AN OPERATING-SYSTEM-BASED
SIMULATION LANGUAGE

M. H. MacDougall
Control Data Corporation
Sunnyvale, California

INTRODUCTION

The concept of process has become increasingly
important in describing and constructing computer oper-
ating systems. It provides a basis for representing the
dynamic structure of a system, and for decomposing a
complex system into simpler and more easily understood
parts. A number of process-based operating system de-
signs have been developed, and various mechanisms for
control of process interaction (based on entities called
signals, semaphores, events, etc.) have been proposed.
The process concept is important not only in operating
system design, but has fundamental importance in dealing
with any complex system. As a consequence, a number of
process -based simulation languages have been developed.

ASPOL (1-3) is a process-based simulation language
developed specifically for computer system simulation.
The process and process coordination facilities of ASPOL
derive from those developed in various computer operating
system designs; hence, ASPOL provides a natural vehicle
for operating system simulation. However, the generality
of these facilities is such that ASPOL can be used in
simulating any discrete system. Other important features
of ASPOL include the ability to operate on sets of enti-
ties, which simplifies modeling parallel systems, and
macro facilities, which provide language extensibility.

This paper describes the process and process coor-
dination (event) facilities of ASPOL, and discusses their
application to computer system modeling problems. A
number of computer operating systems, including those
described in (4-7), provide process coordination facil-
ities which often can be directly represented by those
in ASPOL. Through the use of events and macros, ASPOL
can be extended to represent a variety of operating
system constructs, including process synchronization
primitives such as Dijkstra's semaphore.

ASPOL comprises a language translator and a simu-
lation run-time system called EXEC. An ASPOL simulation
model essentially is composed of a set of procedures
called process descriptions. These translate into
machine -language subprograms; all the simulation declar-
ations and operations appearing in these descriptions
translate into calls on EXEC. EXEC is functionally
equivalent to the executive nucleus of a computer oper-
ating system; its design is, in fact, based on the
operating EXEC described in (7). As shown in Fig. 1,
the translated process descriptions, together with EXEC,
constitute the executable form of an ASPOL simulation
model.

The operating system antecedents of ASPOL, then, are
both functional and structural. ASPOL's process operations
function much like those of various operating systems, and
EXEC is a simplification of an actual operating system
executive nucleus.

source
program

object
program program
loader [S |
' 4 AspoL [
EXEC
e > 4B

ASPOL library

Fig. 1. Model Compilation and Execution in ASPOL

PROCESSES AND PROCESS DESCRIPTIONS

From a system point of view, a process is a dynamic
entity, a singularly-occurring instance of execution of a
set of logically related activities. In a computer system,
execution of one particular disk request might be viewed
as a process, composed of positioning, rotational delay,
and data transfer activities. Processes composed of like
sets of activities belong to the same class; a number of
such processes simultaneously may exist in a system. Each
is a particular instance of execution of that class, and
is uniquely identifiable among members of that class by
certain attributes (e.g., disk address, buffer address,
request initiator's identity). The behavior of all proc-
esses of a given class may be specified by a single set
of rules describing the activities common to all processes
of that class, together with sets of attribute values for
all members of that class. This set of rules is called a
process description.

A system comprises, in dynamic form, a collection of
interacting processes of one or more classes. A simula-
tion model of a system is constructed as a set of process
descriptions. In the simulation model, a process descrip-
tion is a procedure which apparently is executed simultan-
eously for all the existing processes of a class. In
actuality, a process description is a multiply-reentrant
procedure which is executed in a quasi-parallel fashion.
As individual processes are initiated, execute, encounter
delays, and terminate, control is switched to various
parts of the procedure. The simulation run-time system
keeps track of for which process a given part of the
process description is being executed. From the simula-
tion point of view, a process is a particular instance of
execution of a process description.

An ASPOL simulation model comprises a main program,
sim, and one or more process descriptions. sim begins
with the declaration

sim model-mame(f;, f,, . . , fn);

where the f; represent file names, and ends with the
delimiter

end sim;

which also terminates an instance of model execution. sim
essentially is a process description of which only one in-
stance of execution occurs during any one simulation runm.
Simulation entities, such as events and facilities, declar-
ed in gim are global to all process descriptions in the
model, while those declared in a process description are

created for each instance of execution of that description.

A process description begins with the declaration

process process-name (pl’ p2, P pn);

where the p; represent formal parameters (e.g., variables,
events) and ends with the delimiter

end process:

which also terminates process execution. Variables declar-

ed in real and integer declarations in a process description
are local to each instance of execution of that description.
Space for these local variables is allocated when a process

is initiated and deallocated when the process terminates.

