GPSS SIMULATION OF A PROPOSED MINI-COMPUTER SYSTEM

Allen C. Schuermann and Everett L. Johnson
Wichita State University, Wichita, Kansas

INTRODUCTION

Many industries or design groups within a
given industry, in an effort to minimize costs,
view simulation as an expensive luxury not essen-
tial to the successful development of a product.
The deluding aspect of this philosophy is that a
series of design efforts may be successfully com-
pleted before a failure occurs which simulation
might have avoided. The authors have participated
in pathological simulations which were performed
after the death of the project. These post mortems
could have been avoided by early interaction be-
tween design groups and simulators. This paper
discusses a successful interaction between design
and simulation.

SIMULATION OBJECTIVE

The activities reported here are the result
of a mini-computer design group realizing the
potential value of simulation modeling in spotting
troubles in the proposed design. Parallel efforts
in the design and simulation of the new mini-
computer architecture were initiated. The simula-
tion effort was directed at developing a system
Jevel model of the mini-computer using whatever
design specifications were fixed and treating the
other specifications as parameters.

The amount of microcode executed per unit time
was chosen as the standard of performance of the
language processor(LP). Since one of the options
was a multiple processor system, the number of
processors which available memory access times and
bus speeds would support was specified as a design
parameter. Another design parameter of interest
was the optimum size for cache memory. These
parameters were varied to allow the designers to
select values which met specified performance and
economic criteria.

Another portion of the design problem was
concerned with the input/output processor(I0P).
It was necessary to determine a viable peripheral
polling scheme and the number of I0Ps required to
perform in the specified 1/0 environment.

Since the language and [/0 processor designs
were to be completed in parallel, a natural di-
vision existed and two separate models were deyel-
oped. The simulation data for the LP was consid-
ered most critical, so that model was developed
first.

LANGUAGE PROCESSOR MODEL

The initial design of the system consisted of
block flow charts which represented the sequgnt1a]
action of the system. Conservative best estimate
times for various data transfers and overhead
functions were included in the blocks. Other
parameters which the designers felt were flexible
and could be chosen to optimize performance were
treated as parameters. Figure 1 provides theilevel
of detail of the block diagram at which the simu-
lation was performed.

Due to the block nature of the preliminary
design and the similar block nature of GPSS, GPSS
was chosen as the simulation language. The statis-
tical functions available and the statistical data
collection capabilities were powerful tools which
made the modeling less complicated.

605

LBEQUEST 2U3 CONTROLJ

RY REFZRENCE |

|EXECUTE FETCH WACRO]

EXECUTE INTERFRET MACK@

| =

LgEQUEST BUS CONTROL!

LOAD CACHE

]

|
| =XECUTE wICRO STEF

TZNORY v NO

END
OoF A

MACRO
?

< .
]
191

FIGURE 1 LANGUAGE PROCES3OR FLOWCHART



At this point, the exact I/0 requirements
were not known. Thus a statistical model of the
1/0 requirements was developed using typical
peripheral data concerning lines of line printer
output, CRT output and disk sectors accessed per
CRT initiated activity. This statistical model
was then used to compete with the LP for main
memory .

) The simulation was started by generating a
single transaction which continued to request the
loading of a new macro at the completion of each
previous macro. The resultant microcode through-
put reflected the maximum system performance with
a single language processor. In order to deter-
mine the maximum throughput possible with multiple
LPs, the unused memory access time was used in the
same proportion to support additional language
processors.

Simulation runs were made which simulated 1
millisecond of real time but took 20 seconds of
CPU time on an IBM 360/44. Even though these runs
were quite short, the simulation output was deter-
mined to be statistically significant. It should
be noted that in the 1 millisecond simulation, the
processor executed several hundred thousand micro-
steps.

Figure 2 presents the results of throughput

versus macro length with cache size as a parameter.

The following conclusions were drawn from the
simulation results:

(1) If macro length is relatively fixed,
cache size should be slightly larger than the
macro length.

(2) A cache size of 16 words provided
acceptable throughput for a wide distribution of
macro lengths.

(3) Multiple language processors cannot be
economically justified, since additional pro-
cessors do not provide a proportionate increase
in throughput.

1/0 PROCESSOR MODEL

The 1/0 processor function involved two
distinct processes - monitoring I/0 initiating
flags in main memory and polling peripherals to
determine peripheral status. The flag reference
task and the servicing of active peripherals
during the polling exercise are impacted by con-
tention with the language processor.

The following peripheral configuration was
assumed for the simulation: 64 CRTs, 10 line
printers, and 6 disks with an average of 12.1
lines of output on each CRT, 0.3 lines of output
on each line printer, and 6.7 sectors accessed
from the disk for each CRT initiated task.

The information required from the simulation
was the number of I/0 processors, time spent
polling, time spent checking flags in memory, time
elapsed between an I/0 request and the beginning
of service, time required to complete each I/0
task, handshake response times, and the disk data
buffer size.

The search of the I/0 flag table in memory
was initially simulated in detail with each entry
being accessed and checked. 1In the event of an
active flag, various pointers were accessed and
examined. The time for each flag checked was used
to advance the simulation clock. Similarly, the
polling process was simulated to include the hand-
shake time and whatever data transfer time was
required if the polled device indicated service
was needed.

Due to the short time required for each 1/0

device poll and 1/0 flag check, the GPSS program
consisted of many short advance blocks. The
initial detailed simulation run required 30
minutes of CPU time per second of real time. In
order to reduce this time, a statistical estimate
of the language processor contention with the I1/0
processor was developed.

