A MODEL FOR PERFORMANCE ANALYSIS
OF COMPUTER SYSTEMS

James W. Kho
California State University, Sacramento

ABSTRACT

Simulation models of computer systems are widely used
for system planning and selection assistance. Cost-
performance decisions are aided by simulating the opera-
tion of various system designs to find the optimum
combination of parameters for meeting design specifica-
tions. While there may be no theoretical 1imit to the
number of different options one can test, there are very
definite limitations in terms of time and cost. To keep
the alternatives to a minimum, some reduction method must
be employed.

The application of mathematical programming models to
computer performance analysis offers a viable solution.
This paper begins with the development and use of a
simple analytic model using a mathematical programming
approach. This is then extended to more complex models
of cost-performance analysis. The model equations are
defined and algorithmic solutions proved. In a detailed
case study, it is shown that the analytic model serves
to reduce the number of options to be tested. A simula-
tion model, written in SIMSCRIPT, is incorporated to
complete the study.

INTRODUCTION

The evaluation of computer performance is of vital
importance in the design of applications and equipment,
the selection of computer systems, and the analysis of
existing systems. Three general purposes of performance
evaluation given in [1] are performance projection,
selection evaluation, and performance monitoring. These
goals are oriented toward forecasting the impact of
changes in the system, designing a new system, or pro-
viding data on the actual performance of an existing
system.

The introduction of multiprogramming and storage
hierarchy brought new levels of complexity to the use and
organization of computer systems. With the advent of
third generation systems, it has become increasingly
difficult to adequately evaluate the factors affecting
the performance and efficiency of these systems. Progress
in designing and applying information handling systems
has outraced progress in evaluating their performance.
While simulation models seem to offer the best alternative
of existing evaluation tools, two major limitations are
time and cost.

An important experimental design problem for many
simulation models of computer systems is that of size
and factor selection [2]. Each additional replication of
the simulation run for a particular design is costly. It
is suggested in this paper that the application of .
mathematical programming models serves well in reducing
the number of factors and the alternative levels of each
factor in the design.

In the use of analytic models for complex systems,
many simplifying assumptions are usually necessary to
keep the problem mathematically manageable. The use of
expected values may introduce serious distortions in the
results. Thus analytic models are often used only to
study general phenomena, while finer measurements are
made with higher level techniques. A primary motive here
is to show that analytic models may be used in solving
specific evaluation problems, at least to the extent of
narrowing down options.

A serious drawback to solving complex mathematical
programming problems is that while formulation may be
relatively easy, conventional solutions may often be
inapplicable or impractical. The use of conventional

523

methods s circumvented here by developing algorithmic
solutions through analysis of the specific nature of the
constraints to the problem.

DETERMINING OPTIMUM BUFFER SIZE

This paper begins with a relatively simple design
prop]em for the UNIVAC 1108 operating system [3]. Moni-
toring of system performance for a particular workload
ha§ indicated low CPU productivity. Preliminary analysis
points to I/0 buffer size as a potential bottleneck.
While a simulation model is developed for studying the
effect of using different buffer sizes, an analytic
model is also constructed to complement it.

In the subsystem relevant to this study, the two main
functions performed are (1) execution of programs, in-
cluding the executive routines, and (2) transfer of data
between auxiliary memory and main memory. The subsystem
consists of a single central processor, a main storage
area, and a peripheral subsystem of 1/0 and secondary
storage devices.

Jobs enter the main memory via 1/0 devices and
reside there while being processed by the CPU. With
only a part of the total data file contents of a given job
being input, the operation is buffered and parts are pro-
cessed one at a time. FEach job thus undergoes alternating
operations of the two functions mentioned: an I/0 period,
then a compute period, followed by another 1/0 period, and
so on until the job is completed.

Assuming then that there are a number of job segments
residing simultaneously in core, each of these segments
will be one of the four states: (1) being processed
by the CPU, (2) waiting for CPU processing, (3) engaging
in I/0 activity, or (4) waiting for 1/0 facilities. The
CPU is inactive when all job segments in core are either
undergoing I/0 activities or waiting for 1/0 facilities.

The performance criterion used is the index of CPU
productivity as defined by

CPU productivity =
Expected CPU busy period

Expected CPU busy period + Expected CPU
idle period

This is the long-run fraction of time the CPU is busy. The
success of the multiprogramming system is measured by
the value of this index.

