THE SIMULATION OF A MICROPROGRAMMABLE COMPUTER

Clement Luk*
and
Larry L. Wear
Department of Computer Science
California State University, Chico

Introduction

In this paper we present a simulator for the HP
21MX [1], a microprogrammable computer. This simulator
was developed as an aid to teach microprogramming. The
simulator, called C2IMX, is written in both FORTRAN and
assembly language. Assembly language is used for bit
manipulations, and for routines that are straight forward.
A routine is considered to be straight forward if it in-
volves only simple operations that are mutually exclusive.
This often happens for the functional simulation of a
unit controlled by an encoded microinstruction field.
Other routines are written in FORTRAN to take advantage
of its I/0 convenience and easy interface with assembly
language routines.

Simulator Directives

C21MX operates under the direct control of a user
sitting at a terminal. It is invoked with 5 optional
parameters. Two of them set the upper limits for 256
words each of control memory and main memory. Due to
physical memory limitations, we decided not to simu]@te
the complete address space of control and main memories.
Because the typical mode of operation in the student
environment requires only a few words of main memory and
less than a page (256 words) of control store, this does
not appear to be a severe limitation.

Two other parameters set the microprogram counter
(MPC) for the starting control memory address, and the
program counter (P register) of the main memory program
address. The last parameter sets the next breakpoint
(BP) address (a control memory address).

The C21MX will execute microprograms until a micro-
instruction specified by BP has been executed. It then
prints the BP address and the mnemonics of the micro-
instructions executed; it then returns control to the user
for further directions. There are 4 ways to specify the
next BP. The first is to use the optional parameter
available when C2IMX is initiated. The second is to use
the breakpoint directive (BR,n) where n is the next BP
address. The third and fourth methods are available in
the single step mode in which case C2IMX will return
control to the user after the execution of each and every
microinstruction. Single step mode can be entered using a
BR,* directive. C21MX will integrate a system message
location (currently bit 15 of the switch register on an
HP 2100A host) after the execution of each microinstruc-
tion; this affords the user the ability to interrupt
C2IMX at any time. This is useful when a microprogram
Toop occurs.

Directives to display the contents of the registers,
the main memory and the control memory are availaple.
Display of a control memory location prints the micro-
instruction in both binary (octal) format and mnemonic
format.

The contents of the registers, main memory and
control memory can be modified with binary (octal) values.

Control memory may also be modified by inserting the
assembly language mneumonic for each field of the instruc-
tion.

Other directives available to allow the user to 1)
terminate C2IMX or to resume execution at the point of
suspension or with a new MPC value, 2) load preassembled
microprograms from a disk file or a paper tape, and 3)
select an on-line printer for a record of simulator run or
for voluminous output (trace).

The last directive discussed is trace, TE. Tracing
refers to the printing of certain registers after each
microinstruction. While its use is not recommended for
normal programming, we believe it should be available.
During peak usage of the simulator, there may not be
enough terminals for on-line use to debug a programming
project. The TE option allows the student to bring home
a history of the simulated run for better understanding of
the operations of the control unit and his microprogram.

A summary of the directives can be found in Appendix

Organization of C21IMX

We shall present the simulator in terms of its
control blocks, memory operations and general control.
The information could be useful in the development of
simulators of other microprogrammable computers.

Control Blocks

The simulator environment is specified in 10 control
blocks. Control block 1 is used for major simulator
control and maintenance. In this block are 1) controls
for selective printing (dumping) of the control blocks
should its maintenance so dictate, 2) break point infor-
mation and 3) the clock time. Control block 2 contains
all the hardware registers. Control block 3 contains
simulator I/0 unit information and special flipflops for
simulated central I/0 interrupt control, microinstruction
"repeat"” control, and register A register B access control.
Control block 4 contains simulated hardware flipflops.
Control block 5 contains information for simulated data
paths. Control block 6 contains information affecting
memory operations and multi-register operations. Control
block 7 contains front panel registers. Control block 8
contains the different fields of encoded microorders.
Control blocks 9 and 10 contain simulated control memory
and main memory and their respective limits.

Memory Operations

The memory read/write affects the memory address
register and the memory data register. The referenced
address 1is checked for "out of bound" condition; if it
should be out of bounds, a warning message is given. In
this case no writing is allowed, though reading is not
inhibited. The major problem with the simulation of

* Current address: CTRCC, Lawrence Livermore Laboratory, University of California, Livermore, CA 94550

memory read/write operations is timing, especially with
main memory. Main memory control for C2IMX involves a
read indicator, a write indicator and a memory lock out.
The read and write indicators are used to indicate the
read or write operation desired and to ensure synchroni-
zation with the other functional units.

When the read (write) indicator is not zero, a main
memory operation is required. The machine may go into a
"freeze" during which most operations are disallowed.
However, operations outside of the central processing unit
(CPU) usually continue. After the memory operation has
started, the read or write indicator will start "count
down". When it is zero, data will be available for
reading, or the memory data register will be latched for
writing. Note that although read and write operations
appear to be mutually exclusive, two indicators are
required. In addition, when a memory operation is re-
quested, it may not be allowed to begin at all and even
the "freeze" may not start because memory may be busy.
Memory operation for the last request may not be complete,
or an external request (e.g. DMA) may steal a memory
cycle. The proper memory simulation requires a memory
lockout to either queue the access request or simply
indicates that memory is not available.