One process initiates another via the statement

initiate process -name (al, g, o v s an);
where the a; represent actual parameters. Parameter trans-
mission is uni-directional; a process may not return a
value to its initiator by assigning a value to a parameter.
Once initiated, a process executes independently of other
processes, including its initiator, unless explicitly syn-
chronized. Every process has an associated priority which
it inherits from its initiator and which it may change via
the assignment statement

priority = expression;

A process may suspend execution while awaiting termination
of some process it has initiated via the statement

wait end (process-mname);

Once initiated, a process exists in one of four states
until it terminates. These states are

e execute - state of currently-executing

process

e ready - state of other processes able to
execute at the same instant in
simulation time

e hold - state of processes which have
suspended execution for a
specified simulation time
interval

e wait - state of processes which have

suspended execution waiting for
an event to occur or another
process to terminate at some
indefinite time

While processes in the actual system may execute concurrent-
ly, their counterparts in the simulation model must execute
sequentially. At any instant during model execution, only
one process in the model may be in execute state; others
able to execute at that instant are in ready state. For
example, when one process initiates another, the newly-
initiated process is placed in ready state and the initiator
continues in execute state. When the process in execute
state suspends or terminates execution, another process is
selected from those in ready state and placed into execu-
tion, This selection is made on the basis of process prior-
ity; among equal-priority processes, the earliest to enter
ready state is selected.

A process may suspend execution for some simulation time
interval 't' (as when representing the execution time of an
actual system activity) via the statement

hold(t);

The process is placed in hold state and assigned a reactiva-
tion time t, which is the sum of the current simulation
time, time, and the interval 't' Whenever the currently-
executing process suspends or terminates execution and no
other processes are in ready state, the process with the
earliest to is selected from those in hold state, time is

518

advanced to te, and the selected process is placed in
execute state.

A process may suspend execution while waiting for
some event to occur (e.g., for a facility to become free,
or for another process to leave its critical section) via
a wait or gueue statement, The process is placed in wait
state until the event occurs; it then is placed in ready
state until selected for execution.

Each process in the model is represented by a process
descriptor managed by EXEC. This descriptor is created
when a process is initiated and destroyed when the process
terminates. The data maintained in this descriptor in-
cludes the process priority, reactivation address, state,
and a pointer to the start of the memory space allocated
for local variables of the process. Initiation, execution,
and suspension of a process (as a consequence of its execu-
tion of statements such as hold or queue) is reflected in
EXEC by threaded the descriptor for that process on various
lists, such as the time delay list, the ready list, or an
event selector list.

EVENTS

Processes coordinate their activities by means of
events. An event is a variable which may assume either the
value "occurred" (set) or 'mot occurred'" (clear) as the
result of process actions. Events provide a general mecha-
nism for process synchronization. ASPOL's events are simi-
lar to those of several operating system designs, including
those described in (4-7).

Events may be explicitly defined and created by the
declaration

event el, ez, P en;
vhere the e; represent non-dimensioned (simple) or singly-
dimensioned (set) event names. Events also are implicitly
defined and created by the declaration of facilities and
storages. Events declared in sim are global to all proc-
esses in the model and exist for the duration of the simu-
lation run. Those declared in a process description are
local to processes of that description; a unique instance
of these local events is created each time a process of
that description is initiated, and cancelled when the proc-
ess terminates. Local events may be transmitted from one
process to another as process initiation parameters.

Event declarations translate into calls on EXEC and
result in EXEC's creation of an event descriptor. The
data maintained in this descriptor includes the event
state and pointers to lists of processes queueing and
waiting for the event to occur.

Event Operations: Simple Events

An explicitly-defined event 'e' has the value 'not
occurred" when created; it is assigned the value

"occurred" when a process executes the statement
set(e);

A process may suspend execution until event 'e' occurs
via the statements
wait(e); or queue (e);
the execution of which is called event selection. Proc-
esses suspended awaiting the occurrence of an event are
called the selectors of that event. Those processes
which selected the event via a wait statement all are
activated when the event occurs (i.e., they are placed in
ready state). Of the processes which selected the event
via queue statements, only one is activated when the event
occurs. This one is the highest priority queued process;
among equal -priority processes, the earliest selector is
chosen. Event selections may be a mixture of queue and
wait selections; occurrence of the event activates all
all waiting selectors and one queued selector.

