HIGH-LEVEL CONTROL LANGUAGE FOR
SCIENTIFIC AND ENGINEERING GRAPH GENERATION

Martin H. Dost, Wai Mun Syn and Nolan N. Turner, Jr.
IBM Corporation, General Products Division, San Jose, CA.

ABSTRACT

High-level programming languages of all kinds,
especially simulation languages, continue to make
it easier to solve problems from many fields with
digital computers without requiring much knowledge
of mathematics or programming. In many cases
graphic display is the only efficient way of di-
gesting the results. Numerous programs have been
written for many plotting devices which require,
however, too much effort for the occasional user
to produce custom-tailored graphs.

A high-level control language, called GRAFAEL,
has evolved over a numper of years at the develop-
ment laboratory of IBM, San Jose. This language
bridges the gap between the ever increasing volume
of information and its display on an open-ended
array of plotting devices.

Through the use of simple, unified syntax in
a universal post-processor, the data to be plotted
is channeled from any given program to one or more
available plotters or printers. This arrangement
allows the user to specify the format of the desir-
ed graph with little or no concern for procedures
or device requirements.

Simple statements, such as,

GRAPH TIME, X,Y
LIST TIME,A,B,U,V,W,X

allow graphs and listings to be generated with
standard features, assumed by default. Any special
attributes of each variable may, however, be speci-
fied. Among the options available through GRAFAEL
are the type of plotting device, axis type (linear
or log), length and position of any axis, type of
line or marker, spacing between and number of
divisions, scale factors, starting value and dimen-
sional units. An example of a partly specified
variable may be

TIME (LE=9, SC=0.05, UN=MSEC, LO=0.1)

which results in a 9" long axis, scaled for 0.05
msec per unit graph length, and starting at t=0.1.
The user also has the option of displaying curves
selectively from different runs, overlaying graphs,
choosing line types, and labeling each graph inde-
pendently.

INTRODUCTION

Every day scientists and engineers solvg more
complex and new types of problems on the digital
computer. High-level programming languages, espe-
cially simulation languages, have made it progres-
sively easier for mathematically unskilled people
to use computers to good advantage. Yet, some
skepticism exists. For example, do the results 9f
all these programs get fully digested, and what is
being done to expedite evaluation? Why do so many
people still tabulate results and then try to
interpret them laboriously? Isn't it common knowl-
edge that graphic presentation of data is more
efficient and that plenty of plotting devices are
commercially available?

Much sophisticated drafting and plott%ng is
being done automatically, but the programming

*An experimental program.

595

effort, typically required to obtain customized
graphs, is substantial. When graph requirements
change almost constantly, as is the case in explor-
atory simulation studies, a high degree of flexi-
bility in specifying graphs is needed. That,
however, usually conflicts with the desired simpli-
city for the unsophisticated computer user.

Over a number of years, a program has evolved
at the IBM development laboratory in San Jose,
California, which gives high-level control to the
users of many application programs in specifying a
great many types of graphs to be drawn on any of
several plotters. The concept originated in the
late 60's when it was found that a major reason for
the popularity of the simulation language DSL/360
(like csMP! an advanced version of DSL/90¢) was
the great ease with which computed results would
be plotted. Simple statements, such as

PREPAR 0.1, TIME, X, Y, YDOT
GRAPH X, Y, YDOT

sufficed to specify the variables to be prepared
for plotting and the composition of the graph
picture. The first variable in the GRAPH state-
ment was the independent variable; all others fol-
lowing were the dependent variables. The data
would be scaled automatically to f£ill a 12" x 8"
area, unless a specific scale factor and graph
dimensions were given. For example,

GRAPH 2.5, 10, 6 TIME, X, Y

specified a scale factor of 2.5 problem units per
inch for the dependent variables X and Y, and a
10" x 6" graph area.