General Control

The HP2IMX microinstruction format can be found in
Appendix B. Each instruction is separated into different
fields called microorders to allow functional encoding
within each field. For example, the ALU field of a type

1 instruction allows 32 ALU functions as encoded in 5 bits.

This encoding is convenient as long as the functions are
independent. In this case the operations can be simulated
with one assembly language routine. The field is used as
an index to a jump address table to different code blocks
to perform the required functions.

Very briefly then, the general control is:

(1) Advance the master clock (this clock provides the
basis for all timing control and synchronization)

(2) Check timing conflicts and synchronization
(3) Check main memory operations
(4) Check repeat current microinstruction option
(5) Check breakpoint option

)

Fetch next microinstruction and separate the differ-
ent fields. Increment MPC (microprogram counter).

(7) Determine the type of instruction and call in the
controlling routine (there is one controlling routine
for each type of instruction).

Concluding Remarks

The C2IMX simulator was written as a teaching aid for
microprogramming. It provides information on the state of
the simulated computer at the end of a discrete time
interval. It affords the student an opportunity to
understand potentially parallel operations of the central
processing unit. It also can be used as a debugging aid
for microprogram development. However, the output of
this simulator is still primitive. Improvements could be
made to employ graphics media to show to data paths.

Appendix A
How To Use C21MX

C2IMX (HP2IMX simulator) may be called with parameters
P1,P2,P3,P4,P5. These parameters are optional and their
uses are:

(1) P1 - Set next breakpoint address at Pl

(2) P2 - Set the last word address of simulated control
memory (note that only 256 words of control memory
is simulated)

(3) P3 - Set the last word address of simulated main
memory (note that only 256 words of main memory are
simulated)

(4) P4 - Starting control memory address (MPC)

(5) P5 - Starting main memory address (P)

P1 through P5, if present, are decimal numbers. The
default values for these parameters if they are absent

(or input as zero) are:

P1 - Simulator will suspend operation after each
microinstruction, i.e. single step mode is entered

P2 - 767
P3 - 255
P4 - 512
P5 - 64

In addition, if bit 15 of switch register is set,
the simulator will enter single step mode.

Simulator Directives

1. MM,n,v Modify Main memory n with value v.

2. MC,n,v Modify Control memory n with value v. Ifvy
S an *, then accept a microinstruction field
by field.

3. DM,n Display Main memory location n.

4. DC,n Display Control memory location n

5. BR,n BReakpoint: simulator will suspend operation

after executing the instruction at location
n. If nis an *, simulator will suspend
operation after each microinstruction, i.e.
single step mode is entered.

6. GO[,n] GO, resume microprogram at location n,

or at the point of suspension if n is absent.
7. kI KIT1 execution.
8. LB,n,m Load Binary file n into control memory

starting from location m. Only 1 module (256)
words may be loaded at one time. If, n=TAPE,
then binary paper tape will be loaded.

9. TE,n Trace Execution with option n. n represents
a combination of the following option for
the trace (printing) of different information.

1 X,Y,A,B,RAR,RIR

2 $1,82,53,54,55,56

4 $7,58,59,510,511,512

8 L,CNTR,OVFL ,E, TBZ,SAVE

1 FLAG,AAF ,BAF ,ONES,COUT,ALUQ,AL15
3 IR,M,T,P,S,CIR

33333
wouonon oo

N o

Simulator Directives
(continued)

References

[

—

] Hewlett-Packard, Microprogramming 21MX Computers,
Cupertino, California, 1974.

For example, n = 3 will result in the
printing of X,Y,A,B,RAR,RIR (for n = 1) and
S1-S6 (for n = 2) The combination will
depend on the binary representation of n.

10. LW,n List Unit is set as n.
1. MR,n,v Modify Reg!Ster n with value v.
be A,B,X,Y,M,T,L,P,C(CNTR),I(TR), U(RAR) or
V(RIR).
12. OR,n Display Register n. (see 11. MR,n,v for
allowable value of n)
Appendix B
Instruction Format
Type 1 COMMON
23 20{19 15|14 10{ 9 5|4 [
) s 5 s 5 J
OP ALU S-BUS STORE SPECIAL
OPFLD ALUFD SBFLD STFLD SPFLD
Type 2 IMMEDIATE l
23 20} 19| 18 17 109 s |4 [
M 11 8 s 5
1110 (MODIFIER OPERAND STOFE SPECIAL
3 l & ALFLD STFLD SPFLD
ER-
Type 3 CONDITIONTL JuMp
23 20119 15/14 {13 s |a 0
JMP S 1 9 CNDX |
1101 CONDITION & 2i OPERAND 11001
58
ALUFD 2 A2FLD
a
Type 4 UNCONDITIOHAL JUMP
23 20|19 17 |16 5(4 9
[000 12 s)
JsB i
1101 JUMP
1100 OPERAND MODIFIER
A3FLD SPFLD

627

