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ABSTRACT § dirac delta function
Bond graphs of finite modal representations of one- n rth modal time function
dimensional continuous systems are developed. Emphasis r
is placed on "one-dimensional, soft' structures such as £ modal damping ratio
large aircraft wings or the wings of vertical take off and
landing (VIOL) vehicles. The displacement (and internal p mass density
stress) control of a large aircraft wing is demonstrated th
through simulation on a digital computer. w. r modal frequency
NOMENCLATURE INTRODUCTION
A area Control of the vibration of continuous systems finds

importance in applications as varied as wings of large air-
craft to multistory buildings. In fact, it has just re-

b damping constant
cently been made public that the C5A cargo transport has
C bond graph compliance severe wing fatigue problems due to large wing deflections
during landing and take-off. This problem cuts the useful
c vertical support compliance life of the plane by 1/3. Couple this with a cost override
v of a factor of 2, and the C5A currently costs six times its
c torsional support compliance original estimate. If these wing vibrations could be con-
T trolled inexpensively, great savings would result.
d nondimensional damping constant
One of the major problems in controlling the vibration
EL section modulus of soft, cantilever structures, such as wings or tall
buildings, is the difficulty of applying the control force
F force at other than the attached end of the structure. In gener-
al, a force actuator must be attached to 'ground" in order
F force at control location 1 to generate a restoring force. This is, of course, impos-

1 sible in the case of a wing tip of a landing aircraft or

force at control location 2 the upper floors of a multistory building.

€2
force at engine location 1 An additional problem in the closed loop control of
€] inherently distributed systems is that instability is
force at engine location 2 easily generated by sensing motion at one location (such

€2 as the wing tip) and applying forces at another (such as

g acceleration of gravity near the attachment point). This point will be demonstrated
shortly. This stability problem is alleviated if themotion

1 bond graph inertia and control force are measured and applied at the same lo-
cation. This fact will also be demonstrated shortly.

£ wing length

v It 1s possible to generate control forces at any lo-

M moment cation on the structure without attachment to "ground". 1In
the case of jet aircraft wings, ducting some of the engine

n rth modal mass thrust to the proper locations is a means of providing

r forces at virtually any location. For other structures

R bond graph resistance where momentum flux devices are not practical, inertia
force actuators can be employed. By simply accelerating a

t time mass according to some control policy virtually any force-
time history can be generated.

" transverse wing deflection The question of required magnitude of control forces,

x position frequency response, and necessary power for controller
operation is answered through modeling and simulation of

%o position of control 1 the systems involved. This is a cheap method of determin-

1 ing the practicality of a proposed solution and is an
important step in the design process.

xc2 position of control 2
In what follows, bond graph models are developed for

xe]. position of engine 1 the modal dynamic behavior of a large aircraft wing (such

as a C5A). Simple closed loop control is then applied and
xe‘2 position of engine 2 shown to be a feasible solution to the CS5A wing deflection

th roblem. The bond graph modeling technique is not developed

Y P
r r mode shape in any detail here. It is completely documented in

Reference [1].
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WING MODEL

The physical configuration of the wing is shown in
Figure 1. 1In this example provision is made for two engines
suspended from the wing and for the application of control
forces at two general locations. The wing appears canti-
levered at the left; however, in the formulation to follow
any dynamics assoclated with the landing gear, deflection
of the fuselage, etc. will be incorporated into the left
support.

For demonstration of control applications, the wing
can be reasonably well modeled as a uniform Bernoulli-Euler
beam. In Figure 2 this beam is shown with all external
reactions from the engines, control, and left support in
their assumed positive directions. At this point, the
classical modal approach [2] is used to reduce the govern-
ing partial differential equation to an infinite set of
uncoupled total differential equations. As will be seen,
the uncoupled modal equations lend themselves to direct
formulation into a bond graph model.

Assuming the forces and moment of Figure 2 are
applied at discrete locations, the governing partial differ-
ential equation in terms of the transverse beam displace-
ment, w(x,t), becomes

4 L2
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Following modal analysis procedure, the homogeneous
form of equation (1) is solved with the assumed solution

w(x,t) = Y(x) - n(t) (2)
This yields an equation for the mode shapes, Y(x), as

4
Elﬂ_%zomzy 3
dx

Equation (3) is solved, subject to proper boundary con-
ditions, to yield equations for the natural frequencies,
w%, and corresponding mode shapes, Yy (x).

The question of "proper boundary conditions" subjects
the modal approach to perhaps more criticism than any other
aspect. It is generally believed that each time a new
boundary condition is introduced the problem must be entirely
reformulated. This 1s strictly true if any fixed displace-
ment (or geometric) boundary conditions are imposed. Cer-
tainly the mode shapes associated with a zero deflection
boundary condition can add up to nothing different from
zero at the boundary even if a change to a zero force con-
dition is desired. However, the mode shapes associlated with
force free boundary conditions are perfectly capable of
adding to zero velocity (or displacement) should a fixed
boundary condition be imposed. Karnopp (3] has shown that
force free normal modes and frequencies produce excellent
prediction of the natural frequencies associated with the
game system but with fixed boundary conditions. Some accu-
racy is lost at the higher frequencies and thus if boundary
conditions are to be changed then one or two additional
modes should be retained over and above what the frequency
content of the forcing would normally dictate.