I—— B event selector lists EXEC——'

| —— I

| wait |
queve 7 l

| c y

| b X |

l a W | |

| [ready |

evente !
l state = 'clear’ current l

executj

event e
state = 'clear'

(a)
r_____——.—_———_EX-EC
l event selector lists a l
— z
| queue Y l
l C wait X |
| br F\ulu] w oty |
l r list |
l I

current
@ executfor

(b)

Fig. 2. Queue/Wait Selection Processing

The activation of event selectors upon occurrence of
an event is called event recognition; recognition of an
event causes the event to be extinguished: 1i.e., to be
assigned the value ''mot occurred'". Note that an event may
be placed in the 'occurred'" state (via a get statement)
and then be immediately returned to the "not occurred"
state because of event recognition.

The processing of queue and wait selections may be
clarified by an example. Suppose processes a, b, and ¢
are queued on event e, processes w, X, Yy, and z are wait-
ing on event e, and process r is executing. Assume all
processes are of equal priority and the ready list is
empty. Then the state of the relative parts of EXEC is as
shown in Fig. 2(a). Now suppose process T executes a set
statement, causing event e to occur. EXEC first places
process r on the ready list. This is done because, in the
general case, r's setting of event e may activate a higher
priority process which should execute before r continues
in execution. Next, event e is placed in the "occurred"
state. Since the event has selectors, event recognition
processing takes place; all the processes in the wait
selector list are moved to the ready list, the process at
the head of the queue selector list is moved to the ready
list, and the event is extinguished. The new state of
EXEC, just prior to its selecting a process from the ready
list for execution, is shown in Fig. 2(b).

A parameter may be transmitted from the process which
sets an event 'e' to processes selecting that event via a
set statement of the form
set(e)expression;
and selection statements of the form

wait(e)variable; or gqueue(e)variable;

519

Buffer

Full Empty

l process load; . process unload; I
l wait(empty); . set(empty); l
comment. load buffer; wai t(full);

I . : comment. unload buffer; l
‘ comm;ent. buffer full; .

| set(full); . comment. buffer empty; |
I end process; . _end process; l
l : I

Fig. 3. Buffer Control Via Events

When the selectors of the event are returned to execution,
the variable in each selecting process is assigned the
value of the expression at the time the set statement was
executed. If the event is set repeatedly without inter-
vening selections and then selected, the variable will be
assigned the value of the expression accompanying the most
recently executed set statement.

A common situation requiring coordination of asyn-
chronous processes is buffer control. 1In the buffering
operation diagrammed in Fig. 3(a), one process loads the
buffer at an indeterminate rate and another process un-
loads it, also at an indeterminate rate. The two processes
are assumed to always completely load or completely unload
the buffer, and share some signaling mechanism to notify
one another when the buffer is full or empty. In an opera-
ting system, the two processes might be the disk control
program and some user task; the signaling mechanism then
would be based on the operating system's event facilities.
At the hardware level, the two processes might be imbedded
in the logic of a device controller and a data channel;
the signaling mechanism then might be based on full and
empty flip-flops.

Fig. 3(b) shows a prototype for an ASPOL model of the
buffer control operation. The events 'full' and 'empty'
can be shared between the two processes either by defining
them in sim (and so making them global), or by defining
them in a process and transmitting them as process initia-
tion parameters.

One process may initiate another and, either immediate-
ly or at some later point in its execution, suspend execu-
tion while awaiting termination of the initiated process
via the wait end statement described earlier. A general

coordination mechanism, permitting reactivation of the
initiator at any desired point in the initiate's execution
(rather than solely at its termination) is achieved by use
of events. An example is shown below.

process e; process f(y, . .);
event x; event y;

initiaste £Gx, - .) :

uﬁ(x): &t_'(y);
eLd'process; g_lld_'grocess;

'x' and transmits it

Here, process e creates a local event 'x
to process f as a process initiation parameter. The event
declaration in process f defines formal parameter 'y' as
an event, and does not itself cause creation of an event.
Process e then suspends execution while waiting for f to
progress to some desired point; f's setting of event y
returns process e to execution.

A similar application of local events is the control
of critical section execution. A critical section is a
set of operations which are permitted to be performed by
only one process at a time. Dijkstra, in (8), discusses
this and other aspects of the mutual exclusion problem,
and describes critical section control algorithms based
on semaphores. A semaphore is an integer-valued variable
on which only two operations, P and V, are allowed. The
operation V(s) increments the value of semaphore s by 1.
The operation P(s) decrements the semaphore by 1; how-
ever, this operation is blocked and the issuing process is
suspended if the resulting semaphore value would be nega-
tive. The operation is allowed to complete and the issuing
process returned to execution when a V(s) operation is per-
formed by some other process.

