PROCESSOR SCHEDULING SIMULATION

Daniel Martin
Memphis State University, Memphis, Tennessee

A trace-driven simulator as defined by Cheng [1] is
used to analyze customer service provided by a multi-
programmed computer system. In particular, several inter-
nal processor scheduling algorithms are simulated and
attention is devoted to the effect these algorithms have on
weighted turnaround provided to the jobs in the system.

THE SIMULATOR

The simulator is written in ALGOL-60 and is imple-
mented on a XEROX Sigma 9 computer. The basic assumption
in a trace-driven model is that jobs will enter the system
and repeatedly request a burst of CPU time followed by
burst of IO time. These bursts are referred to as the CPU
and I0 cycles respectively. Although it is possible for a
job to have its own CPU and IO cycles overlapped in an
actual computer system, this is not allowed in our model.
CPU and IO cycles of distinct jobs are, of course, over-
lapped. The CPU and IO cycles can be constants, read off
a file (which may have been created using a monitor on an
actual system) or generated by random number generators.
The results in the sequel were obtained using random number
generators. The simulator is cognizant of channel conflict
and supervisory overhead; it provides up to 5 levels of
multilevel queuing for CPU service.

The simulator was orginally designed for use in a
graduate operating systems course, where it was necessary
that students be able to easily modify and create CPU sched-
uling disciplines. Accordingly, the queuing mechanism is
located in a single ALGOL procedure. (It 1s most difficult
to predict the effect of scattered modifications to a large
program). The students worked with a simple, preliminary
version of the model with great enthusiasm, 8 students
managed to amass $2,399.98 of computer time in only 5 weeks.

The data required to drive the simulator consists of a
set of job profiles which consist of total CPU time required,
job identification number and, optionally, an entry level in
a multilevel queque. (This last item can be thought of as
an external priority). Further, the number of words of main
memory that the computer being simulated has available for
user tasks, and n, 1 < n < 10, the number of IO channels for
the simulated computer must also be provided. All IO
channels are viewed as floating channels, i.e. any channel
can be connected to any IO device.

The simulator maintains several lists, the dominant one
being the ACTIVE 1list. The ACTIVE list contains information
about each non-terminated job; in particular it contains the
identification number, total CPU time required, CPU time
received, IO time received, main memory requirement, CPU
time remaining before the next IO cycle, and a timeslice, q,
(as determined by the QUEUEIN procedure).

The BLOCKED list contains pointers to the ACTIVE list
for all jobs performing I0. It is a linked list, sorted in
order of IO complete time. The READY list correspondingly
holds pointers to ACTIVE for all jobs ready to use the CPU.
It is a five level list which is ordered according to which-
ever queuing discipline is being simulated.

Job profiles are placed in the ACTIVE list by GETPROG
which then calls QUEUEIN. QUEUEIN places the jobs, or more
pPrecisely, pointers to the jobs, in the READY list. Jobs
are added to ACTIVE until a job too large to fit in the
remaining main memory is encountered. At this point, DIS-
PATCH is called to detach a job from the READY list and
assign it to the CPU for an amount of time which was deter-
mined by the QUEUEIN procedure. Jobs are run to completion;
as each job exits, a test is made to see if the next job will
fit in main memory. If so, it, and any additional jobs that
will fit, are added to the READY queue. Needless to say, the
memory management modeled by this simulator is extremely
primitive.

511

QUEUEIN is called wherever a job must be inserted in-
to the READY list, i.e. at time slice interrupts, pre-
emptions, I0 complete interrupts and new job entry. It
calculates a timeslice (or a maximum amount of time the
job can hold the CPU) and inserts the job in the READY
list.

In order for a job to perform IO, it must possess an
I0 channel. Channels, if available, are assigned upon an
I0 initiate requests. If no channel is available, the CPU
will remain idle until a channel becomes free; the request-
ing job will then be assigned to that channel and simula-
tion will resume.

It is possible to forcibly detach a job from the CPU
prior to a time slice or CPU complete interrupt. This
process is called preemption and will only take place if
(i) the global variable PREMP is set to TRUE; and (ii) a
job J enters the READY queue at level j and j <level of the
job currently using the CPU. In this model, there is no
preemption unless a multilevel queuing discipline is being
modeled.

Another way a job can be detached from the CPU prior
to the completion of its CPU cycle is through a time slice
interrupt. The procedure QUEUEIN assigns a time slice, q,
to each job; if the time remaining in the current CPU cycle
is greater than the timeslice, the job will only receive
the CPU for q ms. At the end of q ms of CPU service,
QUEUEIN will be called and a new (possibly the same) job
will be assigned to the CPU by DISPATCH.