As useful as they were, these capabilities
were still too restrictive for many applications,
and users kept asking for more flexibility. It
became apparent that such capabilities as inde-
pendent scaling of each variable, positioning and
labeling of each axis, choice of linear and
logarithmic scale, superposition of selected
curves, etc., must be provided if a useful
general-purpose engineering graphic program is the
objective. To accomplish this, the GRAPH state-
ment of the evolving graph control language was
expanded to the following format:

GRAPH(---) TIME(---), X(---), Y(---)

As before, the first variable "TIME" is the inde-
pendent variable, followed by the dependent vari-
ables "X" and "Y".

Each plot variable may be qualified by an op-
tional list of attributes enclosed in parentheses.
These are "local" attributes pertaining to that
variable exclusively. There are also "global"
attributes which affect the dependent variables as
a group or the entire picture as a whole. These
options are placed immediately following the
"GRAPH" label. As an illustration, consider the
following two GRAPH statements:

GRAPH TIME, X(LENGTH=6,SCALE=0.5), Y(LENGTH=6)

GRAPH (LENGTH=6) , TIME, X(SCALE=0.5), Y

They produce identical pictures. X and Y will be
plotted against TIME. The vertical axes are 6
inches long and the horizontal axis will be 12
inches by default. The X curve will be drawn with

a scale factor of 0.5 unit per inch, whereas the Y
values will be automatically scaled to fit a 6-inch
axis. By exercising selected options, a highly com-
plex graphic picture may be composed. On the other
hand, meaningful defaults are built into the system
so that a reasonable picture will be drawn if no
optional attributes have been specified. Thus,

GRAPH TIME, X, Y

will produce an 8" x 12" graph of X and Y versus
TIME.

The language which was actually implemented is
called GRAFAEL. It provides a graph-generation ca-
pability which is at the same time very versatile
and very simple to use. To meet the requirement

for versatility,

1. GRAFAEL accepts data from many sources without
restricting either the programming language used
to generate the data, or the storage device used
to contain the data.

2. The user is allowed a high degree of flexibility
in specifying the content and the appearance of
his graphs.

3. The graphs may be produced on a variety of plot-
ting devices.

To meet the requirement for simplicity of use,

1. The only graph related function performed in
the user's application program is the prepara-
tion of a data set containing the values to be
graphed. Subroutines are provided which assist
in this process.

2. The GRAFAEL language with which the user speci-
fies graphs employs highly mnemonic terms
within a simple consistent syntax.

w

The language is a descriptive language, and not
procedural, to free the user from the need to
know the steps involved in making a graph.

4, A full set of default assumptions is included.

As a result the simplest form of graph state-
ment will produce a usable graph.

The Structure of GRAFAEL

GRAFAEL represents the common link between all
the application programs, which generate plottable
data, and the various plotting devices available at
any particular computer installation. Figure 1
shows schematically how plots are obtained empiri-
cally and, by comparison, how GRAFAEL is used to
process raw data into a form acceptable directly by
plotters. The program which is a stand-alone post-
processor, was written in PL/I; it will run in a
104 K byte core region.

An interface routine, SAVE, collects the raw
data from the application program and puts it in a
desirable format. GRAPH commands serve to communi-
cate specifications about the desired plot appear-
ance. GRAFAEL then sorts the data and determines
specifically what each graph is to contain, based
on the data itself, the options exercised, and the
built-in default assumptions. This graph-genera-
tion portion of GRAFAEL deals only with picture-
oriented functions, and is relatively ignorant of
the capabilities and limitations of the individual
plotters. It identifies the device or devices to
be used, the start of a frame or picture, the line
segments which comprise the frame, and the end of
the frame. These functions are common to all
graphs, regardless of the plotter used.

For the actual graph production, GRAFAEL uses
a collection of plotter interface subroutines which

596

Process Empirical Numerical
Data physical system mathematical model
qencration undcr test in application
program
Interface measurement formatted points
(manual/automatic) data set
command data set
Graph data display speci- GRAFAEL
generation fication (type of (a) picture composi-
graph, medium and tion (device in-
details) dependent
plot production (b) data set genera-
(drafting/recording) tion for plotting
procedure
Typical drafting [recorders pen plotters (drum,
plotting instru- display flatbed)
devices ments devices photo plotters (light,
E-beam)
printers (line, non-
impact)
Fig. 1 Comparison of graph generation processes

deal with the vagaries of the individual plotter.
(This collection of routines, called SPLINTER, for
San Jose plot interface, is also used for plotting
applications other than GRAFAEL.) They convert
the picture description into one or more data sets
which will control the selected plot devices.