It is clear that CPU productivity is improved if
for each job segment, the expected compute period may
be increased at a rate faster than that of the expected
1/0 period. The I/0 completion time distribution is a
function dependent on the buffer size being used for 1/0
activities and the number of job segments in core
simultaneously. This distribution is analyzed in [4] for
direct access storage devices. The expected compute period
generally increases or decreases as the input buffer size
is increased or decreased. With some exceptions*, an
increase in the input buffer size will increase the
compute period by delaying the demand for the next logical
input buffer. A decrease in the input buffer size will
hasten the demand for the next logical input buffer.

It must be noted that an increase in input buffer
size may cause a corresponding decrease in the number of
job segments which can reside in main storage simultaneously.
This will significantly affect the expected CPU busy time
and hence the index of CPU productivity. This constraint
plays heavily in the optimization problem.

*For example, user programs accessing libraries and their
own private files. These I/0 operations use separate buff-
ers and would not be affected by changing input buffer
sizes.

The Mathematical Model

Let t, and t, be the expected compute time and I/0
time that Aach Jog segment undergoes alternately assuming
that buffer size equals one sector capacity, w words.
Then the index of CPU productivity y is

Y = mt]/(t] + t2)

where m is the mean number of job segments residing in
core simultaneously.

If the buffer size is augmented by a multiple j
(to j x w words), the expected compute time is expressed
as a function of j, t,(J). It is assumed that t,(J) is
linearly proportional 'to j and its values may be derived
accordingly from t,. [3] discusses the case where this
assumption does nol hold. The expected 1/0 time is a
function of j, storage device parameters, and the number
of I/0 requests queued up in the system, which is in turn
dependent upon m. For simplification of notation, let the
expected I/0 time be tz(j,m).

The objective function becomes

max v = mty(§)/[t; () + t,(3.m)] (1
with constraints

y <1
and m, j = positive integers
Equivalently, (1) may be rewritten as

min & = t;(J) + t,(3.m) - mt;(§)
with constraints

§>0
and m, j = positive integers
where & denotes the expected CPU idie time.

Consider the area of main storage used for buffers
and for storing the m Job segments. Let this have a
capacity of C words. Let L be the average length of the
job segments. Then

C=mL +mjw+ r
where the surplus variable r satisfies

0<r<L+jw

This expresses the goal of storing as many tasks in main
memory as possible, in order to keep the CPU busy.

The problem may be stated mathematically as
min § = (1 - m)ty(J) + ty(3,m)

subject to
(i) C=mL +jw) +r

(i1) r <L + jw

(iii) m, j 21 integers (2)
(iv) r>0 integers
(v) s2>0

Solution Procedure

The proof of existence of an optimal solution to
the problem is given in [3]. The problem is both a
nonlinear and an integer programming problem, hence not

solvable by conventional method. The procedure described
below finds the optimal solution to the minimization
problem. It is intended to store the maximum number of
tasks, based on core space available, in the main memory
while minimizing CPU idle time. In the model, this quanti-
ty is determined by the buffer size used. Hence starting
with a feasible solution--the minimal buffer size--the
objective function is evaluated. This value denotes CPU
idle time and equals zero if full utilization is achieved.
The buffer size is changed in multiples of the sector
capacity. Since the core space in question is large in
comparison to buffer and program sizes, increasing buffer
size by one sector will either reduce the maximum number
of tasks in core by only one or Teave it unchanged. 1In
both cases, the change is desirable when CPU idle time is
reduced. On the other hand, an increase in objective
function value could mean that only a local minimum is
found. An analysis of the relation between the objective
function and the constraints produces conditions which,
when satisfied, imply global optimality. In the algorithm,
Tocal minimum points are found in sequence and tested for
this optimality.

Algorithm

Step 0. Initialize j at 1 and let

_ C
m = [EW_:_IJ (3)
where [y] means integer part of y.
= t](J) - t](J -])
Ajtz(j,m) = tz(J ’m) - tz(J -],m)

Define At](j)

and A.,mtz(i,m) = tz(j,m) - tz(j -1, m+ 1)

J

Step 1. Evaluate §; stop if § < 0, i.e., CPU idle time
equals zero.

Step 2. Llet j =: j+ 1*, m= [Jw E L]. If m remains
unchanged, go to Step 3; otherwise proceed to
Step 5.

Step 3. If (1 - m)aty(§) + a5ty(f.m) < 0 (4)

return to Step 1; otherwise go to Step 4.