Overhead is assigned to the CPU at each time slice,
preemption, dispatch, IO complete and IO initiate request.
Different constants are maintained for swaptime, IO com-
plete and IO initiate calls. If the CPU is engaged when an
overhead call occurs, the user CPU cycle is extended and
time is updated to reflect the time required to handle the
call. This update may result in the occurence of more
supervisor calls - all of which are handled in the same
manner. Of course, if the CPU is idle at the time of a
supervisor call, the process is simplified. As one might
suspect, this situation occurs rarely.

The data used in the simulator runs which are describ-
ed below was obtained from random number genmerators. It
has been observed [2,3] that both CPU cycle and total CPU
time are highly skewed. Accordingly, lognormal random
numbers were generated to use as these variables. Many
simulation experiments, however, use exponential numbers as
CPU cycles [4,5). We have also generated CPU cycles which
fit an exponential distribution. The results obtained with
different distributions are compared in the next section.
Procedures described in [6] were used to generate these

numbers. Normal variables were generated to use as memory
requirements.
RESULTS

Preliminary runs of the simulator used constant CPU
and I0 cycles within individual jobs. Gwynn [7] has shown
that if this is the case and (i) these constants are gene-
rated using the mean, varience and distribution of previous
runs in which non-constant cycles were used; (ii) the sched-
discipline is Round-Robin, then the global results, e.g.
CPU utilization and throughput are not markedly perturbed.
A further simplification which provides that the same con-
stant IO and CPU cycles be used for every job has been
shown to be inadequate [5]. The simplification suggested
by Gwynn does affect the local results, such as.order of
exit and time of exit for individual jobs. It is important
for our purposes that these results remain unperturbed.

As a measure of service provided to individual custom-
ers we use weighted turnaround which has been defined ?y
Madnick and Donovan [8] as elapsed time to complete a job
divided by runalone time. Thus, a weighted turnéround of
2.0 means a job took twice as long to run as if 1t‘were
running alone. Average weighted turnaround for a job
stream is (weighted turnaround)/ number of jobs.
all jobs

Although external job scheduling can have a dramatic
effect on the utilization of a computer system, we do not
consider this aspect of scheduling in this paper. As has
been done in many simulation experiments [2,5,9] we look
at the effect of various internal CPU scheduling disci-
plines on throughput and CPU utilization. Additionally,
we monitor the affect of the various strategies on service
provided to individual customers, using weighted turna-
round to measure customer service.

It is well-known that the scheduling of the CPU in a
multiprogrammed computer system is complicated by the fact
that several reasonable goals are contradictory. [3,8].
Increasing CPU utilization may adversely affect response,
maximizing throughput may result in poor use of peripheral
equipment. We want to look at the relationship between
throughput and average weighted turnaround; we are aware
that there is no a priori reason to believe that there
should be any such relationship. Note that the best turn-
around can always be obtained by running the jobs seperate-
ly; this, of course, is hardly attacking the root of the
scheduling problem in a multiprogramming computer system.

Sherman, Baskett and Browne [2] used results from a
trace-driven model to conclude that a good scheduling strat-
egy must be preemptive and must not allow any job to seize
the CPU for extended periods of time. Once these conditions
were met, there was not a large change in CPU utilization or
throughput. 1In fact, the maximum percentage increase in
throughput noted after these restrictions were met was 6.977%
between a random guess and a theoretical 'best' policy.

(The '"best'" policy assigns the CPU to the job which requires
the least amount of CPU time at the instant of assignment;
it is more than difficult to implement such a strategy in an
actual computer). They also noted that even a simple Round-
Robin scheduling mechanism provides throughput only margin-
ally lower than the 'best" strategy. It does not appear to
be extraordinarily difficult to drive up CPU utilization
and, consequently, throughput provided sufficient jobs and
resources to support them are available.

In addition to classical First-Come, First-Serve (FCFS)
and Round-Robin (RR) with various time slices, several
multilevel scheduling disciplines were simulated. 1In a
multilevel discipline, a job at level i will be assigned to
the CPU only if (i) every job at level j < i is doing IO; or
(ii) there are no jobs at level j < i. If the job using the
CPU is at level i, and it is possible for an entering the
READY queue at a job at j < i to seize the CPU from this job,
then the strategy is preemptive. All scheduling within a
single level is RR, the quantum for level i is (i50) + 50 ms.