Only the subroutines within SPLINTER are concerned
with characteristics of the individual plotters
such as resolution, maximum allowable drawing
size, etc.

Aside from two types of printer plots for line
printers, several pen and photo plotters have been
supported through SPLINTER: CalComp* 566, Gerber
562 (drum type), Gerber 522, 523 (flatbed pen plot-
ters), Gerber 532 (large photo plotter) and Infor-
mation International, Inc. FR80 (microfilm).

Breaking up the job of producing graphs auto-
matically is analogous to the situation when
graphs are produced from empirical data by a team
of workers (see Fig. 1). Preparation of the raw
datgset can be compared to measurement of analog
variables or event counting in continuous or dis-
crete form from the real systems (as simulated
in tbe application programs), while the SPLINTER
routines can be compared to draftsmen or techni-
cians who take numerical and analog data and
p;oduce plots. They need to know what the de-
sired graphs should look like and on what media
to put the curves or markers.

Note that the engineer or scientist in charge
of the experiment is not concerned with the
sequence of drafting operations or the drafting
instruments. However, he will have to specify
whether linear or log paper is used, which data
are to be selected for plots, what resolution is
dgsired, how to label and position axes and en-
tire plots, and he may have preferences about line
and mérker types. In this way the responsible
experimenter is relieved of the chores which are
routine but often time consuming, and he can con-
centrate on the problem of data evaluation toward
understanding and communicating the results.
Thrqugh the simple mechanism of exercising the
various options, the user of GRAFAEL has the tools
to tailor his graphs more and more precisely while

his computer study progresses and the results be-
come better known.

*CalComp is a registered trademark of California
Computer Products.

Joining GRAFAEL to the Data Generating Program

To produce a graphic picture, GRAFAEL must
have as input two groups of data:

1. the raw data to be plotted, and

2. the commands and graph options that describe
the raw data and specify the picture details.

The raw data must be placed into the following pre-
scribed GRAFAEL format.

data identifier | n|x |a, [a,]| a5 ---[a
record 1

2 3 n

Each record is of variable length and begins
with a unique group identifier. Immediately fol-
lowing the identifier is an integer (n), indicating
the number of data values in the record (d,,d ,---,
dp). Obviously, n must be greater than or equal to 2
since two coordinates are required to plot a point
in a graph. Next, another integer, k, serves as a
run counter. All data records having the same
identifier and the same run number form a logical
plot set which must be terminated by an end-of-run
(also referred to as an end-of-curve) record. This
terminator record contains only the first three
fields of a normal data record and uses the record
field as a flag by setting n=1. The end-of-run re-
cord also increases the run counter k by one.

Any number of groups of data items with any
number of runs per group may be generated and
accumulated in one job without restriction as to
the order in which the data records are collected.

As an illustration, suppose an application
program computes data values for the variables p,
q, ¥, ¥y, and z as a function of t for two values
of a parameter C (say C1 and C2). Plot points are
to be collected in two groups at different frequen-
cies.

group 1 named GRPA containing t, p, %, ¥
group 2 named GRPB containing p, q, 2z
Four plot sets will result as depicted in Fig. 2.
To assist the user in collecting data for

GRAFAEL, general interface routines have been
written for use in both FORTRAN and PL/I applica-

GROUP A GROUP B

N

w
ES
—
IN]
w

GPPER 4 1 t By %
GPPR 4 1 t

RUN GRPA 4 1 t

GRPA 4 1 t. p. x. y.

GRPA 1 1

GRPA 4 2 tl P 7y GRPB 3 2 Py 9y 7
GRPA 4 2 t v, GRPE 31 P, Oy %,

RUN GRPA 4 2 t3 Py %4 /4

-------------- GRPE 3 2 p. qj z

GRPA 4 2 t. p. . ¥ GRPB 1 2

GRPA 1 2 AAAJ

Fig. 2 Data array for two groups and two runs

tion programs. For large production type appli-
cation programs, the data collection process can
be integrated into the system by simply writing
on some file the data values to be plotted in
accordance with the prescribed format.