An example of a process description in which a sema-
phore is used to prevent multiple instances of the descrip-
tion from simultaneously executing the critical section is
shown below. In this example, the semaphore declaration
identifies formal parameter s as a semaphore; the same
semaphore is transmitted to all instances of process de-
scription e. It is assumed that the semaphore is set to
0 when created and that the initiator executes a V(s)
operation to permit an initial instance of e to execute
the critical section.

process e(s);
sempahore s;

comment. enter critical section;
P(s);
comment. leave critical section;
V(s);

end process;

The above example could be implemented directly in ASPOL
by using macros and events to construct the semaphore
declaration and the P and V operations. The macro defi-
nitions might appear as follows,

macro semaphore $$;
event [1 5
endmacro;

macro P $($);
queue ([17);
endmacro;

macto V $($);
set([1D);

endmacro;

In these definitions, the "$-$" and "'$-;$" delimit the
delimiters of macro call arguments, and "[n]" specifies
substitution of macro call argument n.

process user(task);

even' active; scheduler table

waitlactive);

]
I |
! |
I create(task,active); |
| [

|
|

Lend process;

|
I schedul e(task); : evn al | a2 | a3 | a4
| set(evn(task)); |
Lﬂ process; | local scheduling
—————— J events attributes
Fig. 4. Scheduler Example

Events and semaphores are similar in kind but are not
identical; an exact representation of the general sema-
phore requires a slightly more elaborate macro definition
then that shown here., However, the example illustrates
the extensibility of ASPOL to encompass other forms of
process coordination facilities appropriate to particular
simulation environments.

ASPOL event queues are ordered on the basis of proc-
ess priority; processes of equal priority are enqueued
first-in, first-out. A wide variety of queueing disciplines
can be accomodated by event queues through the appropriate
computation of priorities. There are, however, various
queueing cases which are not easily implemented by use of
event queues. Also, it sometimes is desired to develop
detailed models of actual system data structures. Both
these situations may arise in the simulation of scheduling
algorithms, where decisions are based on a number of at-
tributes and may involve multiple queues.

A simple example of a model of a table-driven sched-
uler is sketched in Fig. 4. Here, user processes, upon
initiation, are assigned a scheduler table entry 'task'.
Each user process creates a local event 'active'; it then
calls a 'create' procedure which computes the values of
scheduling attributes al - a4 and enters these, together
with event, in the assigned scheduler table entry. The
user process then suspends execution waiting for event
'active' to be set. When the system monitor process is
initiated to place a new user process into execution, it
calls the '"schedule' procedure. This procedure locates
the best candidate for execution, based on the attributes
recorded in the scheduler table, and returns a pointer to
the table entry of the selected candidate. The monitor
process then sets the local event of that candidate to
place it into execution,

ASPOL provides the integer function procedures
state(e) and length(e) which, respectively, return the
state of event e and the number of processes enqueued on
event e. A monitor(e) procedure initiates the collection

of queueing statistics; these are reported at the end of
the simulation run.

Event Operations: Set Events

A set of n events may be defined and created via a
declaration of the form event e(n). 1In processing this
declaration, EXEC creates a set of n + 1 event descriptors,
one representing the set, the others representing elements
of the set. The event representing the set will have the
value 'occurred" as long as any member of the set has that
value; it will have the value "not occurred" only if all
elements of the set have the value ''mot occurred". A sim-
ple event is equivalent to an event set of dimension 1;
event set operations may reference simple events.

Buffers 1 - 3 ——I

Full Empty |

|
|
|
I Buffer
|
|
|
|

process load; process unload(buffer);

integer buffer; : infeger buffer;

queue(empty, buffer); : ser(e|:r1pry(buffer));
wait(full(buffer));
comment. unload buffer;

comment, buffer full;

Ef(full(buffer));

|

|

l comment. load buffer;
Il comrr;enr. buffer empty;
|

end process; end process; |

Fig. 5. Multiple Buffer Control Via Events

Processes may operate on elements of the set or on the
set itself. The following forms of event selections may be

used.
wait (e) .
quene | (&7 11
quete | e (i))