Step 4. Lletr=c-m((j-1)w+L)

q = [r/mw] (5)
q
" o= (1 -m) At](j + 1)
i=0
+ g/\ t,(J) (6)
. i+ im 6
i=0 3 2
*] = (1 -m At](j +q) + t](j +q)
+ Aj.th(j +q,m-1) (7)
If l,l] + rf.l <0

go to Step 1; otherwise, stop.
Step 5. If (1 - m)At](j) -G -
+ Aj,mtz(j,m) <0 (8)

return to Step 1; otherwise go to Step 6.

*This means replace j by its original value plus one.

Step 6. Let r = C - m{jw + L)
q = [r/mv]
v, = (1 - maty(§) - (3 - 1)
+ 8y ptoldm) (9)

o

o= (1 -m) LAty (d + 1)

q
+ I

; Byt + i,m) (10)

1
if b, + ¢, < 0
go to Step 1; otherwise, stop.
The proof of the algorithm follows:
Lemma. Given m; = [3W_%—TJ where [y] means the integer
part of y,

¢ -
[ij QW+ t=m
=m - 1, (1)

and m, =
my = L J+qg+ Nw+ L:|
then q = [r/m]w] where r = C - m](jw +L).

Proof: m = m, implies that

C _ C -
Sl (e rea i
or C = m(jw+1L) = g where 0 < ry < jw+ L
and C = m((j + q)w + L) + rq where 0 < g < (j+qw+lL
Y‘O-Y'q
C-m(w+L)-C+m((F+aqw+L)

thus o

|v

= mwq
The maximum value of q where ry > mWq is (11).

Theorem. The algorithm finds the optimal solution of (1)
and (2).

Proof: Due to (i) and (ii) of (2), m is strictly deter-
mined for any value of j by (3). Since C >> w, then
increasing j by 1 will either not change the value of

m or cause it to decrease by 1.

Case (i). j =: j + 1, m unchanged: The objective function

5 is affected by an amount of
(1 - m) ety (3) + Ajtz(j,m) (12)

which is negative if (4) holds. Thus, it would be bene-
ficial to increase the buffer size.

Case (ii). j=: j+ 1, m=:m-1: The objective
function ¢ is unaffected by an amount of

(1 - maty(3) - (3 - 1)+ &y ptpl3om) (13)

If (13) is negative, the buffer size should then be
increased.

Suppose (4) does not hold for Case (i) and j may be
increased by at most q without affecting m, then letting
j=t j+q+1 will increase & by y, given in (6) and
decrease it by ¢, in (7). Thus increasing the buffer size
would be benefic1a1 and should be made only if the total
effect is negative. By the lemma, g is found to be (5).

) Suppose (8) does not hold for Case (ii) and j may be
increased by at most q without affecting m again, then
1gtting j=:3+q+1will increase § by the amount y
given in (9) and decrease it by ¢, in (10). The buffe;
size should be increased only if %he total effect decreases
8. Again by the lemma, q is determined by (5).

When at any time (4) and (8) both do not hold, then
the algorithm stops and the optimal solution is found. It
is noted that (12§ and (13) are increasing functions as j
increases and m decreases. Thus once either (4) or (8)
does not hold, they will remain that way.

Generalization
When several independent I/0 mechanism are used, e.g.,

two.drums on separate channels, the model may be modified
easily. The objective function may be rewritten as

§=(1- m)t](J) = ¢.it-i(“"j)

I~ =

i=2
where each t. gives the expected completion time of a par-
ticular 1/0 techanism and ¢, its corresponding probability
of being utilized. ¢i is edasily represented by

Expected number of I/0 requests
= for mechanism i
Expected total number of I/0 requests

b5

MEMORY HIERARCHY OPTIMIZATION

The optimization of data buffer size is extended here
to that of memory hierarchies. The selection involves the
types and sizes of memory storage devices such that
response time is minimized subject to a cost constraint,
or cost is minimized provided that system requirements are
met. The models assume an a-priori knowledge of the process-
ing requirements of the system.

Assume that the programs and data may be partitioned
into information blocks and characterized by (i) frequency
of use, f., and (ii) block size, s, (given in some basic
record si%e, say sector.) Assumin& further that program
activities are measured from past experience or known by
analysis, fi may be the mean of a range of frequencies.
Let

Fi = fi/ifk

then ;Fi =1
i

Let n. be the number of blocks having the same size and
frequéncy of access.