After the processing of raw data into GRAFAEL
acceptable format, graphic pictures may be produced
by specifying appropriate commands and graph op-
tions. Continuing with the above illustration,
GRAFAEL must be informed as to the names and group-
ings of the saved data. This is accomplished by
means of the "SAVE" command:

SAVE (GRPA) T, P, X, Y
SAVE (GRPB) P, Q, 2

Now, adding the appropriate GRAPH statements, the
user may compose as many graphic pictures as he de-
sires. For example, he may plot ¥ and Y against
t for both runs from data identified by GRPA:
GRAPH (G1/GRPA) T, X, Y
or, p from run 1 and y from run 2 versus t:
GRAPH (G2/GRPA) T, P(RUN=1), Y(RUN=2)

or, p and g against z for run 2 from GRPB:

GRAPH (G3/GRPB,RUN=2) 2, P, Q

The Options in GRAFAEL

The most often used options and their two-
letter abbreviations of GRAFAEL are listed alpha-
betically in Fig. 3. Of these, DEVICE and OVERLAY

AXISTYPE (AX) axis type (linear or log)

DEVICE (DE) plotting device
LENGTH (LE) length of axis
LINETYPE (LI) type of line to L«< drawn

LOWVALUE (LO) low value of variable range

MARKER (:12) type of markers to be drawn at data point
NBRINT (WB) number of divisions (or decades)

OVERLAY (OV) superimpose on previous graph

POSITIOI (PO) position of graph or axis origin

FUN (RU) run number of data to be plotted

SCALE (sC) scale factor (variable units/graph unit)
TICINT (TI) interval between tick marks (decade length)
UNIT (UN) dimensional units (attached to axis label)

Fig. 3 The principal options in GRAFAEL

are strictly graph options, by which the plotting
device is picked and spatial overlapping of plots
is specified; e.g.,

GRAPH (DE = SPRINT, OV)

This causes the short (i.e., single page) type of
printer plot to be chosen, as well as consolida-

tion with the previous plot. Most of the options

listed in Fig. 3 are "curve options," i.e., they

pertain to the dependent axes or their associated
curves; e.g.,

Yy (LO = -0.1, sC = 0.02, LI = 3, LE = 6)

In this case, the variable Y is to be plotted
by a curve using line type 3 (short dashes) over a

6" vertical distance, starting at a low value of
-0.1 and scaled for 0.02 unit of Y per inch. If
these options are put into the graph option field,
they would apply to all dependent variables,
causing alignment, uniform scaling, etc. Some op-
tions clearly don't belong in the option field of
the independent variable; these are line type (LI),
marker type (MA), and run number (RU). An example
of a horizontal axis specification might be:

TIME (LE = 35, TI = 0.5, UN = SECONDS)
which lays down a 35" long axis with a tick mark
interval of 0.5" and the unit SECONDS printed in
parentheses behind the variable TIME.

A logarithmic scale to the base 10 can
simply be obtained by use of the axis type option
(AX). The number of decades (NB) is assumed to
be 3 by default and the spacing between decade
lines (TI) 2.5". For example:

Z (AX = LOG, NB = 6, TI = 1.5, LO = 100, MA = 4)
will cause the variable Z to be plotted by markers
of type 4 (triangles) _over 6 decades and 9" dis-
tance, starting at 102 and ending at 108 , but
excluding events outside of that range.

Flexibility in spatial arrangement of axes or
entire graphs is provided by the position option

and up by an amount Y. If only one number is given,
it is assumed to be X, and Y=0. The position op-
tion, together with the length option enables X-Y
plots to appear like strip charts on time base re-
corders; this avoids overlap of curves, if desired.
Positioning of dependent variable axes overrides
side-by-side axis arrangement of successive depen-
dent variables, starting at (0,0) and followed by
(-1.5,0), (-3,0), etc.; axis omission is possible
by the command AX = OMIT.