The principal drawback to using the force-free normal
modes is that they are the most difficult mode shapes to
compute. However, they need only be computed one time to
provide for solutions to a vast variety of system geometries
and boundary conditioms.

In order to maintain generality and allow for dynamic
behavior at the attached end of the wing, the force-free
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(no shear and no moment) normal modes associated with
equation (3) will be used. For the Bernoulli-Euler model,
these mode shapes and frequencies can be derived analyti-
cally [2] and thus will not be derived here. It should be
noted that the first two normal modes, Yo(x) and Yl(x),
correspond to the rigid body translation and rotation of
the beam.

To complete the modal analysis formalism, the complete
equation (1) is solved with the assumed solution

o

w(x,L) =

Y (x)
r=0 r

- n (e) (4)

where Y, (x) are the force-free normal modes. By substitut-
ing (4) into (1) and the result mutiplied by Yg(x) and
integrated over the domain x = 0 to x = Kw’ decoupled modal
equations result.

. 2 - v
mfio+mowon_ =TFY(0)+ Pel Br(xel)

+ Fe2 Yr(xez) + FCJ Yr(xcl) 4 sz Tr(xcz)
,, d
RTINS (5
wiere

£w

- 2 s (6)
mr = p A Yr dx

0

is the modal mass and, unfortunately, must be computed. For
a Bernoulli-Euler model, m, can be computed analytically.

Equations (5) are directly amenable to bond graph
representation. The left side of (5) is an infinite set of
uncoupled oscillators of mass, my, and stiffness, m w%.

In a bond graph these oscillators become inertia ang compli-
ance elements attached to force summing l-junctions. The
right side of (5) are the actual applied forces multiplied
by appropriate modifying constants. These constants, or
mode participation factors, are represented by transformers
in the system bond graph. Examples of bond graphs applied
to modal dynamics can be found in References [1], (3], and

[4].

Figure 3 is the bond graph representation of the wing
configuration of Figure 1. Five normal modes have been
retained in this model. Reference [5] indicates that five
modes are sufficient to compute moments to within 5% accu-
racy and even better accuracy in computing displacements.
The applied forces and moment of Figure 2 are indicated on
appropriate bonds in Figure 3.

The I <— and C <— elements emanating from the 1-
junctions are the oscillators associated with each normal
mode. Each I element equals one modal mass, m., while each
C element equals the inverse of one modal stiffness, my Wy
The first two l-junctions have only I<— elements attached.
This 1s due to the first two modes being the rigid body
translation and rotation of wing and are thus nonoscillatory.
Also, resistance elements have been incorporated into the
dynamic modes. This provides for modal damping and is
adjusted, in this example, to yield a damping ratio, £, of
0.02 for each mode.

The forcing for each mode is a result of the applied
forces and moment acting through appropriate mode partici-
pation factors (TF's). The TF moduli are nothing more than
the mode shapes (and slope in the case of M) evaluated at
the location of the applied effort. The applied forces act
on O-junctions in order to sum the modal velocities to yield
the actual velocities at each force location.

Also shown in Figure 3 are the causal strokes (perpen-
dicular lines at the end of each bond) which totally
determine the number of equations and independent variables
required in the formulation. In order to maintain integral
causality throughout the bond graph it is necessary to



specify the applied forces (and moment) as inputs to the
modal dynamics while the modes, in turn, determine the
velocities (or angular velocity) as outputs. This is
accomplished by using force (or moment) generators--compli-
ance elements--on the external bonds. Thus, on the left of
Figure 3, the vertical support stiffness is represented by
the compliance, Cy, while the rotational stiffness is given
by C;. As these compliances are made small, a true canti-
lever support is approached. The effect of vertical dy-
namics of the aircraft on the wing support can be incorpo-
rated into the C, element.

The engines are modeled by the engine inertia, I ,
engine weight, Sg, and pilon compliance Ce' The engines
can be attached at any location along the wing desired.
Finally, the control forces are specified by some control
law and will be discussed next.

STABILITY OF THE CONTROL ACTION

As mentioned previously, an inherent stability problem
exists whenever a control action is applied at one location
of a distributed system and that control action is a func-
tion of the motion at another location. This can be
demonstrated analytically as follows.

Consider the modal equations (5) with only one control
force, F., acting at position x Thus
. 2
+ = F (x
M e Fompw N }c(xc) Yr(xc) 7

c*

Assume that F_ is proportional to the velocity, W, at some
other location, xg, i.e., let

Fc(xc) = -bﬁ(xs) (8)
but .
Q(xsi =§Z- Yr(xs) ﬂr(t) . 9)
r=0
Thus -
FC(XC) = -b Ez; Yr(xs) ﬁr(t) (10)
r=

Substituting (10) into (7) generates

2
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Do equations (11) represent a stable closed loop system?
For a finite number of retained modes, Routh's criterion
or Liapunov stability could be applied; however, it can
simply be stated that if x. and xg are selected such that
equations (11) are stable, then x. and/or xg could be
selected such that the product Yj(xc) Yj(xs) would change
sign and produce an unstable system. In addition, even if
the controller is stable for the number of modes retained,
in the actual system, if more modes are excited than
anticipated, instability could result.
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If the control action and system motion are applied
and sensed at the same location (x. = Xg), the stability
is insured. This, too, can be demonstrated analytically;
however, heuristically, if the control force is propor-
tional to the negative of the velocity at the force
location, then the control action is identical to attaching
a damper at that location. The damper will always dissi-
pate energy and cannot cause instability. Thus for soft,
nonrigid-bodylike structures it is desirable to sense
motions and apply control actions at the same location.