Let the range of storage devices where selection is
to be made be characterized by (i) cost per unit, <y (i1)
capacity, m. (given in the basic record size), and “{i1i)
speed. Let’the response time, T.., for accessing a block
of information on a particular dédice be a function of both
the speed of the device and size of the information block.
Thus

Tij = tlj + Sitzj
where t,. is the access time and s.t,. is the transfer time
of an i*?ormation block of size s.. JFor direct access
devices, t,. stands for, in addition to queue time, rota-
tional delay in the case of drums, and for seek time plus
mechanical delay in the case of disks. t,. = 0 for random
access. For sequential files, 1/0 responl@ time may be
measured by means of the file activity ratio [5].

Model to Minimize Response Time

In this model, the objective function is to minimize
the average response time to the information blocks. Let
P.. be the fraction of the n. blocks of information type

0 be stored in memory typé J. Thus

0 5>Pij <1 all 1, J
and fP.. =1
3"

The problem is formulated in two ways: with and without
the assumption that the memory size of a storage device
is divisible. In the first formulation, the problem
reduces to a linear programming problem and in the
second, it is a mixed integer problem.

Let the cost of storing an information block of
size s, in memory type j be C. Thus C;. = c./m; x S5
Let V.1 =n.F.T. Then the 563ect1ve fuﬂct1oﬂ 1§ to |
minimide iy

= LZV P
i
ij i

The cost constraint is easily seen as
ZZW’JP1J - Cmax
ij

where wij = "icij and the total cost cannot exceed Cmax

An absolute minimum response time requirement may be
added by stipulating that all information blocks of type
i must be accessed in no less than time a,, i.e.,

T1j <y for all j, where ij > 0. Thus

Pij(ai - Tij) >0
On the other hand, an average minimum response time require-
ment, r;, may be added by

§PijTij <r

When the response time to certain programs or data
is more important than others, a weight factor, w,, may
be associated with each type of information block,
where 0 < w; < 1. w, = denotes no importance whatsoever
while w, 1 denotes the utmost importance. V.. may then
be mod1%1ed to be i

ViJ = w1n1F1T1J
The optimization problem is then

min y = ZZV,.P.

ij ij iJ
Subject to
distribution ?Pij =1 all i
Pij >0 all i, j
cost LLW1JP]J < Crax
iJ
response time (ai - Tij)Pfj >0 all i, j

or ?Tijpij <r all i

Since memory usually consists of indivisible modules,
let u, be the integral number of modules of storage device
type Jj to be in the hierarchy. Then the cost constraint
becomes

Lejuy < Crax
J

and an additional capacity constraint is needed, i.e.
Zn]s]P1J j”j all j

i
The optimization problem becomes

min y = ZZV P

ij ij
Subject to
distribution TP.. =1 all i
RN}
J
ij 2 0 all i, j
cost ;cjuj < Cmar
J
response time (ai - Tij)Pij >0all i,
cr “TTJP1J all i
capacity Zn]s]P1J < mJuJ all j
modularity u; >0 integers, all j

J
Model to Minimize Cost

The objective function here is to minimize the total
cost of the memory hierarchy zzwijpij with the distribu-
iJ
tion and response time constraints. Thus

min « = zzw P

ij ij i
subject to
distribution Zpij =1 all i
J
i >0 all i, j
response time (ai - T1J) >0all i,
or §Tijpij < all i

Adding the modularity constraint, the objective cost
function becomes);ujcj subject to capacity, response time,
J
and distribution constraints. Thus

min « = Tu.c

3 JJ
Subject to
distribution P.. =1 all i
= 1)
J
Pij >0 all 4, j
capacity Es1n1P1J 3"j all j

response time (a.

i T..)P.. >0alli,j

or T]JP1J < all i

modularity ”j > 0 integers all j

Reconfiguration Models

Let j = 1,2,...,p be the p types of storage devices
in an existing memory hierarchy. Llet c,, 1 < J < p, be
their resale values and cJ, J > p be thé cost of
acquiring a new module of’memory type j. Letu., 1< j < p,
be the number of modules of memory type j in thé existing
memory hierarchy. Note that for each type of memory
device in the present hierarchy where the resale price
and the cost of acquiring a new module is different, it
is represented once in 1 < j < p and another time in
j>p.

It is generally true that the resale price of a memory
module is lower than that of acquiring a new unit of the
same type. For that reason, the problem may be formulated
as if the entire existing memory hierarchy is sold with
the knowledge that part or all of it may be bought back at
the resale price. Naturally, the restriction

. < U j=1,2,...,
uj < U 3 p

must be imposed to prevent "over rebuying".