In the AD (autodrop) discipline, all jobs enter the
CPU at level 0 and will receive a maximum of 500 MS CPU time
at that level. If they require more than 500 MS, they are
demoted to level 1 where they remain until an additional 500
MS of CPU time has been received, at which time they enter
level 2. Jobs can remain at level 2 for 1000 MS CPU time,
level 3 for 2000 MS CPU time, and level 4 forever. The ADP
discipline is the same as the AD but with preemption.

The CD (cycle drop) is an attempt to exploit the
skewed distribution exhibited by the CPU cycles. As each
new CPU cycle is started, the job moves to level 0. A job
will remain at level i until it generates 3 time slice in-
terrupts; it then enters level i + 1. Once entering level 4
it remains at that level until it completes the CPU cycle.
The CDP is the same scheduling discipline except that pre-
emption is allowed.

The MEM discipline favors jobs with large memory
requirements. If a job requires M words of main memory it
is placed in the READY queue at level i = MIN(O,[4-M/]0000]),
where [] is used to denote the greatest integer function.
MEMP is the same scheduling discipline but allows preemption.

We have experimented with different scheduling strate-
gies and various memory and channel arrangements. Results
for a 96K, 4 channel system are representative and are de-
picted in figures 1 and 2.

512

Note that switching from exponential CPU cycles to
lognormal CPU cycles has almost no affect on the perform-
ance of the various scheduling disciplines if average
weighted turnaround is used as the measure. The CDP and CD
disciplines are designed to exploit high varience in CPU
cycles; since there is less varience in the exponential
data set, these strategies do provide significantly poorer
throughput with exponential data then they do with log-
normal data. With either data set, MEMP simultaneously
provides the best throughput, best CPU utilization and
worst average weighted turnaround.

As Sherman, Baskett and Browne have predicted, the
preemptive scheduling disciplines uniformly provide better
throughput than non-preemptive disciplines, provided log-
normal variables are used for CPU cycle time. Further,
with either set of data, RR having an appropriate time
slice provides good throughput; too-short quantum can, how-
ever, drive overhead up causing overall degradation of
service. It is not surprising that RR does well, it is
known that it will provide good results if the individual
service times exhibit a large varience [2].

There does not appear to be any correlation between
CPU utilization (or throughput) and average weighted turn-
around. It is apparent, however, that one should be care-
ful of modifying the CPU scheduling algorithm based only on
simulation results which predict increased throughput. In
the lognormal data for example, a 15.04% increase in
throughput occurs when MEMP is substituted for FCFS; at the
same time, however, a 43.02% increase in average weighted
turnaround and 606.87% increase in the standard deviation
of average weighted turnaround is observed. This large
varience in the standard deviation is most galling to the
user of a computer system. Needham [10] points out the
danger of ignoring feedback in a situation like this; large
jobs are encouraged and will be provided. The initial
throughput gain will eventually be destroyed and requests
for more memory in order to provide better service will
soon be heard. Donovan [11l] also has observed that users
rapidly modify their behavior to circumvent and take advan-
tage of policy decisionms.

Several studies have placed emphasis on turnaround
received as a function of total service time required [3,4]
It is commonly desired that the scheduling mechanism of a
multiprogrammed computer system should provide priority
service for short jobs. RR, AD and ADP disciplines have
been predicted to exhibit the desired property. (Since a
short job might consist of a few relatively long cycles,
there is no reason to believe that CD or CDP strategies will
provide such a service.) We wished to verify these results
with the simulator. Alas, the RR discipline failed to pro-
vide expected priority service with either CPU distribution,
in fact FCFS uniformly provided better average weighted
turnarounds for short jobs regardless of the quantum given
the RR discipline. The problem appears to be that jobs
consist of several, rather than one, cycle and comstantly
feedback into the queue.

Average weighted turnaround is plotted against total
service time required for several scheduling disciplines in
figures 3 and 4. Regardless of CPU cycle distribution, AD
or ADP strategies provide the best overall service. Addi-
tionally, these strategies provide near-best throughput and
CPU utilization with both data streams.

CONCLUSIONS

We verify for the lognormal data that a preemptive,
timesliced scheduling discipline provides a quantum leap in
performance when compared with their non-preemptive or non-—
timesliced counterpart. The quantum jump is less apparent
(and sometimes non-existent) with the expontential data.
With no tested timeslice did any RR discipline provide
better average turnaround for very short jobs than did the
FCFS scheduling strategy. A multilevel feedback queue which
drops jobs to lower levels (and longer time slices) as the
CPU time required by the job increases provided the best
mean weighted turnaround, best standard deviation of mean

weighted turnaround and near-best throughput and CPU
utilization.