Here, e represents a set event name and i represents an
integer variable. The first form (e.g., wait(e)) selects
the set; the selector is returned to execution when any
element of e occurs and is recognized. The second form
(e.g., wait(e, i)) operates the same way with the differ-
ence that, upon return of the selector to execution, the
variable i is set to the number of the element whose
occurrence caused activation of the selector. The third
form selects the ith element of the set; the selector is
returned to execution only when that particular element
occurs and is recognized.

set statements operate on set events in a similar
fashion. The statements set(e) and set(e, i) cause the
event set to be examined beginning with element 1. The
first "not occurred" element found is assigned the value
"occurred" and, in the case of the second of these two
forms, the variable i is set to the number of that ele-
ment, The statement set(e(i)) assigns the value "occurred'
to the ith element of the set. In all cases, setting an
element of the set causes the event representing the set
to be assigned the value '"occurred".

A set event may have processes queued and waiting both
on elements of the set and on the set itself. When one of
the events in the set occurs, event recognition processing
is done as follows. First, the process setting the event

521

— servers -—\

queue

mean arrival
rate = 1.0

|
I
|
| —»

¢ 9%

service time = 8.0

-———-

sim mdng;
Tevent free(10); integer i;
for i=1 until 10 do set(free(i));
while(time. le. 1000.0)do
“begin -
Tinitiate arrival; h_oE(exan(] .0));
end;
end sim;

infeger i;
queue(free, i);

“hold(8.0);

set(free(i));

I
I
I
process arrival; l
En_a—process; I

Fig. 6. Multi-Server Queue Model

is placed on the ready list, all element wait selectors are
moved to the ready list, and the process at the head of the
element's queue selector list (if any) is moved to the ready
list. Event recognition for a set event element is identi-
cal to that for a simple event. Next, selections of the set
are processed. All event set wait selectors are moved to the
ready list; however, the process at the head of the event
set's queue selector list is moved to the ready list only if
there was no queue selector for the event set element. Thus,
element selections are given preference over set selections.

A variation of the buffering problem discussed earlier
will be used to illustrate event set operations. In the
buffering operation diagrammed in Fig. 5(a), there are three
buffers, each with an unload process assigned to it. These
buffer are filled by two load processes which may operate on
either buffer. A prototype for an ASPOL model of this opera-
tion is shown in Fig. 5(b). It is assumed that the initiator
of the three instances of the unload process specifies the
buffer to be emptied by each instance. This model may be
compared with that of Fig. 3(b). Note that the two load
processes in the multiple buffer model use a gueue statement,
rather than a wait statement, to suspend execution while
waiting for a buffer to be emptied. This insures that, when
both load processes are waiting and one buffer becomes empty,
only one load process is activated to fill that buffer.

Fig. 6 shows a second example of event set operations.
Fig. 6(a) is a diagram of an M/D/n queueing system. Cus-
tomers arrive at the system at an average rate of 1 per unit
time; their inter-arrival times are distributed in accord-
ance with a negative exponential distribution. Service times
are fixed and equal to 8 time units. A complete ASPOL simu-
lation program for this system is shown in Fig. 6(b).

FACILITIES AND STORAGES

ASPOL provides entities called facilities and storages.
From an implementation point of view, these are an extension

of events.
declaration

Facilities are defined and created by the

facility £y, f,, . ., fn:
where the f; represent non-dimensioned (simple) or singly-
dimension (set) facility names. Created with a facility
is an event (or set of events, for a facility set) of the
same name. A facility is a variable which may assume the
states ''busy'" or '"nonbusy'. When created, it is placed in
the '"nonbusy' state, and the associated event is assigned
the value "occurred'. Facility operations include the

following.
reserve (f)
preempt (f, i) H
release (£(i))

Facility set and set member selections have the same form
as those described for events: e.g., reserve(f.i) reserves
the first-found nonbusy facility element in the set and
returns the number of the element as the value of i.

The statements reserve(f) and preempt(f) cause a non-
busy facility to be placed in the busy state and assign
the value "not occurred" to the associated facility event.
A relegse(f) statement returns the facility to the nonbusy
state and sets the facility event, causing it to be assign-
ed the value "occurred'". Processes may explicitly suspend
execution while waiting for a facility to become free by
selecting the associated facility event via a gueue(f)
statement. Also, a process attempting to reserve a busy
facility is automatically enqueued on the facility event.
A process may preempt a facility reserved by a process of
lower priority via a preempt statement; the preempted
process is enqueued on the facility event and, if it was
in hold state, its remaining hold time is saved. If the
process reserving the facility is not of lowere priority,
the preempt statement is treated as a reserve statement.