The previous models are then easily modified to
take into account the possibility of reconfigurating. Let
the resale price of the entire existing memory hierarchy
be CR where p _
CR = I ujc.. Then the minimization of
j=1
response time model becomes

min y = ZZV.p..
i il

Subject to
distribution ;pij =1 all i
J
i3 >0 all i, J

cost gcjuj <Chax ¥ Cr
modularity uy >0 integers, all j
capacity 1§n1.s1.p1.j < mjuj all j
response time (ai - Tij)Pij >0 alli, ‘

or §Tijpij < all i
"rebuying: uj 5_33 1<j<p

Likewise, the minimization of cost model becomes

min « = ?cj“j - C,
Subject to
distribution §Pij =1 all i
P20 all i, J

capacity ?Sinipij < mj“j all j
response time (ai - Tij)Pij >0 all i, J

or ZTijpij < all i
modularity us >0 integers, all j
"rebuying" uj < E& 1<js<p

Solution Procedure

Without the modularity constraint, the models are
constructed as linear programming problems, and with the
added constraint, as mixed integer problems. Both may be
solved by using conventional methods. [47] provides a set
of algorithmic procedures that result in considerable
computational time savings over conventional methods.

This is done using a "knapsack problem" approach
[6]. Starting from a basic feasible solution where
only a limited number of storage device types are con-
sidered, the cost limitation is increased in increments.
The corresponding minimum average access time is then
readily obtained from the previous one. The same is
done as the number of memory types being considered
is also increased. The optimal solution is found when
the maximum cost equals that of the cost constraint and
all types of storage devices left after the reduction
have been considered. Satisfaction of other constraints,
such as the distribution and response time constraints,
is maintained throughout the procedure.

In minimizing the average access time subject to
a maximum cost constraint, it would be quite benefi-
cial to know if performance could be improved considerably
if the cost Timitation is raised to a certain level.
On the other hand, it might also be the case that
performance will not be reduced by much while the cost
limitation is lowered. A brute-force method to obtain
this information would be to solve the problem many
times with different cost constraints. Then plotting
the maximum performance versus the corresponding cost
would give a curve where the slope indicates the cost-
performance ratio.

Undoubtedly, the cost-time curve is quite useful
considering that maximization of the cost-performance
ratio is generally one of the goals. Unfortunately, the
brute-force method is too time consuming and not realistic.
Due to the "knapsack problem" approach used in the
solution procedure, the table provides the maximum
performance for each predetermined incremental cost. Thus
the cost-time curve and cost-performance ratios may be
obtained directly from the table. In addition, the
table also gives this same information where subsets of
the storage devices are considered for the optimal
memory hierarchy.

A CASE ANALYSIS

Experimental work is done on the data buffer size
optimization problem mentioned earlier. The statistics
for jobs run at the University of Wisconsin Academic
Computing Center in five randomly chosen days are com-
piled and used for analysis. Core utilization by user
programs varies from 1 block of 512 words to 128 blocks.
Distributions of the number of jobs versus compute time
for the five sample days' runs are gathered. Values
obtained for other parameters include number of jobs,
means number of programs per job, mean compute time,
mean I/0 time, number of I/0 requests, average request
time, number of queue requests, and average queue time.
The number of I/0 requests is further broken down into
the requests for each I/0 mechanism which include the
FH drums, FASTRAND II movable head drum, and tapes.

Simulation Model

A simulation model is implemented in the SIMSCRIPT
1.5 language. Briefly, the simulation model has the
following features. The system consists of two main
*first-in, first-out" queues--one for the CPU and another
for I/0. At any instant, each task in core is in one
of the two queues; it is either (1) executing or)
enqueued for execution, or (2) waiting for 1/0 facilities
or completion of an I/0 operation.

An overloaded operation is assumed in the sense that
there is always a task ready to enter the system. A
record of the tasks is kept during the entire duration
of simulated time, beginning with the scheduling of the
first 1/0 request. Once a job is brought into core,
it undergoes a series of 1/0 and compute periods alter-
nately, remaining in main memory until its completion.

In the model, direct representation of physical
devices occurs in the consideration of the drum rotational
delay and positioning of read/write heads. A model
parameter specifies the core storage. The loading of
Jjobs into core and allocation of their buffer areas are
also modeled.

While a change in the distribution of the workload
description may alter the system performance, a number
of parameters may be changed when desired to learn
more about the behavior of the system. Examples of such
parameters existing in the model are the amount of real
memory available to a task, the size of the buffer area,
and the limits on the length of time a task may continu-
ously use the CPU. These values are specified as system
attributes in the SIMSCRIPT program.