Graph Samples

To illustrate the use of GRAFAEL, primarily
the options, several sample plots of results from
problems solved by a high-level simulation language
are shown in Figs. 4-9.

Figure 4 resulted from a SAVE statement for
the variables TIME, I, V2, SAW, FF, and PC plus the
statement

GRAPH (DE=CALCOMP, LI=1, LE=3) TIME (UN=SEC)...

I, V2 (LI = 2) SAW (PO = 0,3.5, LE = 1) ...

FF (PO = 0,5, LE = 0.5) PC (PO = 0,6, LE = 2)

Such a graph is the equivalent of a strip chart re-
cording with variable strip width and overlap

(PO), which has two coordinates: X and Y. PO = 0,5 capability for several variables vs. time.
in the graph option field will cause the entire
graph to be translated vertically by 5". In an op- Figure 5 shows families of curves vs. time and
tion field associated with either an independent angular displacement (TH). This graph was obtained
(or dependent) variable, it will cause the left by saving the variables TIME, TH, THDOT, EPOT, and
(or lower) end of the axis, i.e., its low value EKIN for three runs and placing these two GRAPH
point, to be shifted to the right by an amount X, statements before the final END:
100
S0
J PC(PO=0,6, LE=2)
(&)
a 0
LLl MU UL AU UGB LU
w 0 FF(PO=0,5, LE=0.5, TI=0.5)
o
=) 1 h Y | I i '
5 of / //Wl/
SAW(PO=0,3.5, LE=1)
£ 2.n
— -
I N
4 1.5,
I _
[
I H - 1.0 —
v — e
2 " v2(LI=2) -
S -
il 0.5 T T T T T T ; T T T T
1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
TIME (UN=SEC) TIME (10°3 SEC)

GRAPH (DE=CALCOMP, LI=1, LE=3)

Fig. 4

598

The strip chart effect.

THDOT
4

-164

TH

1

0{4 0{8
TIME

0.6 1.0
(SEC)

CRAPII

Fig. 5

GRAPH (DE=CALCOMP, LE=4) TIME(LE=5, UN=SEC) ...
TH, THDOT (PO=0,4.5, LI=1)
GRAPH (DE=CALCOMP,LE=4,0V,PO=7) TH(LE=4,UN=RAD) ...

EPOT, EKIN(PO=4) THDOT(PO=0,4.5,LI=1,UN='RAD/SEC')

The first one shows angular displacement and velo-
city of a pendulum for three different amounts of
damping. The spatial separation vertically is
accomplished by the position command for the THDOT
axis. To place the other two pictures immedlgtely
to the right of the first ones, overlay (OV) is
used for the second GRAPH command. In the_lower
picture, potential energy (EPOT) and kinetic en-
ergy (EKIN) are plotted together; by placing the
axis for EKIN at the right-hand margin, the fram-
ing effect was obtained and equality of the two
energy scales was demonstrated. The upper right
picture, finally, shows velocity vs. displacement,
i.e., a phase plane plot or "Lissajous" figure, as
put on X-Y plotters or oscilloscopes.

Figure 6 is a set of semi-log and log-log plots,
familiar to many: gain and phse angle vs. frequency

(DE=CALCOMP ,0V,P0O=7,LE=4)

(RAD/SEC)

THDOT

EPOT

TH(LF=4,UN=RAD) EPOT, EKIN(PO=4)

167

o
EKIN

0
TH (RAD)
GRAPH (DE=CALCO!1P,LE=4) TIME(LE=5,UN=SEC) TH, THDOT(P0O=0,4,5,LI=1)

oo

THDOT (PO=0,4.5,LI=1,UN="'RAD/SFEC")

599

Curve families vs time and X-Y plots overlaid

for linear first and second order systems. Note
the spatial overlap of the two plot fields due to
judicial choice of axis positions and length,
scales and low values.

Figure 7 is an example of a graph obtained
from more than one SAVE list. A Gaussian distribu-
tion function (PGAUSS), given analytically, and its
integral (TOTAL), obtained by numerical integra-
tion of PGAUSS with respect to Y, were computed in
one part of the program, and the result saved
separately from probablistic ones, collected in
SAVE (Q). Through overlay and axis positioning, a
four-sided frame was obtained.