When processes are enqueued on a facility event,
occurrence of that event (caused by a release statement)
initiates event recognition processing, which places the
process at the head of the queue in ready state. If the
process was enqueued because it attempted to reserve a
busy facility, the facility is reserved for it upon its
return to execute state. If the process had been preempt-
ed, the facility is reserved for it and it is returned to
hold state.

A variation on the example of Fig. 6 illustrates some
of the facility declarations and operations. Assume that,
in the queueing system of Fig. 6(a), arriving customers
have priorities equiprobably distributed between 1 and 10,
and that higher-priority arrivals finding all servers busy
preempt a server reserved by a lower-priority process. An
ASPOL model of this system might appear as follows.

sim mdnq;
facility server(10);
while(time.le.1000.0)do
begin
initigte arrival; hold(expntl(1.0));
end;

end sim;
process arrival;
priority=irandom(1,10);
preempt(server);
hold(8.0);
release(server);
end process;

The arrival process descriptions in both this and the
preceding example are independent of the number of serv-
ers. Note, in the example above, that the specific ele-
ment reserved by an arrival process need not be specified
in a relegse statement.

Storages are defined in ASPOL very much in the same
way as facilities, and the allocation and deallocation of
storage space functions much like the reservation and

522

release of facilities. Storages also have events asso-
ciated with them; a process attempting more than the
available storage space is queued on the associated event
until its requirements can be met. For a more detailed
description of facilities and storages, see (2),

CONCLUSTONS

The success of events as a means of coordinating
simulation processes has been demonstrated in hundreds of
models. These have ranged from detailed models of com-
plete, large-scale, computer operating systems down to
hardware level models. Process coordination via events
permits a high degree of process independence to be real-
ized. Processes can control their activities by setting
cvents and waiting for events with minimum connection to,
and information about, the other parts of the model.

This is advantageous in the hierarchical development of
models, in constructing multi-level models, and in multi-
person model development projects.

There are several areas in which ASPOL's event facili-
ties could be improved; two such areas are set operation
stacking and multiple event selection. As set statements
currently are implemented, repeated setting of a particular
event (a simple event or event set element) without inter-
vening selections, followed by a selection, functions as
if only the last set operation occurred, and parameters
accompanying the preceding set statements are overwritten.
It may be desirable to 'stack' set operations and execute
them in first-in, first-out fashion as selections occur.

A desirable extension is multiple event selection:
i.e., permitting a process to suspend execution while wait-
ing for some arbitrary combination of events to occur.

Two possible forms of multiple event selection, called the
operative and declarative forms, are being considered.
These forms are illustrated below.

OPERATIVE FORM

event el, e2, e3;

DECLARATIVE FORM

event el, e2, e3;
event e4 = elne2v T e3;

wait(elA e2V —e3); wait(ed);

Both forms have advantages and disadvantages from the
implementation standpoint. The operative form requires
evaluation of the event expression on each execution of
the wait statement, the declarative form requires propa-
gating event occurrence through a chain of event descrip-
tors. From the standpoint of use, the declarative form
has the attraction that a single event can be transmitted
to a process, and that process then can proceed to execute
unaware of the complexity of the conditions which control
it.

REFERENCES

1. ASPOL Reference Manual, Control Data Corp., Pub. No.
17314200, 1972,

2. MacDougall, M. H., "Process and Event Control in
ASPOL", Proc. Symposium on the Simulation of Computer
Systemg III, 1975, p39-51.

3. MacDougall, M. H., and McAlpine, J. S., ""Computer Sys-
tem Simulation with ASPOL", Proc, Symposium on the
Simulation of Computer Systems I, 1973, p93-103.

4. Dahm, D. M., Gerbstadt, F. H., and Pacelli, M. M., "A
System for Resource Allocation", Comm, ACM 10, 12,
p772-779, Dec. 1967.

5. Cleary, J. G., "Process Handling on the Burroughs
B6500", Proc, Fourth Australian Computing Conf., 1969,
p321-329.

6. Rossiensky, J., and Tixier, V., "A Kernel Approach to
System Programming: SAM", Software Engineering, Vol. 1,
J. Tou (ed.), Academic Press, New York, 1969, p205-224,

7. Earl, D. B., and Bugely, F. L., "Basic Time -sharing: a
System of Computing Principles'", Proc. 2nd Conf, on
Operating System Principles, 1969, p75-79.

8. Dijkstra, E. W., "Cooperating Sequential Processes",
Programming Languages, F. Genuys (ed.), Academic Press,
New York, 1968, p43-112.