For the five mode representation of a large aircraft
wing shown in Figure 3, two stable control actions will be
demonstrated. The first is to apply a restoring force
proportional to transverse velocity at some location along
the wing. This could be accomplished by ducting "thrust"
from the aircraft engines to the control locations. The
second is to provide a constant restoring 'thrust" at the
control locations, turning the control action "off" for
wing tip velocities below some arbitrary level. The second
approach would be much simpler with regard to design of an
actual system. Optimal control techniques could also be
incorporated as demonstrated in Reference [6].

RESULTS

Typical parameter values for the C5A wing were supplied
through personal correspondence with the Lockheed-Georgia
Company. Obviously, the wing is not a uniform Bernoulli-
Euler beam and the parameter values listed below are
average values where necessary.

Zw, wing length = 100 ft

EI, section modulus = 3.25 x 109 Lbf ftz
pAg, weight/unit length = 1182 Lbf/ft
(typical for 50% fuel remaining)

Engine weight = 10917 Lbf each

X s xez, engine locations = 40 ft, 60 ft

€1
Engine support stiffness = 1.35 x 106 Lbf/ft

Using methods described in [1], the 26 governing state
space equations were derived directly from the bond graph.
These equations were solved numerically using the digital
computer for the different control options described
previously. For all results that follow a vertical landing
velocity of 5 ft/sec is assumed. This velocity is typical
of about 5% of the landings of the C5A. These results are
characteristic of the type of parameter studies which could
be used fruitfully in the design process.

Figure 4 shows the predicted wing configuration for
maximum tip deflection, nondimensionalized with respect to
wing length. The engine locations are indicated, and no
external control has been supplied. The response is pri-
marily "first-mode" in this configuration with a tip
deflection of 2.35 ft (28"). The actual tip deflection as
reported by the Lockheed-Georgia Company for a vertical
landing velocity of 5.3 ft/s is 31 inches. From Figure 5,
the period of oscillation for the uncontrolled wing is
approximately 1.6 s. The Lockheed-Georgia Company reports
a period of 1.35 s. Comparing the predicted and actual
deflection and frequency results, it is felt that the uni-
form Bernoulli-Euler beam model is reasonable at least for
comparative parametric studies.

Figure 5 shows the wing tip deflection-time history
for various control actions and parameters. The d-values
are based on an equivalent second order system of mass
equal to the total system mass and natural frequency
commensurate with the uncontrolled period. It should be
noticed from the uncontrolled deflection curve that higher
mode effects are definitely present. Also, strongly coupled
to Figure 5 is Figure 6 in which the maximum moments at the
midsection of the wing are listed for the various control
actions. These results are normalized with respect to the
maximum midsection moment occuring in the uncontrolled case



Figure 6 also lists the average horsepower requirement for
implementation of each control action.

Figures 5 and 6 vividly demonstrate the desirability
of control for the C5A wing. For tip control only, using
a "linear damper" control action, dramatic decreases in
deflection are accomplished requiring only 50 to 60 HP to
implement the control action. Interestingly enough, the
minimum midsection moment does not occur for the control
action providing minimum deflection. Instead, as the feed-
back constant is increased, the maximum moment first de-
creases and then increases past d = 0.13. The minimum
midsection moment is 347% less than the uncontrolled case.

For control at both the wing tip and midpoint using
equal feedback constants corresponding to d = 0.13, the
deflection history is hardly different than for tip control
only using the same d. However the effective extra support
at the midpoint reduced the maximum moment still further
to 43% less than the uncontrolled case. The power expendi-
ture remained virtually unchanged.

Finally, one case of tip control using a 'constant
thrust" control action is demonstrated in Figure 5. This
simple control action still provides substantial deflection
decreases as well as 20% reduction in maximum midsection
moment.

The results and parameter studies discussed here could
be carried out endlessly. Sophisticated optimization could
be employed and the data correlated many different ways.

It is not claimed that an exhaustive study has been pre-
sented; however, the utility and necessity of digital
simulation in the design process has been demonstrated.

CONCLUSIONS

A bond graph model of the finite mode representation
of a large aircraft wing has been developed. The model
provides for dynamics at the wing-fuselage attachment as
well as allowing for any engine location and engine support
dynamics. The model also provides for two arbitrary control
action locations.

Using typical wing parameters for a C5A wing, simula-
tions were carried out for various control policies and
various control action locations. The results vividly
demonstrate the practicality of using active force
generators for the vibration control of the CS5A wing.
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