An even more complex graph is shown in Fig. 8a,
namely line and point graphs from five SAVE lists.
The nameless set of SAVE and GRAPH statements pro-
duced the solid lines which represent the constant
damping curves in the z-plane, where z = x + jy is
complex. Superimposed are four sets of points,
denoted by different markers as obtained from a
special root locus routine, which finds the roots
of polynominals for different gain constants in a
sampled data control system: crosses for open loop
poles, squares for open loop zeros, triangles for
closed loop poles at nominal gain, and asterisks
for running gain values. Note the axis transla-
tion into the origin and the omission of axes for
all overlaid graphs.

207

i
!
|

orTrT

YQUANT
0 10 20 30 49 S0
| 1 ©) 1 1
s00f 1.0
-
[am)
= 200 0.5
a
—J
2 z
& 0 0.0 I2

Y

ol
il
|
1
z|
5 -
_i0-02
3 GRAPH (DE=CALCOMP) FREQ(AX=LOG,NB=2) ...
o ANGLE2 (LO=-180,5C=45,UN=DLG,TI=0,9,LE=3.6) ...
a ANCLL1 (LO=-180,SC=45,AX=0MIT,TI=0.9,RUN=1) ...
= MAGN (AX=LOG,LO=,01,TI=2,P0=5,2,5,LI=1,CN=RATIO)...
GAINL (LO=-20,SC=10,UN=DE,P0=0,4.5,LI=2,LE=4,RUN=1)
o
w
]
)
=
a

NORMAL DISTRIBUTION FOR S000 EVENTS

SAVE Y, PGAUSS, TOTAL

SAVE (Q) YQUANT, PROBAQ

GRAPH (DE=CALCOMP,LE=2) Y(LE=5) PGAUSS, TOTAL(PO=5)

GRAPH (/Q,0V,DE=CALCOMP) YQUANT (LE=5,P0=0,2)
PROBAQ{LE=2.5,LI=0,MA=5,AX=0MIT)

LABEL MORMAL DISTRIBUTION FOR 5000 EVENTS

cee

Fig. 7 Line and point plots superimposed

600

SAVE (LOCUS) ZREAL, ZIMAG
SAVE (ZE) REZ, IMZ
SAVE (PO) REP, IMP
SAVE
SAVE
GRAPH (G/LOCUS,DL=CALCOMP) ZREAL(SC=0.4,L0=-2,4,P0=0,4,LE=9)

(NOM) REN, IMN
X, Y

2IMAG(MA=3,LI=OMIT,SC=0.4,L0=~1,6,P0=6)

LABEL (/G)ROOT LOCUS AND CONSTANT DAMNPING CURVES IN Z-PLANE - -1.2

GRAPH (/ZE,OV,DL=CALCOMP) REZ(SC=.4,L0O=-2.4,AX=OMIT)
GRAPH (/PO,O0V,DE=CALCOMP) REP(SC=.4,L0=-2.4,AX=OMIT) ...

GRAPH (/NOM,OV,DE=CALCOMP) REN(SC=.4

Iz (Sc=.4,L0=-1.6,AX=0OMIT,LI=0,MA=5)

IMP(SC=.4,L0=-1.6,AX=OMIT,LI=0,MA=2)
,LO0=-2.4,AX=0MIT) ... -1.6
110i(SC=.4,L0=~1,6,AX=0NIT, LI=0,MA=4) — *

Z1MAG

GRAPH (OV,DE=CALCOMP) X(SC=.4,LO=-2.4,AX=OMIT) Y(SC=.4,LO=-1,6,AX=0MIT)

GRAPHL

GFAPH

GRAPE

GPRAPH

GPAPH

LABCL

ROOT LOCUS AND CONSTANT DAMPING CURVES IN Z-PLANE

Fig. 8a Superposition of data points from several SAVE lists

-
|
|
|
|
I
+
|
|
|
|
I
+
1
I
|

. . leecooe ccoee ce e
. .o eeel e oo ®
. .o " - Oeecocs o .
- . . loe & co¥% P, . .
.l No#.,..¥.= L 4 Y

T P

.
« 0.
.