There can be a wide differences between average
weighted turnaround provided by scheduling disciplines with
only minor differences in throughput. We feel this dis-
crepancy 1s large enough to result in a modification of
customer behavior, a resulting change in job stream char-
acteristics and consequent non-realization of predicted
performance improvement.

Our conclusions must be qualified by the fact that

there is less than a consensus as to what distribution CPU
cycles actually do follow.

Lognormal CPU cycles

Strategies listed in order of increasing throughput

Strategy quantum percent percent throughput

overhead CPU util. jobs/hour
FCFS ol 2.23 74.42 292.76
RR 25 5.26 77.62 301.56
RR 500 2.39 77.40 303.60
RR 250 2.56 78.99 309.79
MEM * 2.76 80.28 313.57
AD * 2.65 79.37 313.60
RR 150 2.79 80.13 315.25
CD * 3.24 80.42 315.40
ADP * 2.71 80.47 316.25
CDP * 3.42 81.48 316.80
MEMP * 2.89 85.72 336.88

* quantum at level i = (50%i) + 50 MS
Figure 1

Exponential CPU Cycles

mean
wgtd turn.

.72
.73
.74
.66
.26
.37
.64
.68
.31
.57
.46

N N e

in order of increasing throughput

Strategy quantum percent percent throughput

overhead CPU Utd. jobs/hours
RR 25 5.11 75.61 291.01
CcD * 3.38 78.25 300.66
CDP * 3.41 77.78 301.05
FCFS o 2.33 78.41 301.85
RR 500 2.38 78.51 302.17
RR 250 2,51 78.66 302.85
RR 150 2.70 78.57 303.46
ADP * 2.65 79.65 306.80
AD * 2.64 80.24 308.52
MEM * 2.94 85.93 332.12
MEMP * 3.11 88.01 339.23

*quantum at level 1 = (50%1) + 50 MS

Figure 2

513

mean wgtd,
turnaround

1.81
1.80
1.90
1.69
1.74
1.75
1.75
1.33
1.42
2.36
2.53

stnd. of
mean wgtd turm.

.43
.52
.48
.37
2.07
.29
.34
.80
.34
.57
3.08

Std. dev. of
mean wgtd turn.

.43
.73
1.19
.39
.43
W41
.40
.35
.33
2.63
3.16

1\
2.5 ¢
2.0 +
\\
FCFS
~
1.5 RR(q = 100 ms)
“ d [e g PNy
1.0t ADP
N s N N N >
5 10 15 20 25 30 Service time
Figure 3
Lognormal Data
Service time plotted vs average weighted turnaround
A
2.5+

FCFS

// RR(q = 150 ms)

N N >
5 10 15 20 25 30
Figure 4
Exponential Data
Service time plotted vs average weighted turnaround

Service time

514

References

1

10.

11.

Cheng, P.S. "Trace-driven system modeling",
IBM Sys. J. 8, 280-289, 1969.

Sherman, S.; Baskett, F.:; and Browne, J.C.
"Prace-driven modeling and analysis of CPU
scheduling in a multi-programming system',
Communications of the ACM 15, 1063-69, 1972.

Freeman, P., Software Systems Principles: A
Survey, SRA, Chicago, 1975, 274-304.

Fuller, S. in Introduction to Computer Archi-
tecture, ed. by H. Stone, SRA, Chicago, 1975,
507-540.

Boyse, J. and Warn, D. "A straight forward
model for computer performance prediction",
ACM Computing Surveys, Vol. 7, no. 2, 73-93.

Naylor, T.: Balintfy. J; Burdick, D.; and
Chu, K,, Computer Simulation Techniques,
Wiley, New York, 1966, 43-62.

Gwynn, J. Persmul Communication

Madnick, S. and Donovan, J. Operating Systems

McGraw-Hill, New York, 1974, 235-243.

Gwynn, J. and Pass, E. "An adaptive micro-
scheduler for a multiprogrammed computer
system", Proc. ACM National Conf., 327-331,
1973.

Needham, R. in Operating System Techniques,
ed. by C.A.R. Hoare and R.H. Perott, Academic
Press, London, 1972, 200.

Donovan, J. Systems Programming, McGraw-Hill,
New York, 1972, 51-55.

515