Define p to be the probability that the main
memory is busy and m to be the maximum duration of
main memory usage by the LP. The probability
distribution describing the waiting time R for the
I0P to obtain main memory is

f(R) = {1-p R=0
p/m 0<Rgm

The expected value of R, E(R)=mp/2. The variance
of R, Var(R)=m°p(1/3-p/%). [If the IOP requires
n independent accesses to main memory, the total
waiting time T will have the following character-
istics: .

T = ZR,, E(T) = nmp/2, Var(T) = nm2p(1/3-p/*)

According to the central 1imit theorem, as n— o

T is asymptotically normal. In fact, for the
situation where p = 0.5 and m = 700 nanoseconds,

T is approximately normally distributed for n=>15.
Thus, if more than 15 main memory requests are
required in succession, the main memory contention
is approximated using E(T) + zjVar(T)}l/2 where

z is a standard normal random deviate. This pro-
cedure allows a series of memory contentions to be
modeled as a single block rather than requiring
the simulation of each individual memory access.
When n <15, a single advance was made, but with
memory contention equal to n times the average
contention time. Test runs validated the appro-
priateness of the above statistical approximation.

After the memory contention effects were
approximated statistically, 10 minutes of CPU time
were required per second of real time.

Further analysis now showed that the repeated
polling and flag checking activity accounted for
the major portion of the simulation activity. It
was then realized that no IOP activity had to occur
until a device became active or a flag was set.
Thus, the simulation could proceed to the next
active entry without intermediate polling steps.
Since the time required to poll each device and
check each flag was known, a function was derived
and implemented which placed the polling or flag
checking task at the proper location. Thus, the
activity was picked up at the same instant in time
as if the polling and flag checking had been going
on continuously.

. The simulation now required 10 minutes of CPU
time to simulate 60 seconds of real time. Table
1 gives the improvements in run time as the simu-
lation development proceeded.

TABLE 1
SIMULATION RUN TIME IMPROVEMENTS
Sjmulation Simulated Performance
Time Time Ratio
(CPU Minutes) (Real Time
Seconds)
DetaiTed
Model 30 1 1800/1
Statistical
Estimation
of Memory
Contention 10 1 600/1
Demand
Responsive
Polling 10 60 10/1




MICROSTEPS/MICROSECOND

MICROSTEPS/MICROSECOND

64 WORD CACHE

MULTIPLE PROCESSORS

! L

| SINGLE PROCESSOR

T T T T

20 4o 60 80 100 120 140 160 180

MACRO LENGTH

16 WORD CACHE

MULTIPLE PROCESSORS

/////4,//////”L//”//ﬂ SINGLE PROCESSOR

20 40 60 80 100 120 140 160 180
MACRO LENGTH

FIGURE 2 MICROCODE THROUGHPUT

607



The following benefits were obtained from the
simulation model results:

(1) The model provided a means for recog-
nizing and modifying inefficiencies in the flag
checking algorithm.

(2) One I0P was sufficient to meet all
performance specifications in the proposed 1/0
environment.

(3) Critical handshake response times were
identified and their maximum allowable values
determined.

SUMMARY

A successful parallel design and simulation
effort has been reported which allowed management
to make intelligent decisions regarding design
directions. Classical steps in modeling develop-
ment were used in constructing the simulation
model:

(1) Detailed models were developed of the
proposed design;

(2) The models were modified to include less
detail, but still provided accurate external
operation at significant savings.

ACKNOWLEDGMENTS

This research was supported by NCR Data
Processing Division, Wichita, Kansas under contract
#4405-50.
BIBLIOGRAPHY

1. Blakely, Max F. and Schuermann, Allen C., A

Simulation Technique for Determination of Large

Scale Computer System Channel Requirements, The
Boeing Company Technical Document D3-8299,
Wichita, Kansas, 1969.

2. Greenberg, Stanley, GPSS Primer, Wiley-
Interscience, New York, 1972.

3. IBM Corporation, General Purpose Simulation
System/360 0S and DOS Version 2 Users Manual,
Second Edition, IBM Corporation, White Plains,
New York, 1971.

4. Schriber, Thomas J., Simulation Using GPSS,
John Wiley & Sons, New York, 1974.

5. Taha, Hamdy A., Operations Research: An
Introduction, Macmillan, New York, 1974.

608

Allen C. Schuermann is an assistant professor of
industrial engineering at Wichita State University.
He received a B.A. in mathematics from the
University of Kansas, an M.S. in mathematics from
Wichita State University and the Ph.D. in opera-
tions research from the University of Arkansas.
He previously held the position of Senior Opera-
tions Research Analyst with Boeing Computer
Services. His current research interests include
methods of evaluation for criminal justice and
health care delivery systems and simulation
methodology. He is a member of TIMS, ORSA, AIIE
and Pi Mu Epsilon.

Everett L. Johnson is an associate professor of
electrical engineering at Wichita State University.
He received a B.S. in electrical engineering from
the University of Kansas, an M.S. in electrical
engineering from the University of New Mexico and
the Ph.D. in electrical engineering from the
University of Kansas. Previous positions were
with the Boeing Company as a Research Specialist
and Sandia Corporation. He has been a consultant
to the Boeing Company and NCR. Current activities
include microprocessor applications. He is a
member of Eta Kappa Nu, Sigma Tau, Tau Beta Pi,
ASEE and IEEE.