+—0 .
| | I | - I - b .
“2e -2.0 -l.6 -1.2 . =U0.R 0.4 o
. .

. ZPIAL .

(DE=SPRINT) X(SC=.4,L0=-2.4,AX=OMIT) ...]
¥(5C=. 4 LO=-1.6,AX=O0MIT,LI=0,MA=3S5)
(/LOCUS,OV,DT,=SPPI!-'T) ZREAL (SC= .4,L0='2.4,P0=0,4,L[=9)
ZIM]\C(SC=O.4,LO=-1-G,P0;6£L’{;06:;\;$2)
F=SPRINT) PRFRZ(SC=.4,L0=-2.4, = ceo
(/ZE'OV'D};,-S):sc:.l,Lo=-1.e,m:=mu'r,u=o,m=15)
(/PO, 0V, DE=SPFINT) REP(SC=.4,L0=-2.4,AX=0MIT) ...
IMP(SC=.4,L0==1. €, AX=OMIT,LI=0,MA=24)
(/HOM, OV, DE=SPRINT) RFil(SCe.4,L0=-2.4 ,AX=OMIT) ...
1101 (5C=. 4, LO==1. 6 , AX=ONIT,LI=0,MA=14)
ROOT LOCUS AND COHSTANT DAIPING CURVES IN 2=-PLANE

KOOT LOCUS ANP CUNSTANT DAMPING CURVES IN Z-PLANE

Fig. 8b Printer plot equivalent to Fig. 8a

601

Figure 8b, finally, is the equivalent printer
plot of Fig. 8a, which was produced on a pen plot-
ter. By specifying the device to be SPRINT, the
short print format (limited to one page), and
choosing desired marker types differently, a crude,
but useful, picture was obtained that resembles
Fig. 8a in many ways. It shows all the different
curves from 5 runs and 5 groups, drawn in an X-Y
sense. It demonstrates the same axis positioning,
omission and labeling power (within the capabili-
ties of a liner printer) as for plotters. If
spatial conflicts exist in the positioning of
characters, the last symbol replaces any previous
ones, rather than overstriking them. The sequence
of statements may, therefore, matter in certain
applications. 1In order for special points on the
real axis in this example to show up, the GRAPH
statements were rearranged.

Typically, printer plots are used for less
crowded graphs, and often the limitless long
print format is required to give the necessary re-
solution, if pen or photographic plotters are not
available. But for expediency or economic reasons,
printer plotting may well be preferable.

SUMMARY

As demonstrated through a number of examples
in this paper, a high-level control language for
the production of engineering and scientific
graphs is not only feasible but quite practical.
The apparent conflicts between a high degree of
flexibility in graphing requirements, desired for
many computer studies, and simplicity in coding

602

can be resolved. Much like the highest level
simulation languages, GRAFAEL gives the user both
the power of tailoring graphs to his needs and the
simplicity in nonprocedural syntax to state his
wishes with a minimum of programming effort.

Through separation of the general picture
composition aspects from the plot generation as-
pects for any particular plotter, this program
not only serves as a postprocessor to many types
of application programs, but it can prepare data
for fully automatic plotting of digital data on
any of several given plotters. The data origin
may be experimental or a computer program, regard-
less in which language. By simplifying the pro-
gramming for specifying graphs to the necessary
minimum, a tool has been created with which the
user can be highly productive in displaying data
effectively, using the best suited plotting device,
yet with little or no concern for its idiosyncra-
sies.

REFERENCES

1. Continuous System Modeling Program III
(CSMP III) and Graphic Feature, (Program Num-
ber 5734-XS9) GH19-7000-1 and SH19-7001-2,
1972, IBM World Trade Corporation, 821 United
Nations Plaza, New York, N.Y. 10017.

2, Syn, W. M. and Linebarger, R. N., "DSL/90 --
A Digital Simulation Program for Continuous
System Modeling," 1966 Spring Joint Computer
Conference, April 26-28, 1966.

