GPSS10: INTERACTIVE GPSS FOR THE DECSYSTEM-10

M. David Martin, Department of Computer
Science

The University of Western Ontario, London
Ontario , Canada

INTRODUCTION

In 1972 the University of Western Ontario replaced
its IBM 7040 computer with a machine for which no GPSS
software was then available. Since this language is
used in teaching simulation techniques and in research
studies at Western, the fact that GPSS was no longer
readily available caused some inconvenience. The
implementation of a GPSS processor for the University's
existing DECsystem-10 timesharing computer was undertaken
jointly by Mr. D. Link and the author in order to fill this
gap in our software portfolio.

THE IMPLEMENTATION

Our initial goal was to implement a subset of GPSS/360
which would be sufficient for students using GPSS in an
“"Introduction to Simulation" course. We wished to allow
for expansion to the full GPSS language and for addition
of interactive features, but the watchword of the project
at this time was "Keep it simple". For this, and other
reasons, we divided the GPSS system into three segments
and, although details have changed, this overall design
has been retained to date. The first segment is a fairly
conventional symbolic assembler, producing a binary image
of the source GPSS code with block opcodes represented as
offsets in an opcode dispatch table and Standard Numerical
Attributes represented as offsets in an SNA dispatch
table. This binary image is passed in a disk file to the
second segment which is the heart of any GPSS system --
the GPSS interpreter, front-ended by a simple loader.

When the interpreter produces a report, it simply does a
selective "dump" of internal tables to a disk file. This
is later read by the third segment of the system and a
standard GPSS report is produced from it.

THE INTERPRETER

Before describing some features of the current
implementation, a comment on the original version of the
interpreter may be of interest. In that system a fixed
quantity of each entity was provided, the number
determined when the system was built. In view of the
subsequent interest shown in the project by several
sources, it was fortunate that the implementation language
used (1) provided a way of making structuring of data
independent of algorithms using that data. In this way,
such unfortunate choices of data structures could be
improved without the extensive and painful re-writing often
necessitated by such changes. This is a technique which
may be used, even with a good macro assembler (2).

STORAGE LAYOUT

Storage layout for entity information is probably
the most crucial data structuring area in a GPSS
interpreter. These structures must facilitate rapid,
random access, minimize wasting of space and yet allow
run-time reallocation of numbers of entities and dynamic
creation of entities such as facilities and queues. 1In
GPSS10, entities are divided into two classes with regard
to space requirements. Savevalues and logicswitches
require half, one or two words each; transactions,
storages and other entities require significantly larger
amounts of memory. GPSS10 allocates space for the smaller
entities as vectors of contiguous cells of the required
size. Larger entities are allocated a one-word header
cell each. Header cells for each type of entity are in a
vector. When an entity is defined or referenced, a block
of sufficient size is allocated to hold its information
and the address of this block is placed in the corres-
ponding header cell. This scheme permits convenient and
random access to entity information and avoids reserving

large amounts of storage for entities which might never
be referenced in a particular model, since a zero value
in a header cell indicates that the entity has never

been referenced and has no other storage assigned to it.

In order to implement the REALLOCATE feature, it was
necessary to allocate the header vector (or information
vector, for the smaller entities) at run-time and to
moor each one to a fixed two-word foundation cell for
that entity type. One of the front-end loader's first
tasks is to set up the entity vectors using either
default or reallocated numbers of entities. It should
be pointed out that while on some computer systems the
saving of space resulting from this kind of vector
scheme might not be a real one, current DECsystem-10
operating systems permit running programs to request
more storage in increments of 1K words. Thus, extra
space need not be reserved in a COMMON pool to allow for
the case when say, all 500 facilities might actually be
used by a model. Rather, a storage management
algorithm (3) is used which takes advantage of this
operating system feature to use only the amount of core
storage needed by the model.

FASTER EXECUTION

Several factors contribute to faster execution
times of models run by GPSS10. Events chain pointers,
for instance, are kept as memory addresses rather than
as transaction numbers. Delay chain pointers use the
DECsystem-10's capability to access bytes of arbitrary
size by indicating the scan status bit of the delayed
transaction. This allows delay chains to be cleared
very rapidly. The block opcodes are divided numerically
into two groups. Those blocks that can never refuse
entry to a transaction are in one group, while TEST, GATE
SEIZE, ENTER and PREEMPT are in the other group. This
reduces the overhead of deciding if a transaction can
move from one block to another -- a very good spot to
make even a small saving.

INTERACTIVE FEATURES

The overall design philosophy of the interactive
section of GPSS10 is one directed toward validating and
debugging of models in a well-controlled and convenient
way. This is in contrast to the direction taken by
implementors of other interactive GPSS systems in which
a model may be monitored and summary information is
output, often using a graphics terminal to display
histograms and the like. In GPSS10, the amount of
I/0 activity to the user's timesharing terminal is kept
low. The simulation report may be directed to a device
more suited to handling a larger gquantity of information.