Each program to be processes is a temporary entity
with several attributes such as size of program, number
of I/0 requests, and processing time. The distribution
of program size is obtained from real data and is given
as a step function of 512-word blocks. Other parameters
are similarly obtained and represented, and values of
these attributes are generated randomly from their dis-
tributions.

Several events and subroutines are represented in
the model for the operating system. A SIMSCRIPT timing
routine permits the occurrence of both endogenous and
exogenous events. These include

(1) the interruption of a task currently using the
CPU,

(2) the completion of an I/0 activity,

(3) the bringing of new tasks into core to compete
for the use of the CPU and I/0 facilities, and

(4) the completion of a task.

For the purpose of meansuring the system performance
and summarizing its behavior, statistics are gathered at
intervals of the simulated time. These include CPU
utilization in the time interval, accumulated CPU
productivity, CPU idle and busy time. Other information
such as mean program sizes, mean compute time, mean I/0
time, number of I/0 requests, and number of jobs finished
are also gathered.

The validity of the model is improved in two ways.
First, in the model-building phase, each distribution is
tested for goodness-of-fit with the actual distribution.
Second, simulation runs using real workload data are
compared with data on performance of the real system.

Experimental Results

The algorithm for finding the optimal buffer size
given earlier is programmed in FORTRAN. From the five
sample days' runs, the optimal sizes range from 12 to 18
sectors at a mean of about 15. This is slightly less
than twice the 224-word buffer used on the UNIVAC 1108
under study. The reason for the variation of the optimal
buffer size for each day's run is that this is determined
based on parameters such as average program length and
number of 1/0 requests which change dynamically for
each day. A sensitivity analysis performed through the
simulation model would better show how the optimal buffer
size changes as various parameters are changed.

528

In the simulation model, runs are initially made using
only buffer sizes 8 and 16 sectors to investigate (1) the
length of the initialization interval necessary for
stabilization of the system, and (2) the length of the run
segments at the end of which, statistics are gathered.

Since parameters of the workload are described by
distributions and their values determined by random
look-up procedures, simulation runs are repeated for the
same basic model using a different seed for generating
random numbers. Simulation results are obtained for
buffer sizes ranging from 8 to 24 sectors with varied
workload characteristics.

In order to see how the system performs with different
buffer sizes as various parameters (or their distribu-
tions) are changed, simulation runs are also made where
only one parameter at a time is varied from the basic
model. This is done with the distributions for CPU time
and the number of I/0 requests of individual programs. Of
the buffer sizes used, that of 12 sectors or 336 words
generally gives-the best system performance.

The difference between the optimum size obtained by
the algorithm and that of the simulation study is expected.
The distribution of buffer size versus CPU productivity
obtained through the algorithm has shown each local peaks to
be highly sensitive to small increases of the buffer size.
For this reason, a slightly smaller buffer size than the
mathematically optimal solution should yield better per-
formance.

CONCLUSION

In the case analysis, the results of the many simula-
tion runs are obtained at high cost. If solutions to
the complementary analytic model were considered, the
numerous alternatives to be tested would have been
substantially decreased. Clearly in this particular
application, solutions to the mathematical programming
model would have served this purpose.

In considering more complex system design and selection
problems such as memory hierarchy optimization, the experi-
mental design problem of selecting the factors and the
levels of each factor to be tested becomes even more
acute. Solutions to mathematical programming models,
appropriately formulated, would help in reducing the
alternatives at substantially low cost. Furthermore, the
approach used in the solution procedures discussed here
provides additional useful information.

REFERENCES

1. Lucas, H. C., Jr., "Performance Evaluation and
Monitoring," Computing Surveys, 3, September, 1971.

2. Nay]or,_T‘ H., Burdick, D. S., and Sasser, W. E., Jr.,
The Design of Computer Simulation Experiments, Duke
University Press, Durham, 1969, 1-35.

3. Kho, J. W., and Pinkerton, T. B., Optimal 1/0 Buffer
Size for Multiprogramming, Computer Science Technical
Report 107, University of Wisconsin, Jan., 1971.

4, Kho, J. W., Optimal Organization of 1/0 Operations in
Multiprogrammed Systems, Ph.D. Dissertation, University
of Wisconsin, Dec., 1972.

5. Martin, J., Design of Real-Time Computer Systems,
Prentice-HalT, Englewood Cl1iffs, 1967, 315-316.

6. Hu, T. C., Integer Programming and Network Flows,
Addison-Wesley, Reading, 1969.

