) or piece-wise separable convex programming may
be applicable. The response equation method increases the
number of variables for a management problem:a consequence
of considering the state variables as psuedo decision vari
ibles. However, the structure of the model pmnits efficient
solution of the management problem. Of primary importance,
however, is that the management problem encompasses all of
the physical processes originally defined in a pure simula-
tion of the problem. The optimal management decisions are
then based upon the actual response of the environmental
system.
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