The prime requirement of an interactive simulation
system is that it permit the execution of the model to
be interrupted and later continued. A common method
is to allow the user to interrupt the simulation by
pressing a special key on his terminal. This is useful
in only a limited way, however, due to the fact that the
user has no real control over the state of the model
when the interrupt occurs. Another method is to
implement a special block which causes the simulation to
be interrupted whenever a transaction enters it. 1In
GPSS10 this is the PAUSE block. It is a great
improvement over the less precisg keyboard interrupt
method, but the user must remember to place a PAUSE at
each point where he wishes a pause to occur. If, during
execution of a model, he wants a pause to occur in a
place where there is no PAUSE block, he would normally
have to abort the run, edit his source file and re-run
the model. To avoid this problem, GPSS10 provides the
additional capability to set at any block or blocks,

a "breakpoint". When a transaction reaches a block
where a breakpoint has been set, a pause occurs
automatically. Breakpoints may be set and removed by
interactive commands issued during a pause.

The problem of how to generate a pause is two-
dimensional, however. Often one wants to pause on a

clock time criterion, rather than on a block basis.



puring a pause, the user may decide that he would like
another pause to occur at a particular time or after a
certain additional time has elapsed. This capability is
provided by the "STOP AT" and "STOP IN" commands.

When a transaction is moving through an undebugged
or intricate protion of a model, it may be desirable to
pause each time a transaction moves from one block to
another. This feature is implemented by defining a mode
of processor operation called "step mode", in which a
pause occurs before each block move. This mode may be
enabled or disabled during a pause by the "STEP ON"
and "STEP OFF" commands.

Whenever a pause occurs, the system types an
explanation of the condition causing the pause.
abbreviated trace message in the case of a breakpoint or
PAUSE block or another appropriate message in the case of
a keyboard interrupt or STOP interrupt. During a pause,
the user may request other information about the current
state of the model. Commands in this category include
one to examine or change the next block number to be
entered by any transaction, one to type the current
value of any SNA and one to examine or change the operand
values of the current block. In addition, the values of
savevalues, parameters and matrix savevalue elements may
be changed during a pause.

GPSS10 has enhanced trace capability. Three kinds of
trace are provided, differing in amount of information
produced and output device. A trace flag is associated
with each transaction, as usual, but also with each
block. When a transaction enters a trace-flagged block,
that block move is traced just as if the transaction
trace flag had been on. Both blocks and transactions
may be created with their trace flags turmed on. During
a pause the user may turn on or off any trace flag in
the model. Other features permit generation of a snapshot
report for later examination and provide the ability
to abort the run gracefully.

During a pause, the GPSS10 user may define a macro
containing several interactive commands. These commands
may be executed by giving the macro name itself as a
command. Future plans call for associating a macro
name with a PAUSE block, breakpoint or STOP request. This
macro would be invoked automatically whenever the
associated pause occured, permitting semi-automatic
generation of trace output to suit a user's requirements.

The commands which have been described permit very
efficient monitoring of a model. They allow a significant
reduction in the time required to debug a large model and
worthwhile savings can be realized even with a model of
modest complexity.

CONCLUSION

We have examined some internal features of GPSS10, an
implementation of GPSS for the DECsystemlO, showing the
influence of storage and processor time considerations on
the design of some internal structures. We have also
explored the GPSS10 approach to interactive debugging and
validation of models, noting the contrast that exists
between it and the approach taken in other interactive
GPSS languages and describing those features of GPSS10
wnich permit examination and modification of a model
or a part of a model in greater or in lesser detail.

This is an

472

REFERENCES

1. W.A. Wulf, et al., "BLISS: A Language for Systems
Programming", CACM, Vol. 14, No. 12, 780-790,
December, 1971.

2. "SIMULA 67 for the DECsystemlO - Functional
Specification", 8-1 to 8-35, March, 1973.

3. James K. Mullin, "A Comparison of Two Dynamic
Memory Allocators", Proceedings of the Canadian
DECUS Symposium, (to appear).



ADDRESS

NUMBER

FOUNDATION
CELL

50

ENTITY

INFORMATION
HEADER BLOCKS
— .__/ ENTITY #1
1 | INFORMATION
2 —
3 0
4 -—
ENTITY #2
INFORMATION
49 0
-
50 0 ENTITY #4
INFORMATION

DATA STRUCTURE FOR AN ENTITY TYPE WITH 50 ENTITIES OF THAT TYPE ALLOCATED

SUMMARY OF GPSS10 INTERACTIVE COMMANDS

ENTRY TO

INTERACTIVE MODE

-by
-by
-by
-by

OUTPUT REQUESTS

keyboard interrupt

a transaction reaching a conditional for unconditional PAUSE block
a transaction reaching a breakpoint block

clock condition due to previous STOP request

display the current value of any SNA

display the current value of the operands of the current block
display the next block number of any active transaction
generate a snapshot report for later examination

CONTROL REQUESTS

terminate the run and produce a standard GPSS report
terminate the run by a fatal error, generating an error report
terminate the pause and resume simulation

-to
-to
-to
-to

enable

or disable the step mode of processor operation

MODIFICATION REQUESTS

-to
-to

set or
set or
change
change
change
set or

MACRO RESULTS

-to

define

clear a block trace flag

clear a breakpoint at a block

the value of a matrix element, savevalue or parameter
the value of an operand of the current block

the next block number of any active transaction
clear any trace flag in the system

a macro

display the text of a macro

delete

a macro definition

list the names of defined macros




